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d b-cyclodextrin porous polymer:
an adsorption-facilitated molecular catalyst
support for transformation of water-soluble
aromatic molecules†

Haiying Li,ab Bo Meng,c Song-Hai Chai,*c Honglai Liu*a and Sheng Dai*bc

A hyper-crosslinked b-cyclodextrin porous polymer (BnCD-HCPP) was designed and synthesized facilely

by b-cyclodextrin benzylation and subsequent crosslinking via a Friedel–Crafts alkylation route. The

BnCD-HCPP shows an extremely high BET surface area, large pore volume, and high thermal stability,

making it a highly efficient adsorbent for removal of aromatic pollutants from water. The adsorption

efficiency in terms of distribution coefficient, defined as the ratio of adsorption capacity to equilibrium

adsorbate concentration, ranged from 103 to 106 mL g�1 within a concentration of 0–100 ppm, one

order of magnitude higher than that of other b-cyclodextrin-based adsorbents reported previously. The

molar percentage of adsorbate to b-cyclodextrin exceeded 300%, suggesting that the adsorption

occurred not only in the cyclodextrin cavities via a 1 : 1 complexation, but also in the nanopores of the

BnCD-HCPP created during the hyper-crosslinking. The BnCD-HCPP can be further functionalized by

incorporation of gold nanoparticles for catalytic transformation of adsorbed phenolic compounds such

as 4-nitrophenol to 4-aminophenol.
Introduction

b-Cyclodextrin (b-CD), consisting of seven a-linked D-glucopyr-
anose units, is a unique cyclic oligosaccharide with a hydro-
phobic center and hydrophilic edge. Based on its chiral cavity,
b-CD shows an exceptional ability to selectively bind nonpolar
suitably sized aliphatic and aromatic molecules to form inclu-
sion complexes, demonstrating great potential in various
applications such as catalysis, adsorption, and separation of
organic pollutants from contaminated water.1 The high solu-
bility of b-CD in water, however, impedes its practical applica-
tion in aqueous systems, motivating researchers to develop
a water-insoluble b-CD in a solid state.2 Two general strategies
have been explored to date: (1) direct polymerization and/or
crosslinking of b-CD using a coupling agent such as epichlo-
rohydrin (EPI) (CD-polymers)3 and (2) attachment of b-CD via
ring and Department of Chemistry, East
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chemical linkers to water-insoluble supporting materials
(CD-coated/incorporated materials).4,5

Traditional CD-polymers, which are crosslinked directly by
toxic EPI and other small linkers, have little framework nano-
porosity except inherent cavities of cyclodextrin, leading to poor
specic surface area (<100 m2 g�1).2,3 This drawback limits the
access of CD cavities to adsorbate molecules, signicantly
reducing the adsorption capacity and efficiency of the CD
polymers. In addition, their low thermal and chemical stabili-
ties curtail their large-scale application. To overcome these
disadvantages, CDs are chemically graed onto the exterior
surfaces of amorphous polymers, silica gels, and nanoparticles
(CD-coated materials),4 or onto the internal surfaces of inor-
ganic/organic porousmaterials with uniform pore structure and
high surface area (CD-incorporated materials, e.g., CD-HMS,5a–c

CD-nanober5d). These supporting materials help achieve rapid
adsorption, by providing easy access to binding sites, and
enhance the thermal stability of graed CDs. However, the CD-
coated/incorporated materials are still subject to relatively low
surface area aer the graing of b-CD, limiting their adsorption
capacities for organic pollutants. Hence, a direct synthesis of
CD-containing polymers with high surface area and thermal
stability is highly desirable but still remains a challenge.

In this effort, we aimed to directly crosslink b-CD via
a simple Friedel–Cras alkylation route. Generally, hyper-
crosslinked polymers created by facile Friedel–Cras alkylation,
which have been widely applied in gas storage and separation,
Chem. Sci., 2016, 7, 905–909 | 905
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Fig. 1 (a) 1H NMR spectrum of BnCD, (b) 13C NMR of BnCD and solid-
state 13C NMR of BnCD-HCPP (spinning at 7 K), (c) N2 adsorption–
desorption isotherms of BnCD-HCPP measured at 77 K (the polymer
was pretreated at 170 �C under nitrogen flow for 2 h), (d) pore size
distribution of BnCD-HCPP, (e) transmission electron microscope
image of BnCD-HCPP, and (f) thermogravimetry and differential
thermogravimetry curves of BnCD-HCPP.
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show high surface area and good thermal stability but require
benzyl structure units for alkylation and skeleton support.6

Bearing this in mind, we rst synthesized fully benzylated b-CD
(BnCD) and then hyper-crosslinked it with formaldehyde
dimethyl acetal (FDA) as an external cross-linker and FeCl3 as
a Lewis acid catalyst. The resulting BnCD-based hyper-cross-
linked porous polymer (BnCD-HCPP) indeed showed high
surface area and thermal stability, making it an exceptional
adsorbent for aromatic compounds, as well as a support for
gold catalysts for further transformation of the adsorbed
aromatic molecules.

Results and discussion

As shown in Scheme 1, benzylation of b-CD was carried out with
NaH and benzyl bromide in dry DMF at 0 �C. Aer stirring
overnight at room temperature, the reaction mixture was
concentrated and extracted with methylene chloride and nally
puried by silica gel chromatography for a total yield of 83%.7 A
complete benzylation of all the hydroxyl groups on b-CD was
conrmed by 1H nuclear magnetic resonance (NMR) and 13C
NMR (Fig. 1a and b). The peaks between 7.0 and 7.5 ppm in 1H
NMR and the peaks between 120 and 140 ppm in 13C NMR are
attributed to three substituted phenyl groups on C2, C3, and C6
hydroxyl groups; and the remaining peaks correspond to the
carbohydrate backbone and the methylene group on the benzyl
group. The resultant BnCD was then hyper-crosslinked via
oxidative coupling polymerization, by adding FDA and anhy-
drous FeCl3 in dry C2H4Cl2 under a nitrogen atmosphere. Aer
polymerization at 80 �C for 24 h, the obtained brown polymer was
washed in methanol and water a few times and then puried by
Soxhlet extraction with methanol.8 The chemical structure of
BnCD-HCPP was characterized by solid-state 13C CP/MAS NMR
(Fig. 1b). Clear resonance peaks appeared around 130 and 40–50
ppm, corresponding to aromatic carbons and linkers. The peak
at 60–70 ppm is related to the skeleton of b-CD in the polymer.

Notably, the synthesized BnCD-HCPP bore a BET surface
area as high as 1225 m2 g�1 (micropore surface area of 434 m2

g�1) and a total pore volume of 1.71 cm3 g�1, as shown in Fig. 1c
and d. The high surface area could be a result of not only the
inherent cavitation of cyclodextrin at the subnanometer level
(Fig. 1e) but also, more signicantly, inefficient packing of rigid
and contorted benzene rings. In addition, based on thermal-
Scheme 1 Synthetic strategy of the hyper-crosslinked b-cyclodextrin
porous polymer (BnCD-HCPP).

906 | Chem. Sci., 2016, 7, 905–909
gravimetric analysis (TGA) (Fig. 1f), this BnCD-HCPP polymer
remained at over 67 wt% even at 800 �C under nitrogen and
showed almost no obvious weight loss until 250 �C, showing
extraordinary thermal stability compared with other CD-con-
taining solid materials.

It is interesting that the BnCD-HCPP showed great efficiency
in removing aromatic molecules from an aqueous solution.
Three typical aromatic molecules (4-nitrophenol, 4-chlor-
ophenol, phenol) and one representative dye molecule (methyl
orange) were chosen as the adsorbates. 5 mg of the polymer was
dipped into 25 mL of 4-nitrophenol, 4-chlorophenol, and
phenol aqueous solutions of different concentrations and
shaken for 24 h to obtain adsorption isotherms (Fig. 2). To
evaluate the adsorption efficiency of the aromatic reagent
removal from water by BnCD-HCPP, the distribution coefficient
of the adsorbent, Kd, was calculated5a by eqn (1):

Kd ¼ (Ci � Cf)V/(Cfm), (1)

where Ci and Cf are the concentrations of the initial solution
and the solution aer adsorption, respectively; V is the volume
of the solution (mL); and m is the mass of the adsorbent (g). As
illustrated in Fig. 2, the adsorption capacity for 4-chlorophenol
was up to 1.10 mmol g�1 at the equilibrium concentration of
0.7 mmol L�1; and the values of Kd for the BnCD-HCPP were in
This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Ultraviolet-visible spectra of 4-nitrophenol before and after
catalytic reduction by Au@BnCD-HCPP (a) and the catalyst recycling
test (b).
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the range of 103–106 mL g�1, much higher than those of other b-
cyclodextrin-based adsorbents reported previously (Table S1†).9

These values suggest BnCD-HCPP to be a highly effective
adsorbent for aromatic molecule removal. Overall, the Kd values
decreased with an increase in the equilibrium concentration of
the adsorbates, especially in the lower concentration range.
This can be ascribed to the strong binding interactions between
the targeted aromatic rings and the specic binding sites in the
adsorbent, namely, the cyclodextrin rings in the BnCD-HCPP.10

If the initial concentration of the solution is increased, the most
effective binding sites in the polymer, the cyclodextrin cavities,
will be occupied until saturation, leading to a decrease in the
binding affinity of the adsorbent. This reveals that the cyclo-
dextrin rings play a critical role in this adsorption process.
However, the function of the polymer nanopores created during
the hyper-crosslinking cannot be ignored. The maximum
capacities of these adsorbate molecules exceeded the amount of
CD groups in the adsorbent (up to 330 mol%, Fig. 2a), indi-
cating that the adsorption occurred not only in the cyclodextrin
region, via the formation of a 1 : 1 complexation,2,5a but also in
the nanopores in the BnCD-HCPP. In addition, the complete
adsorption of phenol from water by BnCD-HCPP took about 60
min, whereas the adsorption of the other aromatic molecules
required more time because of their higher capacities (Fig. S1†).
The cyclic stability of the polymer was also investigated by
performing the same adsorption process with the same adsor-
bent four times. Aer each use, the polymer was recycled by
centrifugation, washed with ethanol, and dried overnight. The
recycled BnCD-HCPP can still adsorb over 90% as much of the
4-nitrophenol as it adsorbed the rst time (Fig. S2†).

The great efficiency of BnCD-HCPP in adsorbing 4-nitro-
phenol from water inspired us to use BnCD-HCPP as a sup-
porting material for a gold catalyst; the 4-nitrophenol reduction
reaction was chosen to investigate the catalytic activity of the
synthesized Au@BnCD-HCPP. The BnCD-HCPP was added into
a gold(III) chloride aqueous solution aer the pH was adjusted
to 10. Aer the solution was heated for 1 h in a water bath, the
precipitate was collected by centrifugation, washing by water,
and drying overnight in a vacuum oven. The existence of gold
particles in the polymer was conrmed by an X-ray diffraction
spectrum with a peak at 2q ¼ 38� (Fig. S3†). Gold nanoparticles
with an average diameter of 8.4 nm were spread on the polymer
Fig. 2 Adsorption isotherms (a) and distribution coefficient (b) of
BnCD-HCPP toward p-nitrophenol, p-chlorophenol, phenol, and
methyl orange. The percentage in (a) was calculated as a molar
percentage (mol/mol%) of the absorption amount (mmol g�1) to the
amount of CD units (mmol g�1) in the adsorbent.

This journal is © The Royal Society of Chemistry 2016
support shown in the transmission electron microscope images
(Fig. S4†).

The reduction of 4-nitrophenol to 4-aminophenol was
completed in only 3 min aer the addition of a catalytic amount
(5 mg) of Au@BnCD-HCPP catalyst under stirring at room
temperature. As shown in Fig. 3, the light yellow 4-nitrophenol
solution with an absorption peak at 318 nm turned bright
yellow with a peak at 400 nm aer an NaBH4 solution was
added. When the Au@BnCD-HCPP catalyst was added, the
solution quickly became colorless and the absorption peak at
400 nm decreased, while the peak at 295 nm simultaneously
increased. The rapid reaction of 4-nitrophenol is related to
facile diffusion of the reactant through the pores in the BnCD-
HCPP of high surface area.11–13 The great affinity of the BnCD-
HCPP for the reactant may enrich the reactant on the surface of
the catalyst compared with the bulk solution, consequently
increasing the reaction rate.14 The stability of the catalyst was
also examined by applying the same catalyst into the reduction
reaction ve times. The catalyst was simply isolated by centri-
fugation, washed with deionized water, and dried overnight
aer each use. In each reaction cycle, the catalyst was still highly
effective in reducing 4-nitrophenol by nearly 100% conversion
in 3 min. Apparently, the existence of porous BnCD-HCPP can
help stabilize gold particles from aggregation and facilitate the
diffusion of reactants, which makes it a promising catalyst of
high reactivity and stability in large-scale applications.
Conclusions

In conclusion, we have developed a new route to synthesizing
water-insoluble cyclodextrin polymers of high porosity and
great thermal stability by simple benzylation and Friedel–Cras
alkylation polymerization. This hyper-crosslinked porous poly-
mer based on cyclodextrin (BnCD-HCPP) shows great efficiency
in the adsorption of aromatic molecules from water and also
can serve as an excellent support for gold nanoparticles for
further catalytic transformation of the adsorbed molecules.
Experimental sections
Benzylated b-CD (BnCD) synthesis

b-Cyclodextrin (500 mg, 0.44 mmol) was dissolved in dry DMF
(10 mL). The solution was cooled to 0 �C and added NaH (60%,
740 mg, 18.48 mmol) portionwise. Aer stirring for 15 min,
Chem. Sci., 2016, 7, 905–909 | 907
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benzyl bromide (2.20 mL, 18.48 mmol) was slowly added and the
reaction mixture was warmed to room temperature. Aer stirring
overnight, the reaction mixture was quenched by adding meth-
anol (5 mL) and concentrated in vacuo. The resulting residue was
mixed with water (100mL) and extracted withmethylene chloride
(3 � 50 mL). The combined organic layers were dried over
anhydrous Na2SO4 and concentrated. The crude product was
puried by silica gel chromatography (hexanes : EtOAc¼ 8 : 1) to
yield BnCD (1.10 g, 83%) as colorless oil. 1H NMR (CDCl3, 600
MHz) d 7.24–7.08 (m, 105H), 5.18 (d, J ¼ 3.5 Hz, 7H), 5.06 (d, J ¼
10.9 Hz, 7H), 4.77 (d, J ¼ 10.9 Hz, 7H), 4.48 (q, J ¼ 12.1 Hz, 14H),
4.37 (q, J ¼ 12.1 Hz, 14H), 4.05–3.94 (m, 28H), 3.55 (m, 7H), 3.48
(dd, J ¼ 9.5, 3.5 Hz, 7H). 13C NMR (CDCl3, 151 MHz) d 139.39,
138.46, 138.31, 128.41, 128.27, 128.10, 127.94, 127.65, 127.63,
127.55, 127.40, 127.04, 98.57, 81.02, 78.91, 78.80, 75.54, 73.39,
72.79, 71.62, 69.41. MALDI-TOFMS: calcd for C189H196O35$Na

+:
3050.3514; found: m/z 3050.3516. The data of BnCD are consis-
tent with those previously reported.

BnCD-HCPP polymerization

Typically, to a solution of the BnCD (0.46 g) and FDA (0.48 g) in
anhydrous 1,2-dichloroethane (10 mL), anhydrous FeCl3 (1.03 g)
was slowly added under nitrogen atmosphere. The mixture was
then heated to 45 �C for 5 h and 80 �C for 19 h. The resulting
brown precipitate was collected and washed with methanol and
water until the ltrate became colorless and further puried by
Soxhlet extraction with methanol for 24 h. The polymer was
dried under vacuum for 24 h at 50 �C.

Adsorption measurement of aromatic molecules

The aqueous solutions of aromatic molecules (4-nitrophenol,
4-chlorophenol, phenol and methyl orange) with the concen-
tration in the range of (5–1000) � 10�6 M (i.e., 5–1000 ppm)
were prepared for the adsorption test. BnCD-HCPP (5 mg) was
added into the selected solutions (25 mL) and then shaken for
24 h. The solution was separated by centrifugation and the
concentration was tested with UV/Vis spectroscopy.

For the dynamic study, BnCD-HCPP (5 mg) was added into
the aromatic molecule (4-nitrophenol, 4-chlorophenol, phenol
and methyl orange) solutions (1 � 10�4 M, 25 mL), which were
shaken for specic time periods. A small amount of the solution
was taken out by glass pipette for UV/Vis spectroscopy and
pulled back aer the test.

For the recycle test, BnCD-HCPP (5 mg) was added into the 4-
nitrophenol solutions (1 � 10�4 M, 25 mL), which were shaken
for 24 h. The solution and the absorbent were separated by
centrifugation. Aer each use, the BnCD-HCPP was washed by
ethanol and deionized water for several times and dried over-
night at 50 �C in the oven.

Synthesis of gold catalyst on BnCD-HCPP (Au@BnCD-HCPP)

Generally, 8 mg of gold(III) chloride trihydrate (HAuCl4$3H2O)
was dissolved in 2mL of deionized water. Aer adjusting the PH
to 10 by adding 0.1 M NaOH aqueous solution, BnCD-HCPP was
dipped in. The mixed solution was heated to 80 �C in water bath
for 1 h while the PH was controlled at 10. Subsequently, the
908 | Chem. Sci., 2016, 7, 905–909
precipitates were separated by centrifugation and washed with
deionized water several times. Finally, the product Au@BnCD-
HCPP was dried overnight at 50 �C in the vacuum oven.
Catalyst test for 4-nitrophenol reduction

Aqueous NaBH4 solution (0.3 M, 0.1 mL) was added into 3 mL
4-nitrophenol solution (1 � 10�4 M), and 5 mg of Au@BnCD-
HCPP was then added under stirring. For the recycle test, the
catalyst was separated by centrifugation, washed with deionized
water and dried overnight at 50 �C in the oven aer each use
(3 min of the reaction).
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