Jump to main content
Jump to site search

Issue 5, 2015
Previous Article Next Article

In vivo evaluation of small-molecule thermoresponsive anticancer drugs potentiated by hyperthermia

Author affiliations

Abstract

Hyperthermia used as an adjuvant with chemotherapy is highly promising in the treatment of certain cancers. Currently, the small molecule drugs used in combination with hyperthermia were not designed for this application. Herein, we report the evaluation of a chlorambucil and a ruthenium compound modified with a long fluorous chain, which exhibit thermoresponsive activity in colorectal adenocarcinoma xenografts in athymic mice in combination with mild hyperthermia (42 °C). Intraperitoneal injection of the derivatives followed by local hyperthermia showed a synergistic tumor growth reduction by 79% and 90% for the chlorambucil and ruthenium-based derivatives, respectively, with the latter exhibiting a higher synergy in combination with hyperthermia compared to the monotherapies. Histological analysis shows that both derivatives in combination with hyperthermia significantly decrease the number of proliferating tumor cells.

Graphical abstract: In vivo evaluation of small-molecule thermoresponsive anticancer drugs potentiated by hyperthermia

Back to tab navigation

Publication details

The article was received on 17 feb. 2015, accepted on 17 mar. 2015 and first published on 17 mar. 2015


Article type: Edge Article
DOI: 10.1039/C5SC00613A
Citation: Chem. Sci., 2015,6, 2795-2801
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    In vivo evaluation of small-molecule thermoresponsive anticancer drugs potentiated by hyperthermia

    C. M. Clavel, P. Nowak-Sliwinska, E. Păunescu, A. W. Griffioen and P. J. Dyson, Chem. Sci., 2015, 6, 2795
    DOI: 10.1039/C5SC00613A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements