The reaction of [Ni(Mes2Im)2](1) (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) with polyfluorinated arenes as well as mechanistic investigations concerning the insertion of 1 and [Ni(iPr2Im)2] (1ipr) (iPr2Im = 1,3-diisopropyl-imidazolin-2-ylidene) into the C–F bond of C6F6 is reported. The reaction of 1 with different fluoroaromatics leads to formation of the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = 4-CF3-C6F4 2, C6F6 3, 2,3,5,6-C4F4N 4, 2,3,5,6-C4F4H 5, 2,3,5-C6F3H2 6, 3,5-C6F3H3 7) in fair to good yields with the exception of the formation of the pentafluorophenyl complex 3 (less than 20%). Radical species and other diamagnetic side products were detected for the reaction of 1 with C6F6, in line with a radical pathway for the C–F bond activation step using 1. The difluoride complex trans-[Ni(Mes2Im)2(F)2] (9), the bis(aryl) complex trans-[Ni(Mes2Im)2(C6F4)2] (15), the structurally characterized nickel(II) complex trans-[Ni(Mes2Im)2(C6F5)2] (11), and the metal radical trans-[Ni(Mes2Im)2(F)] (12) were identified. Complex 11, and related [Ni(Mes2Im)2(2,3,5,6-C4F4H)] (13) and [Ni(Mes2Im)2(2,3,5-C6F3H3)] (14), were synthesized independently by reaction of trans-[Ni(Mes2Im)2(F)(ArF)] with PhSiH3. Simple electron transfer from 1 to C6F6 was excluded, as the redox potentials of the reaction partners do not match and [Ni(Mes2Im)2]+, which was prepared independently, was not detected. DFT calculations were performed on the insertion of [Ni(iPr2Im)2] (1ipr) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6. For 1ipr, concerted and NHC-assisted pathways were identified as having the lowest kinetic barriers, whereas for 1, a radical mechanism with fluoride abstraction and an NHC-assisted pathway are both associated with almost the same kinetic barrier.

Introduction

Fluorinated organic compounds have exceptional properties that are being exploited in many applications including materials, pharmaceuticals and agrochemicals. The development of methods to introduce fluorinated aromatic building blocks selectively into organic molecules is thus of fundamental interest in many areas of chemical research. One strategy for such transformations is the selective activation and subsequent functionalization of C–F bonds of readily available fluoroorganic compounds such as fluoroaromatics. The challenge here is the selective cleavage of very stable C–F bonds. We have recently established a protocol for the transformation of commercially available fluoroaromatics via a selective C–F defluoroborylation process to obtain polyfluorinated arylobronic esters, which may be further used in late stage functionalization, for example in Suzuki–Miyaura cross-coupling reactions. Defluoroborylation of polyfluoroaromatics can be achieved by a thermal [Ni(Mes2Im)2]-catalyzed (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) transformation of polyfluoroarenes into fluoroaryl boronic acid pinacol esters via C–F bond activation and transmetalation with bis(pinacolato) diboron (B2pin2) as the boron source (see Scheme 1). Various arenes with different degrees of fluorination were converted into their corresponding boronate esters in this way. One particularly interesting finding of our study was that activation of the C–F bond by the nickel(0) complex is fast at ambient temperature. This step yields the oxidative addition product.
trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = fluoroaryl), which represents the resting state in the catalytic cycle. The subsequent defluoroborylation step with Bpin2 is the rate determining step and requires elevated temperatures. A boryl complex trans-[Ni(Mes2Im)2(Bpin)(ArF)]}, a likely intermediate, was never observed and stoichiometric reactions of trans-[Ni(Mes2Im)2(F)(ArF)] with Bpin2 led directly to the formation of ArF–Bpin. This finding implied that reductive elimination is very fast and that [Ni(Mes2Im)2(Bpin)(ArF)] once formed, will eliminate ArF–Bpin immediately (Scheme 1).

As an alternative to the thermally-induced C–F bond activation and subsequent borylation of fluoroaranes, we have recently developed a process that employs visible-light photoactivation, and subsequent borylation of fluoroaranes via Ni–F bond activation step across the Ni–Cπ bond of the niobium complex into a Ni–Cπ–F bond activation step and competitive NHC-assisted pathways are found which account for the formation of diamagnetic products. We demonstrate that the complex of the small NHC ligand \(\text{PrIm} \) favors a concerted oxidative addition proceeding through an \(\eta^2-(\text{C},\text{C}) \) intermediate in reactions with fluoroaranes to yield trans-[Ni(\text{NHC})(F)(ArF)] complexes, whereas the complex of the larger Mes2Im ligand leads to fluorine atom abstraction to yield [Ni(\text{NHC})(F)] and a phenyl radical. For both mechanisms, competitive NHC-assisted pathways are found which account for the formation of diamagnetic products by a C–F bond activation step across the Ni–C\text{NHC} bond. These NHC-assisted pathways play an important role for complexes of both sterically demanding and less bulky NHC ligands, and should thus be of general importance and widely applicable for the reactivity of NHC-stabilized transition metal complexes.

Results and discussion

C–F bond activation of perfluorooaromatics

To gain insight into the C–F bond activation process using [Ni(Mes2Im)2] (1), we first investigated stoichiometric reactions of perfluorotoluene, perfluorobenzene, perfluoropyridine and the partially fluorinated aresnes pentafluorobenzene, 1,2,3,5-tetrafluorobenzene and 1,3,5-trifluorobenzene with 1 (see Scheme 3). We monitored the reactions by \(^1 \text{H} \) and \(^19 \text{F} \) NMR spectroscopy and observed a significant effect of the degree of fluorination on both reaction rate and yield. Reactions of 1 with hexafluoroarenes and octafluoronaphthalene proceed within seconds at room temperature whereas the reactions with tetra- and pentafluoronaphthalene take minutes to complete. With 1,3,5-trifluorobenzene, full conversion of 1 takes weeks at room temperature (see ESI, Fig. S1†), but can be accelerated at 80 °C in thf to reach completion after 5 days.

These reactions can be performed in thf, toluene or hexane at room temperature and lead, in each case, to the insertion of the nickel complex into the C–F bond of the fluoroarene to form the Ni–Cπ bond of the fluoroarene via Ni–F bond activation step across the Ni–Cπ bond of the Ni–Cπ–F bond activation step and competitive NHC-assisted pathways are found which account for the formation of diamagnetic products. We demonstrate that the complex of the small NHC ligand \(\text{PrIm} \) favors a concerted oxidative addition proceeding through an \(\eta^2-(\text{C},\text{C}) \) intermediate in reactions with fluoroaranes to yield trans-[Ni(\text{NHC})(F)(ArF)] complexes, whereas the complex of the larger Mes2Im ligand leads to fluorine atom abstraction to yield [Ni(\text{NHC})(F)] and a phenyl radical. For both mechanisms, competitive NHC-assisted pathways are found which account for the formation of diamagnetic products by a C–F bond activation step across the Ni–C\text{NHC} bond. These NHC-assisted pathways play an important role for complexes of both sterically demanding and less bulky NHC ligands, and should thus be of general importance and widely applicable for the reactivity of NHC-stabilized transition metal complexes.

Scheme 1

Thermal borylation of fluoroarenes with Bpin2 mediated by [Ni(Mes2Im)2] via the oxidative addition product trans-[Ni(Mes2-Im)2(F)(ArF)] as the resting state of the catalysis.

Scheme 2

Stoichiometric C–F bond activation of C6F6 using sources of [Ni(PrIm)2] \(^{19} \text{F} \).
The reactions of [Ni(Mes2Im)2] (1) with (a) octafluorotoluene, (b) hexafluorobenzene, (c) perfluoropyridine, (d) pentfluorobenzene, (e) 1,2,3,5-tetrafluorobenzene and (f) 1,3,5-trifluorobenzene to give the complexes trans-[Ni(Mes2Im)2(F)(ArF)] (2), trans-[Ni(Mes2Im)2(F)(C6F5)] (3), trans-[Ni(Mes2Im)2(F)(2,3,5,6-C6F4H)] (4), trans-[Ni(Mes2Im)2(F)(2,3,5,6-C6F4H)] (5), trans-[Ni(Mes2Im)2(F)(2,3,5-C6F3H2)] (6) and trans-[Ni(Mes2Im)2(F)(3,5-C6F2H3)] (7), respectively. Isolated yields are given.

As the low yield of trans-[Ni(Mes2Im)2(F)(C6F5)] (3) is in sharp contrast with the results we obtained previously for the reaction of [Ni2(iPr2Im)4(COD)] or [Ni(iPr2Im)2(η²-C2H4)] with C6F6, we decided to take a closer look at the corresponding reaction using [Ni(Mes2Im)2] (1). Performing the stoichiometric reaction of 1 with C6F6 in an NMR tube in C6D6 led to an immediate color change from dark-violet, the color of concentrated complex 1, to orange after addition of C6F6 at room temperature. A quantitative conversion of 1 was achieved after 5 min as monitored by 19F NMR spectroscopy (see ESI, Fig. S2†). However, the spectroscopic yield determined by 19F{1H} NMR spectroscopy after 5 min at room temperature, vs. a Ph–F containing capillary as internal standard, revealed the formation of 3 in approximately 17% yield and, in addition, the formation of small amounts of fluoride-containing side products (see ESI, Fig. S3†). Even after 72 h at room temperature, no increase in the spectroscopic yield of 3 was observed. In further control experiments, neither the use of an excess of 1 (2.85 equiv.) nor C6F6 (2.5 equiv.) increased the yield of 3 substantially. These experiments demonstrate that the low isolated yield of 3 is not a problem of the isolation process for this complex, but rather an intrinsic problem associated with its formation and the C–F bond activation step. Low temperature NMR experiments (−50 °C to +20 °C) revealed that a nickel fluoride resonance at −358 ppm appeared for this reaction in the 19F{1H} NMR spectrum already at −50 °C (see ESI, Fig. S4†), but also that, at these temperatures, all resonances are significantly broadened in the 1H NMR spectrum of the reaction mixture (see ESI, Fig. S5†). Although we previously observed some line

not seem to affect the yield of the insertion product 3. Complexes 2–7 were characterized by elemental analysis, 1H, 19F and 13C{1H} NMR spectroscopy (see ESI). In the 19F{1H} NMR spectra of these complexes, the resonances of the nickel-bound fluoride ligand were observed in the typical range between −361.9 and −333.1 ppm. Within the series presented (see ESI, Table S1†), the NMR shift of this resonance depends on the degree of fluorination of the fluoroaryl ligands, i.e., an increase of the degree of fluorination of the aryl ligand leads to an upfield shift of the Ni–F resonance.

Crystals of 3, 4 and 5 suitable for X-ray diffraction were obtained from saturated solutions of these compounds either in pentane or hexane at −30 °C (Fig. 1, Table 1; see also ESI, Fig. S34–S36 and Table S2†). The crystal structure of 6 was published previously.44 All complexes of the type trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = C6F5 3, 2,3,5,6-C5F4N 4, 2,3,5,6-C6F4H 5, 2,3,5-C6F3H2) adopt a square planar arrangement of the NHC ligands. An increasing degree of fluorination of the fluoroaryl ligand leads to a slight shortening of the Ni–F bond lengths (Ni–F: 6: 1.874(2) Å, 5: 1.856(2) Å, 4: 1.859(2) Å, 3: 1.844(2) Å), while the distances of the nickel center to the fluoroaryl ligand become gradually longer (Ni–C3: 6: 1.854(5) Å, 5: 1.896(3) Å, 4: 1.883(3) Å, 3: 1.944(5) Å). We assume that both the upfield shift of the Ni–F 19F NMR resonance and the shortening of the Ni–F bond lengths with increasing degree of aryl fluorination are indications of stronger Ni–F bonding.
broadening for the N-alkyl groups of the related complex trans-\([\text{Ni}(\text{Pr}_2\text{Im})_2(\text{F})(\text{C}_6\text{F}_5)]\)^{9a} which arose due to hindered rotation of the NHC ligand about the Ni–C axis, all resonances observed for the reaction of \(1\) with \(\text{C}_6\text{F}_6\) are involved in the broadening. This led to the assumption that radical species are involved in the process. Subsequent EPR experiments were performed at \(-203\) °C for the reaction of \(1\) with \(\text{C}_6\text{F}_6\) which confirmed the presence of metal-centered radicals in the mixture.

For EPR spectroscopic investigations, \(1\) and \(\text{C}_6\text{F}_6\) were combined in an EPR tube with thf at \(-78\) °C and the sample was frozen immediately in liquid nitrogen. The EPR tube containing the frozen reaction mixture was transferred to the cooled EPR cavity at \(-203\) °C and a spectrum was recorded.\(^{10}\) The resulting EPR spectrum displays a superposition of resonances of three different products, of which \(\text{I}\) and \(\text{II}\) represent the two dominant species (Fig. 2, \(\text{I}\): 40%, \(\text{II}\): 50%, \(\text{III}\): 10%).

Cyclic voltammetry results exclude a simple electron transfer from \(1\) to \(\text{C}_6\text{F}_6\) as the origin of radical generation in the reaction mixture (see ESI, Fig. S6†), as \(1\) shows a reversible oxidation/reduction associated with a redox potential of \(-2.03\) V for the redox-couple Ni\(0/\text{NiI}\), and an irreversible oxidation at 0.14 V for the redox-couple Ni\(\text{I}/\text{NiII}\). Although the reduction of \(\text{C}_6\text{F}_6\) at \(-2.87\) V is irreversible, we exclude simple one electron transfer because of the large separation of 0.84 V.

For further scrutiny, complex \(1\) was oxidized by adding ferrocenium tetrafluoroborate in thf at room temperature to a suspension of \(1\) in thf. A few min after addition of the ferrocenium salt the metal-centered radical \(\text{[Ni(Mes}_2\text{Im)}_2]\text{[BF}_4]\) (8) precipitated as an off-white solid (83% isolated yield, Scheme 4), which is only sparingly soluble in common organic solvents. The Ni\(^{1}\) complex 8 was characterized by \(^{11}\text{B}\{}^{1}\text{H}\) and \(^{19}\text{F}\{}^{1}\text{H}\) NMR spectroscopy in acetonitrile (decomposition occurs after

Table 1

<table>
<thead>
<tr>
<th></th>
<th>(d) Ni–C1/C2</th>
<th>(d) Ni–C3(_{\text{AF}})</th>
<th>(d) Ni–F</th>
<th>(\angle) C1–Ni–C2</th>
<th>(\angle) NHC(C1) : NHC(C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Ni(Mes}_2\text{Im)}_2])</td>
<td>1.827(6)</td>
<td>—</td>
<td>—</td>
<td>176.4</td>
<td>53.0</td>
</tr>
<tr>
<td>3</td>
<td>1.923(3)</td>
<td>C3: 1.882(7)</td>
<td>1.844(2)</td>
<td>175.6(1)</td>
<td>37.07(2)</td>
</tr>
<tr>
<td>4</td>
<td>1.922(3)</td>
<td>C3’ : 1.944(5)</td>
<td>1.859(2)</td>
<td>174.3(1)</td>
<td>36.01(2)</td>
</tr>
<tr>
<td>5</td>
<td>1.921(2)</td>
<td>1.896(3)</td>
<td>1.856(2)</td>
<td>174.6(1)</td>
<td>33.81(1)</td>
</tr>
<tr>
<td>6</td>
<td>1.912(3)</td>
<td>1.854(5)</td>
<td>1.874(2)</td>
<td>176.7(1)</td>
<td>31.65(2)</td>
</tr>
<tr>
<td>8</td>
<td>1.903(3)</td>
<td>—</td>
<td>—</td>
<td>174.5(1)</td>
<td>57.99(1)</td>
</tr>
<tr>
<td>9</td>
<td>1.923(2)</td>
<td>1.984(3)</td>
<td>—</td>
<td>159.8(8)</td>
<td>82.37(1)</td>
</tr>
<tr>
<td>11</td>
<td>1.923(2)</td>
<td>1.987(3)</td>
<td>—</td>
<td>157.3(8)</td>
<td>82.11(1)</td>
</tr>
<tr>
<td>13</td>
<td>1.918(1)</td>
<td>C3: 1.869(1)</td>
<td>—</td>
<td>159.5(5)</td>
<td>82.46(8)</td>
</tr>
<tr>
<td>14</td>
<td>1.917(1)</td>
<td>C3’ : 2.046(1)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\text{Ni}(\text{6-Mes})_2]\text{[Br]})</td>
<td>1.939(3)</td>
<td>—</td>
<td>—</td>
<td>179.3(1)</td>
<td>57.99(1)</td>
</tr>
<tr>
<td>([\text{Ni}(\text{P}_3\text{Pr}_3)_2(\text{C}_6\text{F}_5)])</td>
<td>P1: 2.243(5)</td>
<td>1.973(2)</td>
<td>P1–Ni–P2</td>
<td>145.2(2)</td>
<td></td>
</tr>
</tbody>
</table>

For EPR spectroscopic investigations, \(1\) and \(\text{C}_6\text{F}_6\) were combined in an EPR tube with thf at \(-78\) °C and the sample was frozen immediately in liquid nitrogen. The EPR tube containing the frozen reaction mixture was transferred to the cooled EPR cavity at \(-203\) °C and a spectrum was recorded.\(^{10}\) The resulting EPR spectrum displays a superposition of resonances of three different products, of which \(\text{I}\) and \(\text{II}\) represent the two dominant species (Fig. 2, \(\text{I}\): 40%, \(\text{II}\): 50%, \(\text{III}\): 10%).

Cyclic voltammetry results exclude a simple electron transfer from \(1\) to \(\text{C}_6\text{F}_6\) as the origin of radical generation in the reaction mixture (see ESI, Fig. S6†), as \(1\) shows a reversible oxidation/reduction associated with a redox potential of \(-2.03\) V for the redox-couple Ni\(^0/\text{NiI}\), and an irreversible oxidation at 0.14 V for the redox-couple Ni\(^\text{I}/\text{NiII}\). Although the reduction of \(\text{C}_6\text{F}_6\) at \(-2.87\) V is irreversible, we exclude simple one electron transfer because of the large separation of 0.84 V.

For further scrutiny, complex \(1\) was oxidized by adding ferrocenium tetrafluoroborate in thf at room temperature to a suspension of \(1\) in thf. A few min after addition of the ferrocenium salt the metal-centered radical \(\text{[Ni(Mes}_2\text{Im)}_2]\text{[BF}_4]\) (8) precipitated as an off-white solid (83% isolated yield, Scheme 4), which is only sparingly soluble in common organic solvents. The Ni\(^{1}\) complex 8 was characterized by \(^{11}\text{B}\}^{1}\text{H}\) and \(^{19}\text{F}\}^{1}\text{H}\) NMR spectroscopy in acetonitrile (decomposition occurs after

For EPR spectroscopic investigations, \(1\) and \(\text{C}_6\text{F}_6\) were combined in an EPR tube with thf at \(-78\) °C and the sample was frozen immediately in liquid nitrogen. The EPR tube containing the frozen reaction mixture was transferred to the cooled EPR cavity at \(-203\) °C and a spectrum was recorded.\(^{10}\) The resulting EPR spectrum displays a superposition of resonances of three different products, of which \(\text{I}\) and \(\text{II}\) represent the two dominant species (Fig. 2, \(\text{I}\): 40%, \(\text{II}\): 50%, \(\text{III}\): 10%).

Cyclic voltammetry results exclude a simple electron transfer from \(1\) to \(\text{C}_6\text{F}_6\) as the origin of radical generation in the reaction mixture (see ESI, Fig. S6†), as \(1\) shows a reversible oxidation/reduction associated with a redox potential of \(-2.03\) V for the redox-couple Ni\(^0/\text{NiI}\), and an irreversible oxidation at 0.14 V for the redox-couple Ni\(^\text{I}/\text{NiII}\). Although the reduction of \(\text{C}_6\text{F}_6\) at \(-2.87\) V is irreversible, we exclude simple one electron transfer because of the large separation of 0.84 V.

For further scrutiny, complex \(1\) was oxidized by adding ferrocenium tetrafluoroborate in thf at room temperature to a suspension of \(1\) in thf. A few min after addition of the ferrocenium salt the metal-centered radical \(\text{[Ni(Mes}_2\text{Im)}_2]\text{[BF}_4]\) (8) precipitated as an off-white solid (83% isolated yield, Scheme 4), which is only sparingly soluble in common organic solvents. The Ni\(^{1}\) complex 8 was characterized by \(^{11}\text{B}\}^{1}\text{H}\) and \(^{19}\text{F}\}^{1}\text{H}\) NMR spectroscopy in acetonitrile (decomposition occurs after
some time) and IR spectroscopy, elemental analysis and high-resolution mass spectroscopy. The 11B$[^1H]$ and 19F$[^1H]$ NMR spectra revealed an intact counter anion [BF$_4$]$^-$ (see ESI, Fig. S64†). Crystals of 8 suitable for X-ray diffraction (Fig. 3, Table 1; see also ESI, Table S2 and Fig. S37†) were obtained by slow evaporation of a saturated solution of 8 in a 1:1 toluene/ethanol mixture under an argon atmosphere at room temperature. The X-ray crystal structure reveals a nearly linear alignment of the NHC ligands with slightly elongated Ni–C distances compared to those of the starting material 1.

The results of the EPR spectroscopic investigations10 performed on solid-state samples of [Ni(Mes$_2$Im)$_2$][BF$_4$] (8) are shown in Fig. 4. The general insolubility of 8 precluded determination of its magnetic moment by the Evans method. The spectrum reveals two sets of signals, i.e., 8a ($g_{xx} = 2.02$, $g_{yy} = 2.47$, $g_{zz} = 2.62$; 70%) and 8b ($g_{xx} = 1.98$, $g_{yy} = 2.06$, $g_{zz} = 2.13$; 30%), both in line with nickel-centered radicals. Note that in previous studies of two other homoleptic two-coordinate cationic d5-nickel(II) complexes, [Ni(6-Mes)$_2$][Br] (6-Mes = 1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) and [Ni(P3Bu$_3$)$_2$][Al(OC(CF$_3$)$_3$)$_4$], no EPR signals were observed.11 To obtain further insight, we performed density functional theory (DFT) calculations on the molecular geometries, electronic structures and EPR parameters (g tensors) of a variety of potential candidates for 8 (PBE0-D/pcSseg-2, see the ESI for details†).12

The DFT-optimized, D_2-symmetric geometry of the [Ni(Mes$_2$Im)$_2$]$^+$ radical cation of 8 agrees very well with the X-ray structure (Fig. 5; e.g., $d_{Ni-C} = 1.89$ Å, exp: 1.894(3) Å). In the electronic ground state, the spin density is localized at the metal center, with the unpaired electron residing in an s/d$_z^2$-type orbital (Fig. 5a). The calculated g values for the radical cation [Ni(Mes$_2$Im)$_2$]$^+$ ($g_{xx} = 2.01$, $g_{yy} = 2.65$, $g_{zz} = 2.98$), computed under gas-phase conditions, strongly differ from the experimental data with a maximum deviation of 0.36 (8a) and 0.85 (8b; see Table 2 and ESI, Table S3†). However, computations in the presence of the counter ion result in further structural motifs with impact on

![Fig. 3](https://example.com/f3.png) Molecular structure of [Ni(Mes$_2$Im)$_2$][BF$_4$] (8) in the solid state (ellipsoids drawn at the 50% probability level). Hydrogens atoms are omitted for clarity.

![Fig. 4](https://example.com/f4.png) EPR spectrum of 8 in the solid state at -203 °C with NBu$_4$Br.

![Fig. 5](https://example.com/f5.png) (a) Spin density plot for [Ni(Mes$_2$Im)$_2$]$^+$; (b) molecular structure of 8DFT showing Ni–F$_{BF_4}^-$ contacts (isovalue \pm 0.0075 a$_0^{-3}$; lengths of Ni–F contacts in Å; hydrogen atoms not shown).
the computed g tensors (see ESI, Fig. S7†). A Ni–F contact with the counter ion in 8DFT† (Table 2, entry 4, Fig. 5b) results in g tensor components closely corresponding to those of 8a (maximum deviation: 0.03), while no species matching the EPR parameters of 8b were identified in our computational exploration. However, none of the EPR signatures detected for the electrochemically-formed complex 8 appeared during the reaction of 1 with C6F6 (Fig. 2) and, in light of our CV results, it is unlikely that the [Ni(Mes2Im)2]+ cation is involved here.

We then focused on identifying the byproducts of the reaction of 1 with C6F6. Stoichiometric reaction of 1 with C6F6 in thf overnight at room temperature led to a very small amount of a dark-green precipitate which was removed by filtration. After removal of all volatiles from the filtrate, the residue was washed with a large amount of hexane to extract the C–F bond activation product. The yellow residue, which remained after washing, was identified as the difluoride complex trans-[Ni(Mes2Im)2(F)2] (9) by elemental analysis, X-ray diffraction and 1H, 19F{1H} and 13C{1H} NMR spectroscopy (see ESI†). Most significantly, the fluoride resonance, detected as a singlet at −560 ppm in the 19F{1H} NMR spectrum, is shifted ca. 200 ppm to higher field compared to those of the mono-fluoride complexes 2–7 (−333 ppm to −362 ppm, vide supra). A similar high-field shifted fluoride resonance was also observed for the phosphine-stabilized platinum complex [Pt(PPh3)2(F)2] (−455.9 ppm) compared to

Table 2 Experimental and DFT calculated g tensors for species 8

<table>
<thead>
<tr>
<th>Compound</th>
<th>g tensor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gxx</td>
</tr>
<tr>
<td>8a (Exp. solid state)</td>
<td>2.02</td>
</tr>
<tr>
<td>8b (Exp. solid state)</td>
<td>1.98</td>
</tr>
<tr>
<td>[Ni(Mes2Im)2]+ (gas phase)</td>
<td>2.01</td>
</tr>
<tr>
<td>8DFT†</td>
<td>DFT</td>
</tr>
</tbody>
</table>

† DFT-optimized structure with Ni–FBF4 contacts.

An independent sample of complex 9 was synthesized in 38% yield by fluorination of [Ni(Mes2Im)2(I)2] (10) using an excess (2.5 equiv.) of silver(I) fluoride in CH2Cl2 at 0 °C (Scheme 5). Complex 10 was synthesized by reaction of 1 with I2, isolated in 80% yield and characterized by elemental analysis, and 1H and 13C{1H} NMR spectroscopy (see ESI†). Interestingly, the resonance of the carbene carbon atoms is almost unaffected by substitution of the fluoride by the more electropositive...
iodide ligand, and was detected at 176.5 ppm (cf. [Ni(Mes₂Im)₂(F)]₂ (9): 174.6 ppm).

Thus, [Ni(Mes₂Im)₂(F)]₂ (9) was clearly identified as one of the side products of the reaction of 1 with C₆F₆. This complex is formed in low yield (17%) but in an amount similar to that of the insertion product trans-[Ni(Mes₂Im)₂(F)(C₆F₅)] (3). The amounts of complexes 9 and 3 total ca. 40% when the reaction of 1 with C₆F₆ is performed at room temperature, and thus the majority of the products formed in this reaction is still unaccounted for.

Storing the concentrated hexane mother liquor of the extract from the isolation of 9 (vide supra) for 3 days at −30 °C led to crystallization of the remaining C–F bond insertion product trans-[Ni(Mes₂Im)₂(F)(C₆F₅)] (3) and a novel nickel(i) complex trans-[Ni⁴(Mes₂Im)₂(C₆F₅)] (11) as yellow (3) and orange (11) crystals, respectively, which were manually separated in a glovebox (see ESI, Fig. S8†). The paramagnetic compound 11 was characterized by elemental analysis, EPR spectroscopy and X-ray diffraction. Determination of the room-temperature magnetic moment of 11 in solution (Evans method) gave a μₘᵣₑ value of 1.80 μₑₘ, which is consistent with the presence of one unpaired electron. The molecular structure (Fig. 7, top, Table 1; see also ESI, Table S2 and Fig. S39†) and the EPR spectrum (Fig. 7, bottom) of 11 confirm that this complex is a three-coordinate nickel(i) radical. Simulation of the EPR spectrum of 11 gave a g tensor of gₓₓ = 2.04, gᵧᵧ = 2.16 and gzz = 2.31, which was also observed in the EPR spectrum of the crude reaction mixture of 1 and C₆F₆ (Fig. 2). With the experimentally obtained g tensors and the molecular structure of the radical species 11 in hand, we carried out computational studies of the electronic properties of complex 11 and a likely radical counterpart from the reaction of 1 and C₆F₆, [Ni⁴(Mes₂Im)₂(F)] (12) (Fig. 8). Both complexes 11 and 12 would be the result of a one-electron oxidative addition reaction of two equiv. of 1 with one equiv. C₆F₆ (Scheme 6).

Molecular geometries, electronic structures and EPR parameters (g tensors) were thus calculated for the metal radicals trans-[Ni⁴(Mes₂Im)₂(C₆F₅)] (11) and trans-[Ni⁴(Mes₂Im)₂(F)] (12) (Fig. 8) in order to connect the experimentally observed EPR spectra from the reaction mixture of 1 and C₆F₆ (Fig. 2), the EPR spectra of the isolated compound 11, and the corresponding isotropic g tensor components with the assigned structure of 11 (Fig. 7).

According to DFT calculations, complexes 11 and 12 are C₂ symmetric doublet ground state species. The spin density is located at the metal center and the unpaired electron resides in an s/dₓᵧ-type orbital, yielding ²A electronic ground states (Fig. 8).

Calculated and experimental g tensor components are in good agreement for species 11, with a maximum difference of 0.03 in gzz. With the largest deviation being 0.08 for 12, the agreement is still reasonable (Table 3).

To provide further evidence for the existence of trans-[Ni⁴(Mes₂Im)₂(C₆F₅)] (11) and trans-[Ni⁴(Mes₂Im)₂(F)] (12), we attempted to synthesize these complexes independently. The

![Fig. 8](image-url)
Fig. 8 Spin density plots for trans-[Ni⁴(Mes₂Im)₂(C₆F₅)] (11) (top) and trans-[Ni⁴(Mes₂Im)₂(F)] (12) (bottom) (isovalue 0.0075 a₀⁻³; hydrogen atoms are omitted for clarity).
reaction of \([\text{Ni}](\text{Mes}_2\text{Im})_2[C_6\text{F}_5])\) (8) with CspF led to a mixture of two complexes, which we were not able to separate. One of them was identified via \(^{19}\text{F}\{^1\text{H}\}\) NMR spectroscopy as \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](\text{F})_2\) (9) \(^{19}\text{F}\{^1\text{H}\}\) NMR resonance at \(-560\) ppm, and the resulting mixture reveals an EPR resonance with \(g\) tensors (\(g_x = 2.05\), \(g_y = 2.42\), \(g_z = 2.61\)) which are close to the \(g\)-tensors calculated for \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](\text{F})\) (12). We are thus confident that the second metal radical obtained in the reaction mixture is the monofluoride complex \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](\text{F})\) (12).

The complex \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](\text{C}_6\text{F}_5)\) (11) as well as related \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](2,3,5,6-\text{C}_6\text{F}_4\text{H})\) (13) and \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](2,3,5-\text{C}_6\text{F}_5\text{H})\) (14) can be synthesized from the reaction of \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](\text{F})(\text{ArF})\) (\(\text{ArF} = \text{C}_6\text{F}_5\), 2,3,5-6-\(\text{C}_6\text{F}_4\text{H}\)) 5, 2,3,5-6-\(\text{C}_6\text{F}_4\text{H}\), 6) with PhSH \(_3\) (Scheme 7, see also ESI Fig. S9 and S10)\(\text{†}\).

The metal radicals were characterized by elemental analysis, IR and EPR spectroscopy as well as single-crystal X-ray diffraction. All compounds are stable in the solid state as well as in solution for several days. If the reactions are performed in a NMR tube and followed by \(\text{^{1}H}\) and \(\text{^{19}F}\{^1\text{H}\}\) NMR spectroscopy (see ESI; Fig. S9 and S10), the resonances for the \(\text{Mes}_2\text{Im}\), pentafluorophenyl and fluoride ligands vanish, indicating the formation of a paramagnetic species. For complexes of the type \(\text{trans-}[\text{Ni}(\text{CHC}_6\text{F}_5)\text{(H)}][\text{ArF}]\), we expect hydride resonances in the region of \(\sim 13\) ppm in the \(\text{^{1}H}\) NMR spectrum,\(^{29\text{a-d}}\) and a strong absorption in the IR spectrum in the region between 1600 and 2200 \text{cm}^{-1}\) (we expect the Ni–H stretch to be at ca. 1850 \text{cm}^{-1}\) based on DFT calculations). However, such signals were absent for 11, 13 and 14. Thus, although complexes of the type \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(ArF)}]\) cannot easily be distinguished from the corresponding hydride complexes \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(H)}][\text{ArF}]\) by X-ray diffraction (see below), we are confident that 11, 13 and 14 are the metal radicals. Crystals of \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_5)]\) (11), \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](2,3,5,6-\text{C}_6\text{F}_4\text{H})\) (13) and \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2](2,3,5-\text{C}_6\text{F}_5\text{H})\) (14) suitable for X-ray diffraction (Fig. 9, Table 1; see also ESI Table S2 and Fig. S39–S41)\(\text{†}\) were obtained by storing saturated solutions of these compounds either in pentane or hexane at \(-30\ ^\circ\text{C}\). Complexes 11–13 adopt a distorted T-shaped structure, in which the NHC ligands occupy mutually \(\text{trans}\) positions. Due to the absence of the fluoride ligand, 11, 13 and 14 exhibit shortened Ni–C distances to the fluoroaryl ligand and reduced C1–Ni–C2 angles compared to nickel(n) complexes 3, 4, 5 and 6, which is also a further indication of the absence of a metal hydride. The data is in line with the data observed for \(\text{Ni}(\text{P}^3\text{Pr}_3)_2\text{(C}_6\text{F}_5)]\) reported by Johnson and co-workers previously (Table 1, see also ESI Table S2\(\text{†}\)).\(\text{†}\) EPR spectra of compounds 11, 13 and 14 were recorded in frozen thf solutions and reveal similar g tensors for the complexes, which are in good agreement with the calculated parameters (see ESI, Fig. S11–S13 and Table S4)\(\text{†}\).

Thus, the reaction of 1 with CspF6 affords the insertion product \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}][\text{(C}_6\text{F}_5)]\) (3) in approximately 20\% isolated yield, the difluoro complex \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}][\text{(F)}]\) in approximately 17\% isolated yield, the three-coordinate nickel(i) metal radicals \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_5)]\) (11) (isolated yield: 10\%), \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}]\) (12) (not isolated), and a small amount of a decomposition product, i.e., a dark green precipitate which was not characterized. \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_5)]\) (11), \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}]\) (12) was not isolated; it was only observed in the EPR spectra after 5 s at \(-78\ ^\circ\text{C}\) and the signals vanish after about 10 s during the course of the reaction. Further investigation of the hexane mother liquor of the reaction of 1 and CspF6 revealed that the bis(aryl) nickel(n) complex \(\text{[Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_5)]\) (15) remains in solution and was identified in the reaction mixture by \(^{19}\text{F}\{^1\text{H}\}\) NMR spectroscopy. The radical species 11 and 12 were identified by EPR spectroscopy in a frozen thf solution at \(-78\ ^\circ\text{C}\) (Fig. 2). The diamagnetic products \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}][\text{(C}_6\text{F}_5)]\) (3), \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}]\) (9), and \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_5)]\) (15) were identified by NMR spectroscopy (see Fig. S14 of the ESI)\(\text{†}\).

To expand our study to less fluorinated systems, we reacted 1 with pentafluorobenzene. After 48 h at room temperature, the \(^{19}\text{F}\{^1\text{H}\}\) and \(^{19}\text{F}\) NMR spectra recorded in CspF6 reveal the formation of the C–F bond activation product \(\text{trans-}[\text{Ni}(\text{Mes}_2\text{Im})_2][\text{(F)}][\text{(C}_6\text{F}_4\text{H})]\) (5), the nickel difluoro complex \(\text{[Ni}(\text{Mes}_2\text{Im})_2][\text{(C}_6\text{F}_4\text{H})]\) (9), and the corresponding bis(aryl) nickel(n) complex.
Mechanistic investigations

Experimental investigations and DFT studies reported previously for the reaction of \([\text{Ni}(\text{iPr}_2\text{Im})_2(\mu-\eta^2-\eta^2-\text{C}_6\text{F}_6)]\) and \([\text{Ni}(\text{iPr}_2\text{Im})_2(\eta^2-\text{C}_6\text{F}_5)]\), used as source of \([\text{Ni}(\text{iPr}_2\text{Im})_2(\eta^2-\text{C}_6\text{F}_5)]\) (1), and with the sterically less encumbered \([\text{Ni}(\text{iPr}_2\text{Im})_2(\eta^2-\text{C}_6\text{H}_5)]\) and with \(\text{C}_6\text{F}_6\) suggested a concerted mechanism for the insertion of \(\text{C}_6\text{F}_6\) below.

View Article Online

Scheme 8 Calculated pathways for the C–F bond activation of \(\text{C}_6\text{F}_6\) with \(1^{\text{IPr}}\) (\(\Delta G^\text{298°}\) in kcal mol\(^{-1}\)).
irrelevant here. Note that an alternative adduct formation stabilized by π-stacking interactions between C₆F₆ and one of the NHC mesityl substituents, such as I₇ (see ESI; Fig. S26†), is also endergonic and less favorable than I₅. Furthermore, a “concerted” NHC-assisted process as in the iPr system does not exist. We found a multi-step sequence for the mesityl system instead (Scheme 9 and ESI; Fig. S27†), commencing with heterolytic C–F bond cleavage in I₅, which exhibits a partially reduced C₆F₆ fragment (qNPA(C₆F₆) = 0.69). The fluoride anion expelled from the nickel coordination sphere is loosely held within the cleft formed by the mesityl substituents in I₈. A similar stabilizing association of a fluoride anion by the methyl

Scheme 9 Calculated pathways for the heterolytic C–F bond cleavage of C₆F₆ by 1 and further reaction steps (ΔG²⁹⁸ kcal mol⁻¹).
groups of mesityl substituents has been reported by Macgregor et al. for the C-F bond activation step in hydrodefluorination reactions.19 Formation of the trans-product \textit{3} from here involves binding to the carbene carbon atom and subsequent F-shift onto the Ni center. The overall path involves a low effective barrier of 16 kcal mol-1 (TS6).

Fluorine radical abstraction to yield C\textsubscript{6}F\textsubscript{5}- and radical complex \textit{12} via TS\textit{9} is slightly endergonic and exhibits a barrier of 16 kcal mol-1 (Scheme 10 and ESI, Fig. S26 and S28t). Recombination of C\textsubscript{6}F\textsubscript{5} and \textit{12} to \textit{3} then provides a large thermodynamic driving force. Alternative addition of C\textsubscript{6}F\textsubscript{5} to the initial complex \textit{1} to yield radical species \textit{11} is also a highly exergonic process (–69.5 kcal mol-1), as well as addition of a second equivalent of C\textsubscript{6}F\textsubscript{5} to yield \textit{15} (–108.0 kcal mol-1).

Endergonic formation of difluoro complex \textit{9} from \textit{12} and another equiv. of C\textsubscript{6}F\textsubscript{5} can be compensated by consumption of C\textsubscript{6}F\textsubscript{5}; however, a second fluorine abstraction step is prevented by the high kinetic barrier of 37 kcal mol-1 via TS\textit{10} (see ESI; Fig. S29t). The mechanism for the formation of \textit{9} remains obscure to us thus far. We compute the ligand exchange reaction \textit{3} + \textit{3} → \textit{9} + \textit{15} to be exceedingly endergonic (25.7 kcal mol-1), and also the disproportionation reactions of radicals \textit{11} and \textit{12} yielding \textit{1} + \textit{15} (31.0 kcal mol-1) or \textit{1} + \textit{9}, (14.9 kcal mol-1), are unlikely to contribute to the formation of \textit{9} (see ESI, Fig. S30t). A dinuclear complex \([\text{Ni(Mes}\textsubscript{2}Im)\textsubscript{2}]_2\mu-(\eta^7:\eta^7\text{C}_6\text{F}_5)\textsubscript{2}\) would be an intermediate for an one-electron oxidative addition, is too high in energy to be considered (35 kcal mol-1, see ESI; Fig. S31t). Hence both, the radical pathway and the NHC-assisted multistep pathway represent kinetically competitive C-F bond activation steps in the reaction with [Ni(Mes\textsubscript{2}Im)\textsubscript{2}] (1).

Discussion

It is now well established that nickel(0) complexes with phosphine, carbene, and even some nitrogen ligands undergo C-F oxidative addition with perfluoroarenes to yield complexes trans-[Ni(L)\textsubscript{2}(F)(C\textsubscript{6}F\textsubscript{5})]\textsubscript{1},\textsubscript{8},\textsubscript{20} Although the lack of clean kinetics for many of the C-F oxidative additions indicate complex mechanistic scenarios, there were strong indications that the conversion of C\textsubscript{6}F\textsubscript{5} to the aryl fluoride complex follows the same type of mechanism as observed for typical C-H activation reactions of benzene. It has been demonstrated, for nickel NHC and phosphine complexes, that the first stage of C-F oxidative addition is the \(\eta^2\)-coordination of the fluoroarene.\textsubscript{15e,\textsuperscript{16c,\textsuperscript{21,22}} The introduction of fluorine substituents on the arene results in a lower lying LUMO, which renders the fluorinated arene a better electron acceptor compared to H-arenes and makes the reaction of electron-poor C\textsubscript{6}F\textsubscript{5} with an electron-rich, suitable nickel precursor more exothermic. The fluoroarene of [Ni(L)\textsubscript{2}(\eta^2-C\textsubscript{6}F\textsubscript{5})] is ene-diene distorted, and the arene fluoride substituents are bent out of the plane, as observed for \textit{11} and \textit{15}. Subsequent C-F oxidative addition is strongly exothermic for trans-[Nit(Pr\textsubscript{2}Im)\textsubscript{2}(F)(C\textsubscript{6}F\textsubscript{5})] (\(\Delta G_{298}^{\text{calcl}} = -57\) kcal mol-1) and trans-[Ni(Mes\textsubscript{2}Im)\textsubscript{2}(F)(C\textsubscript{6}F\textsubscript{5})] (\(\Delta G_{298}^{\text{calcl}} = -52\) kcal mol-1). Computational studies reported previously\textsuperscript{16c,21 of the reaction pathways have supported the idea of concerted mechanisms involving a \(\sigma\)-complex as a three-center transition state between the C\textsubscript{6}F\textsubscript{5} carbon and fluorne atoms and the transition metal atom. The transition state structures typically show limited elongation of the C-F bond and interaction of the electron-rich transition metal ion with the C-F \(\sigma^*\) orbital leads to C-F bond breaking and formation of the M-C and M-F bond. We have demonstrated now for [Ni3(Pr\textsubscript{2}Im)\textsubscript{2}(\eta^2:\eta^2\text{C}_6\text{F}_5)-COD] and the related [Ni1(Pr\textsubscript{2}Im)\textsubscript{2}] (1ipr) synthon complexes that C-F bond activation of C\textsubscript{6}F\textsubscript{5} occurs via both a concerted and an NHC-assisted pathway, as both are associated with very similar kinetic barriers of \(\Delta G_{\text{eff}}^\text{TS9} = 23\) kcal mol-1 for the concerted and of \(\Delta G_{\text{eff}}^\text{TS10} = 24\) kcal mol-1 for the NHC-assisted pathway. This situation will probably change if other substrates with other leaving groups, such as partially fluorinated arenes, fluoropyridines or other aryl halides, are involved in the reaction with the nickel complex; however, our calculations demonstrate that both reaction paths are feasible, at least for fluorooarenes.

The direction of the concerted oxidative addition in TS\textit{10} to give the trans product is rather unusual.24 For the oxidative addition of A-B to d10ML\textsubscript{2} the important orbital interactions of the transition state are those between the filled \(\sigma(A-B)\) orbital and the empty \(\sigma^*(A-B)\) leading to electron donation from A-B to the metal center, and a second interaction between the filled \(\sigma^*(A-B)\) orbital of the metal and the \(\sigma^*(A-B)\) back-donation will lead to fission of the A-B bond. This back-donation is strongest if A-B lies within the bent-d10ML\textsubscript{2} plane and the \(\sigma^*(A-B)\) orbital can interact with the \(\sigma^*(A-B)\) orbital (actually a d-p hybrid orbital), which is pointing at the two ligands L.24

However, it was also shown previously that concerted oxidative addition reactions may take place through a nonplanar transition state structure even for non-polar substrates with dihedral angle between ML\textsubscript{2} and M(A-B) planes larger than 70°.25 It was demonstrated that this nonplanar transition state is connected to the planar product on the singlet surface and suggested that steric rather than electronic factors are responsible for the nonplanar transition state structure. Martin et al.26 for example, calculated at the B3LYP/LanL2DZ-level of theory a nonplanar transition state for the oxidative addition of C\textsubscript{6}H\textsubscript{4}I to [Pd(dmpe)] (dmpe = bis(dimethylphosphino)ethane), in which the P-Pd-P and C-Pd-I planes are almost perpendicular to one another. Another example was provided by Jones et al.27d for the oxidative addition of the C-CN \(\sigma\)-bond of organonitriles to the low-valent nickel complex [Ni(dmpe)]. The C-C-N plane of the transition state (calculated at the B3LYP/6-31G(d,p)-level of theory), which leads to C-CN bond cleavage, is rotated by 38° relative to the P-Ni-P plane.

The \(\eta^2(C,C)\)-bonded complex [Nit(Pr\textsubscript{2}Im)\textsubscript{2}(\eta^2-C\textsubscript{6}F\textsubscript{5})] (11) is also the crucial reaction intermediate for the NHC-assisted pathway. The key step here is the addition of the C-F bond across the Ni-C\textsubscript{NHC} bond and, thus, the unoccupied NHC \(p^\pi\) orbital plays a central role for this pathway as intramolecular fluoride acceptor. Fluoride transfer from the arene to the NHC leads to a \(\eta^2\)-fluoro-imidazoyl intermediate (13; Scheme 8) which rearranges with a second fluoride transfer step from the NHC to the nickel atom to give trans-[Nit(Pr\textsubscript{2}Im)\textsubscript{2}(F)(C\textsubscript{6}F\textsubscript{5})] (3ipr).
A phosphine-assisted process has been proposed before for the C–F bond activation of pentafluoropyridine with [Ni(PR3)2], based on the experimental observation of an unusual selectivity for the insertion into the 2-position of C6F5Cl and on DFT calculations. However, another study performed on the reaction of pentafluoropyridine with [Ni(PEt3)] suggested that pathways other than a concerted oxidative addition or a phosphine-assisted pathway account for the unusual selectivity. The detailed experimental analysis of the reactivity of a [Ni(PEt3)] precursor with pentafluoropyridine demonstrated the formation of a mononuclear adduct [Ni(PEt3)F(C6F5)] of dinuclear adducts [Ni(PEt3)2μ–(η2:F)C6F5N], some of which exhibit C–F bond activation, and a nickel(i) radical species [Ni(PEt3)2(2-C5F5N)]. Other heteroatom-assisted C–F bond activation processes have also been proposed for other metals mainly including boryl or silyl moieties.

Despite precedent in the oxidative addition of other aryl–halide bonds to nickel, there is only little experimental evidence for the involvement of radicals in C–F bond activation processes. It is known that some polyfluoropyridines react with [Ni(PR3)] to yield EPR-active complexes as likely intermediates, and some studies on C–F bond activation have shown unusual products with highly-fluorinated arenes that may be indicative of radical pathways. However, the identification of radical intermediates has not been possible so far and alternate mechanisms cannot be ruled out. Although DFT calculations were performed to examine the traditional concerted oxidative addition and phosphine-assisted pathways for C–F bond activation, radical pathways involving Ni(i) intermediates were rarely considered computationally. Thus, the reaction of 1 with different fluoroarenes leads to nickel insertion into the C–F bond to give the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(C6F5)] but EPR spectroscopy also provided evidence that at least three paramagnetic species are intermediates or products of the reaction of C6F5 with 1. We provide evidence that simple electron transfer from [Ni(Mes2Im)]+ to C6F5, often considered as the first step in radical oxidative additions at nickel, is unlikely to occur. The redox potentials are not in line with intermolecular electron transfer to yield [Ni(Mes2Im)]2+ and C6F5– and the EPR resonance of [Ni(Mes2Im)]2+, which has been established for the authentic complex [Ni(Mes2Im)]2[BF4] (8), was not detected in the reaction mixture. Furthermore, many diamagnetic and radical products of the reaction of [Ni(Mes2Im)]+ to C6F5 were identified, namely the insertion product trans-[Ni(Mes2Im)2(C6F5)] (3), the difluoro complex trans-[Ni(Mes2Im)2(C6F5)] (9), the bis(aryl) complex trans-[NiF2(Mes2Im)2(C6F5)] (15), the nickel(i) complex trans-[NiF(Mes2Im)2(C6F5)] (11), and the metal-centered radical trans-[NiF2(Mes2Im)] (12). DFT calculations performed on the reaction of [Ni(Mes2Im)]+ (1) with C6F5 explain the occurrence of the radical species observed. Both an NHC-assisted and a radical process are kinetically equally favored routes for this reaction. Fluorine radical abstraction from C6F5 by 1 is associated with a barrier of only 16 kcal mol\(^{-1}\) and subsequent radical recombination steps provide the thermodynamic driving force required.
fluoroarene to give the nickel(I) complexes trans-[Ni(Mes2Im)2][F][Ar2]+ [Ar2 = 4-CF3-C6F4] 2, C6F3 2, 3,2,3,5,6-C6F4N 4, 2,3,5,6-C6F4H 5, 2,3,5-C6F4H2 6, 3,5-C6F4H2 7 in good to fair yields with the exception of the formation of the pentafluorophenyl complex trans-[Ni(Mes2Im)2][F][C6F3] (3) (less than 20%). Whereas the C–F bond activation process of C6F4 using [Ni(Pr2Im)3]+ (19a) follows a concerted or NHC-assisted mechanism to give the insertion product via \(\eta^2 \)-coordinated intermediates, metal radical species were detected for the reaction of 1 with C6F6. EPR spectroscopy provided evidence that at least three paramagnetic products are intermediates or products of this reaction. The experiments reveal that simple electron transfer from [Ni(Mes2Im)2]+ to C6F6 is unlikely to occur as (i) the redox potentials do not match for an electron transfer between [Ni(Mes2Im)2]+ (1) and C6F6 to give [Ni(Mes2Im)2]− and C6F6+, and (ii) the EPR resonance for [Ni(Mes2Im)2]−, as established for the stable, isolated complex [Ni(Mes2Im)2][BF4] (8), was not detected in the reaction mixture. Several other byproducts were identified aside from the insertion product 3, namely the difluoride complex trans-[Ni(Mes2Im)2][F]2 (9), the bis(aryl) complex trans-[Ni(Pr2Im)2][C6F3] (15), the structurally-characterized nickel(i) complex trans-[Ni(Mes2Im)2][C6F3] (11) and the metal radical trans-[Ni(Pr2Im)2][F] (12). Complex 11 and related complexes [Ni(Mes2Im)2][2,3,5,6-C6F4H2] (13) and [Ni(Mes2Im)2][2,3,5-C6F4H2] (14) were synthesized and characterized independently from the reaction of trans-[Ni(Mes2Im)2][F][Ar2]+ with PhSiH3.

DFT calculations were performed on the insertion of [Ni(Pr2Im)3] (19a) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6, which explain the formation of radical species for the reaction with [Ni(Mes2Im)2]+ (1). For [Ni(Pr2Im)3] (19a), the crucial reaction intermediate is an \(\eta^2 \)-C–C–bonded complex [Ni(Pr2Im)2][\(\eta^2 \)-C2F4]], from which two favorable pathways with almost identical barriers, i.e., a concerted oxidative addition pathway and a NHC-assisted pathway, lead to the formation of trans-[Ni(Pr2Im)2][F][C6F3]. For [Ni(Mes2Im)2] (1), an NHC-assisted and a radical pathway were identified with similar kinetic barriers. Fluorine atom abstraction from C6F6 at [Ni(Mes2Im)2] (1) occurs via end-on attack of C6F6, while the key intermediate for the NHC-assisted pathway is the \(\eta^2 \)-C(C) intermediate [Ni(Mes2Im)2][\(\eta^2 \)-C2F4]]. The NHC-assisted pathway can be interpreted as heterolytic C–F bond cleavage to yield ionic intermediates trans-[Ni(Mes2Im)2][C6F3]F− in which the fluorido anion is stabilized within the sphere of the trans-[Ni(Mes2Im)2][C6F3]F− cation. Several fluoride transfer steps, i.e., migration to the NHC, NHC rotation, and fluoride transfer to the metal cation lead to the formation of trans-[Ni(Mes2Im)2][F][C6F3] (3).

Conflicts of interest
The authors declare no conflict of interest.

Acknowledgements

U. R., H. B. and T. B. M. thank the Julius-Maximilians-Universität Würzburg and U. R. the Deutsche Forschungsgemeinschaft (Ra720/12) for support. Quantumchemical calculations were performed at the Center for Scientific Computing (CSC) Frankfurt on the Goethe-HLR computer cluster.

References

1. Molecular structures of the radical species discussed in this section were obtained at the RI-PBE-D/def2-SVP/W06 level of DFT. The PBE0-D functional and the pcSseg-2 basis set, which is specifically optimized for the calculation of magnetic properties, were employed to obtain EPR parameters (PBE0-D/pcSseg-2).

2. Optimized molecular structures and thermal/vibrational contributions to Gibbs free energies were obtained at the PBE0-D/def2-SVP level of DFT. The def2-TZVP basis set and the COSMO solvation model were employed to obtain improved relative energies (COSMO(THF)-PBE0-D/def2-TZVP).

12. Chemical Science Edge Article

17. Optimized molecular structures and thermal/vibrational contributions to Gibbs free energies were obtained at the PBE0-D/def2-SVP level of DFT. The def2-TZVP basis set and the COSMO solvation model were employed to obtain improved relative energies (COSMO(THF)-PBE0-D/def2-TZVP).

18. Structural and magnetic properties, were employed to obtain EPR parameters (PBE0-D/pcSseg-2).

