Jump to main content
Jump to site search

Issue 7, 2016
Previous Article Next Article

The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite

Author affiliations

Abstract

Reductive hydrolysis of cellulose to hexitols is a promising technology to valorize cellulose streams. Several catalytic systems have been reported to successfully process commercially available purified cellulose powders according to this technology. Ruthenium-loaded USY zeolites in the presence of minute amounts of HCl previously showed very high hexitol yields. This contribution first investigates into more detail the impact of several cellulose accessibility-related properties like cellulose crystallinity, particle size and degree of polymerization on the conversion rate and hexitol selectivity. Therefore, a series of commercial cellulose samples and several mechano- and chemotreated ones were processed with the Ru/H-USY–HCl catalytic system under standard hot liquid water conditions. The results reveal that the polymerization degree has a large impact on both the conversion rate and selectivity, but its impact fades for DPs lower than 200. From then on, the dominant parameters are the particle size and crystallinity. A second part addresses the influence of cellulose purity. Therefore, organosolv pulps of three lignocellulosic substrates (wheat straw, spruce and birch wood), optionally followed by a bleaching procedure, were processed under the same catalytic circumstances. Here factors like residual lignin content and acid buffer capacity appeared crucial, pointing to the necessity of a dedicated delignification and purification procedure step in order to form the most reactive cellulose feedstock for hexitol production. Complete removal of non-glucosic components is not required since processing of ethanol organosolv birch cellulose and bleached ethanol organosolv wheat straw cellulose, both containing about 6 wt% of lignin and minor contents of ashes and proteins, showed a similar hexitol yield, viz. 34–39%, to that derived from pure microcrystalline cellulose.

Graphical abstract: The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Sep 2015, accepted on 23 Nov 2015 and first published on 23 Nov 2015


Article type: Paper
DOI: 10.1039/C5GC02346G
Author version
available:
Download author version (PDF)
Green Chem., 2016,18, 2095-2105

  •   Request permissions

    The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite

    T. Ennaert, B. Op de Beeck, J. Vanneste, A. T. Smit, W. J. J. Huijgen, A. Vanhulsel, P. A. Jacobs and B. F. Sels, Green Chem., 2016, 18, 2095
    DOI: 10.1039/C5GC02346G

Search articles by author

Spotlight

Advertisements