Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 16, 2017

Characterization of zein assemblies by ultra-small-angle X-ray scattering

Author affiliations

Abstract

Zein, a major corn protein, has an amphiphilic molecule capable of self-assembling into distinctly different structures, i.e., rods, sheets, and spheres. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. The study included observing structural changes due to aging. Three distinctive regions, each corresponding to different co-existing structures having a hierarchical organization, were observed in zein-solvent systems. Rod shaped (Rg = 1.5–2.5 nm, P = 1) primary structural units were identified, believed to be molecular zein. Two-dimensional sheet-like structures (Rg = 80–200 nm, 2 < P < 3) were observed, believed to be formed by primary units first assembled into one-dimensional fibers and then into 2D sheet structures. Also, large three-dimensional spherical aggregates were observed (Rg > 1000 nm, P = 4), believed to have assembled from two-dimensional sheet structures. Aging did not change the size or the shape of the primary units, but USAXS detected changes in Rg and P values of the intermediate structures, pointing to a further level of self-assembly where proteins develop a more regular and organized structure. The viscoelastic moduli (G′ and G′′), the consistency index (K) and the flow behavior index (n), were also measured to investigate the effect of zein structural development by self-assembly on rheological behavior. Samples became more solid-like with aging. Raman spectra suggested that zein underwent secondary structure transformations from α-helix to β-sheets, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein solutions.

Graphical abstract: Characterization of zein assemblies by ultra-small-angle X-ray scattering

Supplementary files

Article information


Submitted
05 Dec 2016
Accepted
23 Mar 2017
First published
23 Mar 2017

Soft Matter, 2017,13, 3053-3060
Article type
Paper

Characterization of zein assemblies by ultra-small-angle X-ray scattering

S. Uzun, J. Ilavsky and G. W. Padua, Soft Matter, 2017, 13, 3053 DOI: 10.1039/C6SM02717B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements