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Visible-light-promoted radical amidoarylation of
arylacrylamides towards amidated oxindoles†

Yu-Zhao Wang, Wu-Jie Lin, Hong-Chao Liu and Wei Yu *

A visible-light-promoted intermolecular radical amidation/cyclization of arylacrylamides was realized by

using N-aminopyridinium salts as the source of amidyl radicals. The reaction exhibits a broad scope and

good functional group tolerance, and a variety of amide-tethered-oxindoles were prepared in this way in

moderate to good yields.

C–N bond-forming reactions have drawn persistent interest
from chemists because of the importance of nitrogen-contain-
ing compounds in materials science and in medicinal chem-
istry. Among the various strategies used for the construction of
C–N bonds, those mediated by nitrogen-centered radicals have
been gaining prominence, with accumulating studies showing
that the high reactivity of N-radicals can be exploited to
tackle a number of challenging synthetic problems.1 Multiple
methods have been developed for the generation of N-radicals
under mild conditions, which greatly enhances their useful-
ness in organic synthesis.2

The radical amination of alkenes constitutes a highly valu-
able type of reaction for the preparation of nitrogen-containing
compounds.3 Significant progress has been made over the past
few years, which is to a great extent attributable to the employ-
ment of visible-light photoredox catalysis.4 For instance,
excellent protocols have been reported for the anti-
Markovnikov hydroamination2f,5,6 and amination/difunctiona-
lization (Scheme 1a).7–10 It is noteworthy that primary amidyl
radicals, which have been sparingly employed to react with
alkenes because of a lack of an effective means of generation,
have begun to be used for the construction of the C–N
bond.6–9 Despite this advancement, most of the investigations
in this line have focused on protected amidyl radicals, and
intermolecular olefin amidation with aryl and alkyl-attached
primary amidyl radicals has been much less explored. In view
of the great synthetic potential of amidyl radicals as well as the
structural importance of amides, it would be highly desirable
to broadly investigate the reactivity and efficacy of common
amidyl radicals towards the addition of alkenes.

Oxindoles represent an important class of naturally occur-
ring heterocycles that show highly effective biological and
physiological activities.11 Oxindoles can be efficiently prepared
from N-phenylacrylamides via radical addition/intramolecular
aromatic substitution.12 Our previous study shows that by
reacting aminium radicals with N-phenylacrylamides, ami-
nated oxindoles can be accessed readily in good yields.13

Considering the significance of the amidyl group in medicinal
chemistry, it would be desirable to incorporate the amidyl
group into oxindoles by this strategy. Chang et al. reported an
effective photochemical protocol for the preparation of ami-
dated oxindoles through the reaction of benzoyl azides with
N-phenylacrylamides.14 We envisioned that by reacting amidyl
radicals with N-phenylacrylamides, the scope of the reaction
could be expanded. N-Aminopyridinium salts have recently
been demonstrated to be highly efficient precursors toward
N-centered radicals (Scheme 1b);15,16 they were expected to
fulfill our need to deliver the primary aryl and alkyl amidyl
radicals under mild conditions. Indeed, our results
verified the viability of our design, and the reaction of
N-phenylacrylamides with N-aminopyridinium salts was per-
formed under blue light irradiation with fac-Ir(ppy)3 as the
photocatalyst (Scheme 1b). It is worth noting that the reaction

Scheme 1 Photochemical protocols for the intermolecular addition of
primary amidyl radicals to alkenes.

†Electronic supplementary information (ESI) available. CCDC 2122102. For ESI
and crystallographic data in CIF or other electronic format see DOI: 10.1039/
d2qo00127f

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and

Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

E-mail: yuwei@lzu.edu.cn

2164 | Org. Chem. Front., 2022, 9, 2164–2168 This journal is © the Partner Organisations 2022

Pu
bl

is
he

d 
on

 2
8 

Fe
br

ua
ry

 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/1

5/
20

24
 8

:1
3:

01
 A

M
. 

View Article Online
View Journal  | View Issue

www.rsc.li/frontiers-organic
http://orcid.org/0000-0002-3131-3080
http://crossmark.crossref.org/dialog/?doi=10.1039/d2qo00127f&domain=pdf&date_stamp=2022-04-07
https://doi.org/10.1039/d2qo00127f
https://pubs.rsc.org/en/journals/journal/QO
https://pubs.rsc.org/en/journals/journal/QO?issueid=QO009008


exhibited good functional tolerance, and the alkyl-substituted
amido group can be introduced into the oxindole motif as well
as the aryl and heteroaryl-substituted amido group.

Initially, we selected N-phenylacrylamide 1a and
N-aminopyridinium salt 2a as the model substrates to investi-
gate the feasibility of the reaction under visible-light
irradiation (40 W Kessil blue LEDs, 50% intensity) in the pres-
ence of a photocatalyst (Table 1). A systematic survey of the
reaction conditions with variation in the photocatalyst, solvent
and base revealed the optimum conditions to be: fac-Ir(ppy)3
as the photocatalyst, K3PO4 as the base in 1,2-dichloroethane
(DCE) at room temperature, and blue-light irradiation for 36 h.
Under these conditions, the desired product 3a was isolated in
good yield (with 2a as the limiting substrate). The structure of
3a was confirmed by X-ray crystallographic analysis (CCDC no.
2122102†).17 Other catalysts, such as Cu(dap)2Cl and eosin Y,
were ineffective under the current conditions (Table 1, entries
2 and 3). Replacing DCE with MeCN, dichloromethane (DCM),
or CHCl3 resulted in lower yields (entries 4–6). Additionally,
the yield was diminished when K2CO3 or Et3N was used as
the base or in the absence of a base (entries 7–9). Control
experiments indicate that both photocatalyst and light
irradiation are necessary for the reaction to take place
(entries 10 and 11).

To test the generality of this reaction, the scope of arylacry-
lamides 1 was investigated, and the results are shown in
Scheme 2. Both electron-donating and electron-withdrawing
groups on the N-phenyl ring were well tolerated, and the
corresponding products were obtained in moderate to good
yields. Notably, a broad range of functional groups such as the
halo (3g–3k) and cyano (3n) groups were well tolerated, which
offers the potential for further transformations. This protocol

is applicable to gram-scale preparation. As such, 3a was
obtained in 61% yield upon isolation when the reaction was
performed at the 4.0 mmol scale. However, the expected
product 3v was not obtained when the N-unprotected acryl-
amide was used as the substrate. In this case, the reaction only
delivered a complex mixture.

We next turned our attention to examine the scope of
N-aminopyridinium salts 2 under the standard conditions
(Scheme 3). It can be seen that a range of substrates bearing
electron-donating and electron withdrawing groups on the
phenyl ring of pyridinium salts can be converted to the
expected products (3ab–3ah), and heteroaryl aminopyridinium
salts such as pyridine (3ai and 3aj) and furan (3ak) were also
suitable substrates for the present reaction. Moreover, alkyl
and alkyloxyl-substituted amidyl groups can be introduced
into the oxindole motif as well, although the yields of 3al–3ap
were considerably lower than those obtained using their aryl-
substituted counterparts. The lower yields of 3al–3ap might be
attributed to the presence of competitive pathways (C–H
abstraction from the solvent, for example) that N-alkyl amidyl
radicals are liable to undergo. This method did not work for

Table 1 Optimization of the reaction conditionsa

Entry Deviation from the standard conditions Yieldb (%)

1 Standard conditions 81 (78c)
2 Eosin Y instead of Ir(ppy)3 Traced

3 Cu(dap)2Cl instead of Ir(ppy)3 N.R.
4 MeCN instead of DCE 56
5 DCM instead of DCE 74
6 CHCl3 instead of DCE 64
7 K2CO3 instead of K3PO4 64
8 Et3N instead of K3PO4 41
9 No base 61
10 In the dark N.R.
11 No photocatalyst N.R.

a Reaction conditions: 1a (0.15 mmol, 1.5 equiv.), 2a (0.1 mmol, 1.0
equiv.), K3PO4 (0.12 mmol, 1.2 equiv.), fac-Ir(ppy)3 (2.0 mol%), DCE
(1.0 mL), 40 W Kessil blue LEDs (50% intensity), room temperature,
36 h, under an argon atmosphere. b Isolated yields. c The reaction was
conducted at the 0.2 mmol scale. d Reaction time was 24 h. Detailed
information concerning the screening of the reaction conditions is pre-
sented in Tables S1–S5 in the ESI.†

Scheme 2 Scope of arylacrylamides. The reactions were conducted
at the 0.2 mmol scale. Isolated yield. a 1a (6.0 mmol, 1.5 equiv.), 2a
(4.0 mmol, 1.0 equiv.), base (4.8 mmol, 1.2 equiv.), fac-Ir(ppy)3 (2.0 mol%),
DCE (30 mL), 40 W Kessil blue LEDs (100% intensity), room temperature,
42 h, under argon atmosphere. bA complex mixture was generated.
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the N-disubstituted aminopyridinium salt 2r, possibly as a
result of steric hindrance caused by the N-methyl group.

The present reactions are believed to take place following
the radical pathway shown in Scheme 4. Taking the reaction of
1a with 2a as an example, it can be seen that the reaction
is initiated by the single electron transfer between the
N-aminopyridinium salt 2a and the excited [Ir(III)]*, which gen-
erates radical A and [Ir(IV)]. Radical A then undergoes fragmen-
tation to give the amidyl radical B, which is subsequently
trapped by 1a to produce the radical intermediate C. The latter
undergoes cyclization to afford radical D. Oxidation by [Ir(IV)]
converts D to the carbocation E, from which 3a is finally gener-
ated by deprotonation. K3PO4 has a beneficial effect on the
reaction, probably because it can enhance the basicity of the
system to make the deprotonation easier. This radical mecha-
nism was supported by the inhibition experiment with 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO) and 2,6-di-tert-butyl-4-
methylphenol (BHT) (Scheme 5). The reaction of 1a and 2a was

completely inhibited in the presence of 2.0 equiv. of TEMPO,
and the yield of 3a was significantly decreased when 2.0 equiv.
of BHT was added into the reaction vessel. In the latter case,
the BHT-trapped product 4 was also detected by HRMS. That
the reaction could not take place without fac-Ir(ppy)3 and light
irradiation (Table 1, entries 10 and 11) reveals the necessity of
photoexcitation of the catalyst during the reaction.

In summary, we have developed an effective protocol for the
preparation of amidyl-attached oxindoles via photoinduced
and fac-Ir(ppy)3-catalyzed amidoarylation of arylacrylamides
with N-aminopyridinium salts as the amidyl radical precur-
sors. This method allows a variety of substituted arylacryla-
mides and N-aminopyridinium salts to be converted to the
desired products in moderate to good yields. Further attempts
to expand the synthetic scope of the intermolecular radical
amidation of unactivated olefins are ongoing in our laboratory.
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