Shanshan
Lu‡
a,
Yang
Lv‡
b,
Wenqing
Ma
a,
Xiaofeng
Lei
a,
Ruie
Zhang
a,
Hong
Liu
*b and
Xizheng
Liu
*a
aTianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of technology, Tianjin 300350, P.R. China. E-mail: xzliu@tjut.edu.cn
bCollege of Pharmacy, Jiamusi University, Jiamusi 154007, P.R. China. E-mail: hliu@jmsu.edu.cn
First published on 13th October 2017
Polyoxometalates act as an electron sponge, processing multielectron redox reactions and acting as a fast ionic conductor. They show great potential as promising electrode materials for next-generation lithium ion batteries (LIBs). However, there are still some fundamental issues which should be solved before their application can be realized, such as determining the stable structural feature with reversible Li+ ion insertion/desertion. In this work, polyoxovanadates (POVs) based materials of K4Na2V10O28·nH2O (KNaV10) and Mg2(NH4)2V10O28·nH2O (MgV10) have been prepared and used as the electrode material for a Li+ ion reservoir. The 10-core polyoxovanadate is demonstrated as a anionic building block and the 3D extended structure has been smartly tuned by counter cations. For MgV10, a 1D tunnel with an approximate size of 3 Å × 10 Å was formed along the a axis by Mg2+ ions and [V10O28]6− polyanions. The MgV10 shows a higher capacity, cycling stability, and rate performance than that of KNaV10 without tunnels. The capacity of MgV10 is about 160 mA h g−1 at a high discharge rate of 250 mA g−1, while it is only 118 mA h g−1 for KNaV10. Even after 60 discharge/charge cycles at 50 mA g−1, it displayed a capacity of 180 mA h g−1. The 1D tunnel in MgV10 facilitates the Li+ ion transport and provides spatial Li storage sites, which promotes the electrochemical performance in LIBs. Moreover, the Mg2+ ions remained stable during battery cycling and promoted the 3D structure stability. This work demonstrates promising guidelines for the structural design of POVs based materials for Li storage.
Herein, we demonstrate 3D polyoxovanadates (POVs) with multielectron redox properties as high performance electrode materials. The extended 3D structures have been designed and smartly tuned by optimizing the counter cations. The [V10O28]6− functions as an “electron sponge”, which can theoretically reversibly adopt 10 electrons between [V10O28]6− and [V10O28]16− during charging/discharging. Our results revealed that the electrochemical properties such as capacities and cyclability of the electrode materials are influenced by the counter-cations (K+ or Mg2+) directed structural effects, suggesting the crucial role of these guest cations. The fundamental findings presented in this work provide new guidelines for the optimization of the host materials with fast Li+ ion transportation and a robust structure for next generation LIBs.
:
30
:
10. The mixture was then rolled onto the aluminium mesh (100 meshes) and dried at 60 °C under vacuum for 12 h. The electrolyte was LiPF6 (1 M) in a mixture of dimethyl carbonate and ethylene carbonate (1
:
1, by volume). A microporous Clegard 2400 was used as a separator. The cells were assembled in an Ar-filled glove-box with less than 0.1 ppm of both oxygen and moisture. Galvanostatic discharge/charge measurements were performed in the potential window from 1.0 to 3.8 V versus Li+/Li on an Arbin battery test system (BT2043). Cyclic voltammetry (CV) data were collected by using an electrochemical workstation (CHI 760E) in the potential window of 3.8 to 1.0 V at a scan rate of 0.1 mV s−1.
For complex MgV10, when Mg2+ ions and NH4+ ions are used as counter cations in the synthetic design, it is different to the [V10O28]6− polyoxoanion in KNaV10 as the Mg2+ ions and solvent water molecules in MgV10 link the neighboring [V10O28]6− only by diverse hydrogen bonds to form the supermolecular structure.24 We performed TG analysis to analyze the water content in the prepared samples. As shown in the Fig. S2,† there are two weight loss processes corresponding to the water molecules. An early weight loss from 40 °C to 110 °C is associated with the loss of free water molecules. A consecutive steady weight loss from 110 °C to 250 °C corresponds to the loss of crystal water. This is due to the hydrogen bonds formed by the crystal water molecule and is similar to the previous reports.25 Furthermore, omitting the water molecules, an interesting 1D channel can be observed along the a axis with a size of ca. 3 Å × 10 Å (Fig. 1a). These 1D channels may facilitate the Li+ ions migration (Fig. 1b). As such, the syntheses of KNaV10 and MgV10 pave the way to the rational design of porous polyoxovanadate materials by selection of suitable cations. Both the experimental and simulated XRD patterns for the two materials are shown in the Fig. S3 and S4.† The main XRD peaks of the prepared bulk materials are consistent with the simulated data, which demonstrates the high purity of prepared compounds.
![]() | ||
| Fig. 1 (a) The crystal structure of MgV10. Green: vanadium; red: oxygen; pink: magnesium. (b) Expected lithiation process of the MgV10 material. | ||
The morphology and structure of the POVs were studied by SEM, TEM, FTIR and XPS. As shown in Fig. 2a and b, the dehydrated KNaV10 clusters form irregular particles with a size around 1 μm, while the MgV10 demonstrates an interconnected, open and porous structure constructed by numerous nanosheets with a width of about 60 nm (Fig. S5†). The different morphology was associated with the counter cation directed crystallization process.26,27 The solubility product constant of K+ and Na+ surpasses that of Mg2+, and the crystallization speed of KNaV10 is slower than MgV10. Therefore, MgV10 exhibited a sheet like morphology while KNaV10 displays as particles with a scale of several hundred nm. As we know, the morphology can profoundly affect the electrochemical performance.28 FTIR analyses provided further structural information of the [V10O28]6−. As shown in Fig. 2c, the strong band located at ∼956 cm−1 could be ascribed to the stretching of the terminal V–O bonds. While the other three bands at around 745, 806, and 845 cm−1 possibly correspond to the bridging antisymmetric vibrations of V–O–V.21 The FTIR spectra of KNaV10 and MgV10 are not completely overlapped as observed in Fig. 2c, which suggests that the stretching of the polyanions bands have been deeply influenced by the counter-cations. The XPS of KNaV10 and MgV10 samples feature a couple of peaks located at 517.20 and 524.90 eV, which could be assigned to the V5+ species from the fitting of the V 2p standard spectra (Fig. 2d).29 The XPS peaks of Na 1s (1071.50 eV), K 2p (292.60 and 295.00 eV),15 and Mg 1s (1304.70 eV)30 confirm the successful incorporation of these guest cations into the [V10O28]6– frameworks. Based on these characterizations, the POVs samples of KNaV10 and MgV10 have been successfully synthesized as deigned.
The reversible electrochemical performance of POVs has been carefully examined. The CV data for MgV10 reveals the redox properties of the POV during reversible Li+ ions insertion/desertion. As shown in Fig. 3a, two redox couples were observed which demonstrated a small voltage separation. The first two cycles of CV curves overlapped well, indicating functional stability as an electrode in LIBs and a higher stability of MgV10 than that of KNaV10 (Fig. S6†). The morphology of electrodes after discharging/charging shown in Fig. S7† also demonstrated that the MgV10 remained stable. Fig. 3b shows the ex situ XPS characterizations of the electrode at different discharge and charge stages. It can be seen that the POV after discharging showed complicated V 2p peaks (highlighted with blue and pink lines), which could be mainly assigned to the V4+ and V5+ species from the fitting of the V 2p standard spectra. The presence of the V5+ species in the discharging state might arise from the incomplete reduction in the POV framework.31 Whereas, after charging, the V5+ species32 increasing clearly and the appearance of the V4+ species can be attributed to the incomplete oxidation of the V centers, which corresponds to the battery performance. The reversible redox of the V center enables the Li storage in POVs based materials. The intensity of Mg2+ ions exhibits no obvious changes in different charging/discharging states. We performed FTIR to further characterize the structure and stability of POVs anions before and after cycles. As shown in Fig. S8 and S9,† the fingerprint spectrum between 800 and 1100 cm−1, which originated from the vibration of the polyanions, experienced no obvious changes. These results demonstrate that the POVs anions remained almost stable during cycles.
To further study their electrochemical performance, a galvanostatic discharge/charge was carried out to evaluate the Li storage performance. The MgV10 (KNaV10) shows an initial discharging capacity of 198.8 (152.6) mA h g−1 at a current density of 50 mA g−1 (Fig. 3c, Fig. S10†). Accordingly, the theoretical specific capacities33 of MgV10 and KNaV10 can be calculated as 257.25 and 231.08 mA h g−1, respectively. For the 10 electrons redox reactions,34 the migration of each Li+ ion contributes a capacity of around 25.7 (MgV10) and 23.1 (KNaV10) mA h g−1. Therefore, about eight (198.8/25.7)/seven (152.6/23.1) V5+ centers can be reduced if all of the V species are reduced to V4+ (Fig. 3d). Whereas, there are about ten (seven) V4+ centers that undergo electrochemical oxidization during the subsequent charging process for MgV10 (KNaV10). It can be expected, theoretically, that 10-electrons reactions can occur from the 10th charge process (the theoretical redox electrons are shown in Fig. 3e as dashed lines). With prolonged cycles, the MgV10 can reversible uptake more electrons than that of KNaV10, which reveals that the improved structural stability is brought by the stable Mg2+ ions providing support to POV frameworks.
The above discussion disclosed that the POVs underwent a dynamic activation process in the initial 10 cycles. To evaluate the electrochemical properties of the POVs as a cathode material, rate performance and cycling stability were performed. MgV10 shows a higher rate performance than KNaV10 when subjected to various current densities over the voltage range 1.0–3.8 V (Fig. 4a). There is no severe polarization when the MgV10 was subjected to a high charging–discharging current density. The capacity is around 160 mA h g−1 at a high discharge current density of 250 mA g−1, while it is only 118 mA h g−1 for KNaV10. This excellent rate performance could be attributed to the 3D interconnected, porous, and open structured feature (Fig. 2b, Fig. S11†).35 Cycle performance was further conducted at a current density of 50 mA g−1. As shown in Fig. 4b, the MgV10 exhibits a high discharge capacity of around 180 mA h g−1 up to the 60th cycles. In contrast, the specific capacities of KNaV10 significantly decreased after 10 cycles, and after 60 cycles, the capacity retention is just 63.9% of the 10th cycle (Fig. S10 and S12†). Such a prominent difference between MgV10 and KNaV10 highlights the effects of the structural stability, large accessible surface area, and more facile active sites in MgV10 that are favorable for fast Li+ ions diffusion and storage.
![]() | ||
| Fig. 4 (a) Schematic illustration of the discharge capacity evolutions of MgV10 and KNaV10 at different current densities. (b) Cycling performance and coulombic efficiency of MgV10 at 50 mA g−1. | ||
Footnotes |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c7qi00581d |
| ‡ These authors contributed equally. |
| This journal is © the Partner Organisations 2017 |