Issue 23, 2016

Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

Abstract

Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ∼90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection.

Graphical abstract: Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

Supplementary files

Article information

Article type
Paper
Submitted
06 jan. 2016
Accepted
14 jan. 2016
First published
19 jan. 2016

Nanoscale, 2016,8, 11810-11817

Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

Y. Lee, Y. Lim and H. Shin, Nanoscale, 2016, 8, 11810 DOI: 10.1039/C6NR00114A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements