Jump to main content
Jump to site search

Issue 39, 2020
Previous Article Next Article

Light and electric field induced unusual large-scale charge separation in hybrid semiconductor objects

Author affiliations

Abstract

Separation of electric charges is the most crucial phenomenon in natural photosynthesis, and is also extremely important for many artificial energy conversion systems based on semiconductors. The usual roadblock in this context is the fast recombination of electrons and holes. Here we demonstrate that the synergy of light and electric fields allows separating very efficiently electric charges over an unusually large distance in TiO2. The generated internal electric field can also be used to shuttle electrons simultaneously to the two opposite sides of a hybrid TiO2–polyaniline object. This counterintuitive behavior is based on the combination of the principles of bipolar electrochemistry and semi-conductor physics.

Graphical abstract: Light and electric field induced unusual large-scale charge separation in hybrid semiconductor objects

Back to tab navigation

Supplementary files

Article information


Submitted
17 Jun 2020
Accepted
28 Jul 2020
First published
28 Jul 2020

Phys. Chem. Chem. Phys., 2020,22, 22180-22184
Article type
Communication

Light and electric field induced unusual large-scale charge separation in hybrid semiconductor objects

A. A. Melvin, E. Lebraud, P. Garrigue and A. Kuhn, Phys. Chem. Chem. Phys., 2020, 22, 22180
DOI: 10.1039/D0CP03262J

Social activity

Search articles by author

Spotlight

Advertisements