Jump to main content
Jump to site search

Issue 14, 2017
Previous Article Next Article

Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates

Author affiliations

Abstract

The progress of microenvironment-mediated tumor progression in an artificial extracellular matrix explores the design criteria to understand the cancer progression mechanism and metastatic potential. This study was aimed at examining the combination of both surface topographies (fiber alignments) and different stiffness of polymeric substrates (PLLA and PCL) to evaluate the effects on the cellular morphologies, proliferation, motility, and gene expression regarding epithelial to mesenchymal transition (EMT) of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The cellular morphologies (roundness and nuclear elongation factor), E-cadherin and vimentin expression, and cellular motility in terms of cellular migration speed, persistent time, and diffusivity have been comprehensively discussed. We demonstrated that the microenvironment of cell culture substrates influences cancer progression and metastatic potential.

Graphical abstract: Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates

Back to tab navigation

Supplementary files

Article information


Submitted
19 Jan 2017
Accepted
27 Feb 2017
First published
28 Feb 2017

J. Mater. Chem. B, 2017,5, 2588-2600
Article type
Paper

Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates

R. Domura, R. Sasaki, M. Okamoto, M. Hirano, K. Kohda, B. Napiwocki and L. Turng, J. Mater. Chem. B, 2017, 5, 2588
DOI: 10.1039/C7TB00207F

Social activity

Search articles by author

Spotlight

Advertisements