Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

All chapters
Previous chapter Next chapter

Chapter 9

Gas Chromatography–Olfactometry: Principles, Practical Aspects and Applications in Food Analysis

Today, sensory aspects are the major driver for consumers’ food selection. Among the sensory-active compounds in food, odorants play a major role. The olfactory profile of a food is basically determined by a comparably small number of key odorants, typically in the range of 10–20. Toward the identification of these key food odorants, gas chromatography–olfactometry (GC-O) is a key technique. With little effort, GC-O allows the screening of the volatiles isolated from a food for odor-active compounds and to distinguish them from the majority of odorless volatiles. Gas chromatography–olfactometry is based on using the human nose as a GC detector in parallel to a second detector such as a flame ionization detector or a mass spectrometer. Special care must be taken with sample preparation to avoid compound degradation and the formation of odor-active artifacts. On the basis of the GC-O results, the key odorants in a food can be determined after exact quantitation of potent odorants and calculation of odor activity values followed by sensory evaluation of odor reconstitution models. In food research, GC-O can be applied, for example, to discover novel odorants, to elucidate the molecular basis of varietal aroma differences and off-flavors and to optimize food processing, as well as to approximate odor thresholds, particularly in structure/odor relation studies.

Publication details

Print publication date
30 Oct 2019
Copyright year
Print ISBN
ePub eISBN