Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 6, 2016
Previous Article Next Article

An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process

Author affiliations

Abstract

New insights into the transformation of ethanol to butadiene over MgO–SiO2 catalysts, prepared by means of the sol–gel technique, have been gained via characterization, catalytic tests, and in situ infrared diffuse reflectance spectroscopy. Catalysts with low Si-content, i.e., with a Mg/Si atomic ratio in the range between 9 and 15, gave superior butadiene yields, because of the proper combination of strong basic sites, required for ethanol activation, and a moderate number of medium-strength acid sites, needed for the dehydration of intermediately formed alkenols to butadiene. A model of the medium-strength, Lewis-type acid sites, consisting of Mg2+ cations with neighbouring Si4+ atoms, has been proposed; these sites are converted into Brønsted sites in the presence of water, a co-product of the multistep transformation of ethanol into C4 molecules.

Graphical abstract: An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process

Back to tab navigation

Supplementary files

Article information


Submitted
14 Sep 2015
Accepted
26 Oct 2015
First published
27 Oct 2015

Green Chem., 2016,18, 1653-1663
Article type
Paper
Author version available

An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process

J. V. Ochoa, C. Bandinelli, O. Vozniuk, A. Chieregato, A. Malmusi, C. Recchi and F. Cavani, Green Chem., 2016, 18, 1653
DOI: 10.1039/C5GC02194D

Social activity

Search articles by author

Spotlight

Advertisements