Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2019
Previous Article Next Article

Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing

Author affiliations

Abstract

We present and demonstrate a dextrous microfluidic device which features a reaction chamber with volume flexibility. This feature is critical for developing protocols directly on chip when the exact reaction is not yet defined, enabling bio/chemical reactions on chip to be performed without volumetric restrictions. This is achieved by the integration of single layer valves (for reagent dispensing) and surface acoustic wave excitation (for rapid reagent mixing). We show that a single layer valve can control the delivery of fluid into, an initially air-filled, mixing chamber. This chamber arrangement offers flexibility in the relative volume of reagents used, and so offers the capability to not only conduct, but also develop protocols on a chip. To enable this potential, we have integrated a SAW based mixer into the system, and characterised its mixing time based on frequency and power of excitation. Numerical simulations on the streaming pattern inside the chamber were conducted to probe the underlying physics of the experimental system. To demonstrate the on-chip protocol capability, the system was utilised to perform protein crystallization. Furthermore, the effect of rapid mixing, results in a significant increase in crystal size uniformity.

Graphical abstract: Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing

Back to tab navigation

Article information


Submitted
18 Oct 2018
Accepted
06 Dec 2018
First published
06 Dec 2018

Lab Chip, 2019,19, 262-271
Article type
Paper

Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing

Y. Zhang, C. Devendran, C. Lupton, A. de Marco and A. Neild, Lab Chip, 2019, 19, 262
DOI: 10.1039/C8LC01117F

Social activity

Search articles by author

Spotlight

Advertisements