Issue 102, 2014

Effective removal of Cr(vi) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline

Abstract

Magnetic mesoporous carbon incorporated with polyaniline (PANI–Fe/OMC) is developed for enhanced adsorption and reduction of toxic Cr(VI) to non-toxic Cr(III). Several physicochemical techniques including TEM, FTIR and XPS analyses confirmed that magnetic iron nanoparticles and amino groups have been successfully bound on the mesoporous matrix. The adsorption capacity of the functionalized material is two- and ten-fold that of the magnetic mesoporous carbon (Fe/OMC) and pristine mesoporous silicon (SBA-15), respectively. Solution pH exhibited a remarkable impact on the Cr(VI) adsorption and the maximum uptake amount (172.33 mg g−1) occurred at pH 2.0. The good fitting of adsorption process using pseudo-second-order and Langmuir models indicated the chemisorption process of Cr(VI) removal. The regeneration study revealed that PANI–Fe/OMC can be reused without loss of their activity in repetitive adsorption tests. Moreover, the resultant adsorbent can be effectively applied in actual wastewater treatment due to the excellent removal performance in fixed-bed column and real water samples. The interaction between Cr(VI) and PANI–Fe/OMC was investigated by FTIR and XPS analyses. The results indicate that the amino groups on the surface of PANI–Fe/OMC are involved in Cr(VI) uptake, and simultaneously some toxic Cr(VI) are reduced to non-toxic Cr(III) during the removal process.

Graphical abstract: Effective removal of Cr(vi) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2014
Accepted
21 Oct 2014
First published
21 Oct 2014

RSC Adv., 2014,4, 58362-58371

Author version available

Effective removal of Cr(VI) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline

G. Yang, L. Tang, Y. Cai, G. Zeng, P. Guo, G. Chen, Y. Zhou, J. Tang, J. Chen and W. Xiong, RSC Adv., 2014, 4, 58362 DOI: 10.1039/C4RA08432B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements