Facile synthesis of 11-aryl-6H-isoindolo[2,1-a]indol-6-ones via hypervalent iodine(III)-promoted cascade cyclization

Kapil Dev ab and Rakesh Maurya *ab
aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
bAcademy of Scientific and Innovative Research, New Delhi 110001, India. E-mail: mauryarakesh@rediffmail.com; Fax: +91-522-2771941; Tel: +91-522-2772450 ext. 4735/4736

Received 15th September 2014 , Accepted 19th January 2015

First published on 19th January 2015


Abstract

An efficient method was developed for the synthesis of a tetracyclic fused indole and isoindoline ring system, under metal-free conditions. The hypervalent iodine PIDA-mediated regioselective as well as chemoselective intramolecular cascade oxidative cyclization of 2-(1-arylethynyl)benzamides afforded 11-aryl-6H-isoindolo[2,1-a]indol-6-ones at room temperature in good to excellent yields.


Indole and isoindolinone motifs, which are frequently found in natural products, pharmaceutical products and materials, have attracted chemists for decades.1 A number of successful synthetic methods have been developed for the synthesis of these motifs over several years.2 However, the development and implementation of new highly modular synthetic strategies for the effective synthesis of complex molecules from simple substrates by the domino approach is of ongoing interest in organic chemistry with perfect chemo- and regio-selectivity having a transformational effect in areas extending from material and polymer science to chemical biology and drug discovery.3 Recently, hypervalent iodine reagents have received great attention due to their environmental friendliness and low cost as well as the ease of handling and synthetic efficiency in the syntheses of complex architectures via oxidative transformations,4 and/or including with activation of alkynes to nucleophilic attack by heteroatoms.5 During the last decade, transition metal-free C–N/C–C bond formation via the cyclization of alkynes having nucleophile in close proximity to the triple bond arises as a powerful tool in the syntheses of variety of heterocyles.6,7 In the context of annulation of enyne–amide system of o-alkynylbenzamides, regarding the O-cyclization which can provide iminoisocoumarins or iminobenzoisofurans,8 whilerarely reported N-cyclization providesisoindolone derivatives via 5-exo-dig cyclization under basic conditions as well as metal catalyzed condition9 (Scheme 1). Larock and co-workers were previously reported a selective N-cyclization leading to isoindolones, which was further revised by Opatz and co-workers as O-cyclized product rather than N-cyclized product leading to iminocoumarins and iminobenzofurans instead of isoindolines, later corrected by Larock et al. also.8c,d,10 Hence, we were interested to synthesize rarely reported selective N-cyclized isoindolines via hypervalent iodine reagents.
image file: c4ra10452h-s1.tif
Scheme 1 Previous reports on 2-(1-phenylethynyl)benzamide for electrophilic cyclization of 2-alkynyl group.

To the best of our knowledge, there are no previous reports for the construction of tetracyclic fused indoleandisoindoline ring system from 2-(1-alkynyl) benzamide derivatives via domino intramolecular C–N and C–C bond formation in a single step by using hypervalent iodine(III) reagents as the sole oxidant. However, few typical examples (isoindolo[2,1-a]indol-6-ones) are known, prepared under harsh reaction conditions in several steps or via 1,4-palladium migration followed by intramolecular Heck type reaction.11 Isoindolo[2,1-a]indol-6-one derivatives possess a variety of interesting biological activities.12

We began our investigations by using N-phenyl-2-(phenylethynyl) benzamide 1a as a model substrate which was readily prepared from commercially available 2-iodobenzoic acid (Table 1).13 Treating the substrate 1a with 1.5 equiv. of PIDA as an oxidant in 1.5 mL of DCE as solvent for 12 h at room temperature did not afford the target compound 2a, starting material was remained intact (Table 1, entry 1). Further, screening with solvents such as DCM, CHCl3 and MeCN was also unsuccessful (Table 1, entry 2–4). Again, when we moved from PIDA to PIFA as an oxidant in 1.5 equiv. and TFE as a solvent,14 we were delighted to find the targeted compound 2a in 15% yield (Table 1, entry 5), which was characterized by extensive analysis of FT-IR, HRMS, 1D and 2D NMR. All analytical data were in good agreement with previously reported one.11a PIFA was unsuccessful to improve the yield of the product in the different solvents. Hence, we again move to PIDA with 1.2 equiv. in solvent TFE provided improved yield of the desired product with 20% unreacted starting material (Table 1, entry 7). With increasing the amount of PIDA from 1.2 equiv. to 1.7 equiv., increased the yield to 89% (Table 1, entry 8 & 9), but no further improvement in yield was observed in spite of using increased amount of PIDA. Encouraged by this result, a variety of hypervalent iodine reagents and solvents were then evaluated at room temperature to optimize the reaction conditions as shown in Table 1.

Table 1 Optimization of reaction conditionsaimage file: c4ra10452h-u1.tif
Entry Oxidant Equiv. Solvent Time (h) Yieldb (%)
a Reaction conditions: 1a (0.2 mmol), solvent (1.5 mL). b Isolated yields. c BF3·Et2O (20 mol%) was added, starting material were decomposed.
1 PIDA 1.5 DCE 12 0
2 PIDA 1.5 DCM 12 0
3 PIDA 1.5 CHCl3 12 0
4 PIDA 1.5 MeCN 12 0
5 PIFA 1.5 TFE 45 min 15
6 PIFA 1.5 HFIP 40 min 10
7 PIDA 1.2 TFE 1 55
8 PIDA 1.5 TFE 35 min 70
9 PIDA 1.7 TFE 35 min 89
10c PIDA 1.7 TFE 35 min 0
11 PIDA 1.7 HFIP 15 min 40
12 PhI(OPiv)2 1.7 TFE 5 60
13 PhIO 1.7 TFE 12 Trace


With the optimized conditions in hand, we then investigated the scope of substrate and the generality of the procedure. We first examined the substituent effect on the benzene ring attached to the nitrogen atom of amide group.

As shown in Scheme 2, a variety of functional groups such as hydrogen, electron-donating and -withdrawing groups as well as halogen were investigated for this intramolecular cross-coupling reaction. The substrate N-phenyl-2-(phenylethynyl)benzamide 1a reacted to produce 11-phenyl-6H-isoindolo[2,1-a]indol-6-one 2a in 89% yield. Similarly, the substituted N-aryl-2-(phenylethynyl)benzamides 1b–1i with R2 having 4-ethyl, 3,4-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 4-methyl, 3-methyl, 4-methoxy and 3-methoxy substituents reacted to give the corresponding substituted fused indole and indolone derivatives 2b–2i in 45–91% yields. In case of the substrates 1c, 1g and 1i bearing substituents 3,4-dimethyl, 3-methyl and 3-methoxy groups produce desired compounds 2c, 2g and 2i in 2.8[thin space (1/6-em)]:[thin space (1/6-em)]1, 2.7[thin space (1/6-em)]:[thin space (1/6-em)]1 and 6.3[thin space (1/6-em)]:[thin space (1/6-em)]1 mixture of regioisomers, respectively. Hydrogen or electron-donating groups such as methyl, ethyl, methoxy or fused benzene ring could afford the desired product in good to excellent yields. The reaction with the substrate, possessing weak electron-withdrawing substituent like 4-chloro as in substrate 1k provided better yield of product 2k while the substrates having strong electron-withdrawing groups like p-COMe and p-COOMe showed no reaction, might be due to destabilization of nitrenium ion formed. The manipulation of benzamide with different substituents like NO2 and additional alkyne group at meta position to carbonyl group 1l, 1m yielded sole desired product in good yield.


image file: c4ra10452h-s2.tif
Scheme 2 Substrate scope for domino C–N & C–C bond formation. Reaction conditions: PIDA (1.7 equiv.), TFE (1.5 mL), isolated yields, oxidant (2.1 equiv.).

For more generalization of the protocol, we again investigated the reactions by taking substituted alkynes (Scheme 3), which produce 2p–2s in good yield while desired compound 2t was not found due to decomposition of starting material 1t.


image file: c4ra10452h-s3.tif
Scheme 3 Substrate scope for C–N & C–C bond formation. Reaction conditions: PIDA (1.7 equiv.), TFE (1.5 mL), isolated yields.

To confirm the reaction mechanism, a series of control experiments (Scheme 4) were performed at optimized reaction conditions along with different radical scavengers, TEMPO (2.0 equiv.) 2,6-di-tert-butyl-4-methylphenol (BHT) (2.0 equiv.) and 1,1-diphenylethylene (DPE) (2.0 equiv.), showed no effect on the yield of reaction product 2a, an indication of the ionic mechanism which is already accepted for such type of reactions.7


image file: c4ra10452h-s4.tif
Scheme 4 Control experiments.

Hence, the mechanism has been proposed for PIDA-mediated tandem oxidative process (Scheme 5).


image file: c4ra10452h-s5.tif
Scheme 5 Proposed mechanism.

Initially, PIDA reacts with substrate 1a to give an N-iodoamido species A with the release of an acetic acid. The intermediate species A decomposes to generate nitrenium ion B which reacts intramolecularly with the alkyne residue to form a carbonium ion intermediate C. Thus, the electrophilic aromatic substitution reaction15 takes place and gives intermediate species D, which upon H-abstraction by the in situ-generated acetate anion yields the desired product 2a. This proposed mechanism and role of solvent were confirmed by time dependent mass spectra of reaction mixture (ESI).

In conclusion, we have developed a novel, simple, rapid and metal-free protocol to construct fused indolones under the PIDA-mediated cascade oxidative cyclization via C–N and C–C bond formation at room temperature. This elegant work should open new prospective to the research of hypervalent iodine chemistry along with the development of fused heterocyclic compounds. Currently, research is ongoing in our laboratory for construction of other heterocyclic compounds and natural product synthesis via this procedure.

Acknowledgements

Kapil Dev is thankful to Council of Scientific and Industrial Research New Delhi for providing Junior Research Fellowship. Authors are also thankful to SAIF division of CSIR-CDRI, Lucknow, India for providing spectral data. CDRI communication no. 8894.

Notes and references

  1. (a) M. Lounasmaa and N. Tolvanen, Nat. Prod. Rep., 2000, 17, 175 RSC; (b) I. S. Marcos, R. F. Moro, I. Costales, P. Basabe and D. Díez, Nat. Prod. Rep., 2013, 30, 1509 RSC; (c) E. Valencia, V. Fajardo, A. J. Freyer and M. Sharma, Tetrahedron Lett., 1985, 26, 993 CrossRef CAS; (d) B. P. Smart, R. C. Oslund, L. A. Walsh and M. H. Gelb, J. Med. Chem., 2006, 49, 2858 CrossRef CAS PubMed; (e) K. Lalit, B. Shashi and J. Kamal, Int. J. Res. Pharm. Sci., 2012, 2, 23 Search PubMed; (f) S. Biswal, S. Sethy, U. Sahoo, H. K. S. Kumar and M. Banerjee, Asian J. Pharm. Clin. Res., 2012, 5, 1 CAS; (g) W. Gul and M. T. Hamann, Life Sci., 2005, 78, 442 CrossRef CAS PubMed; (h) M. W. Robinson, J. H. Overmeyer, A. M. Young, P. W. Erhardt and W. A. Maltese, J. Med. Chem., 2012, 55, 1940 CrossRef CAS PubMed; (i) A. Subbarayappa and P. U. Patoliya, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2009, 48, 545 Search PubMed; (j) T. R. Belliotti, W. A. Brink, S. R. Kesten, J. R. Rubin, D. J. Wustrow, K. T. Zoski, S. Z. Whetzel, A. E. Corbin, T. A. Pugsley, T. G. Heffner and L. D. Wise, Bioorg. Med. Chem. Lett., 1998, 8, 1499 CrossRef CAS; (k) M. Shiri, Chem. Rev., 2012, 112, 3508 CrossRef CAS PubMed; (l) S. F. Liu, Q. Wu, H. L. Schmider, H. Aziz, N. X. Hu, Z. Popović and S. Wang, J. Am. Chem. Soc., 2000, 122, 3671 CrossRef CAS; (m) J. W. Bridges and R. T. Williams, Biochem. J., 1968, 107, 225 CAS; (n) S. Das, R. Fröhlich and A. Pramanik, Org. Lett., 2006, 8, 4263 CrossRef CAS PubMed; (o) B. X. Mi, P. F. Wang, M. W. Liu, H. L. Kwong, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 2003, 15, 3148 CrossRef CAS; (p) A. Zweig, G. Metzler, A. Maurer and B. G. Roberts, J. Am. Chem. Soc., 1967, 89, 4091 CrossRef CAS.
  2. (a) M. S. M. Danielle, S. Dasgupta and M. P. Watson, Org. Lett., 2011, 13, 3490 CrossRef PubMed; (b) V. Tyagi, S. Khan and P. M. S. Chauhan, Synlett, 2013, 24, 645 CrossRef CAS PubMed; (c) Y. Koseki, S. Kusano, H. Sakata and T. Nagasaka, Tetrahedron Lett., 1999, 40, 2169 CrossRef CAS; (d) N. G. Kundu, M. W. Khan and R. Mukhopadhyay, Tetrahedron, 1999, 55, 12361 CrossRef CAS; (e) B. Yao, Q. Wang and J. Zhu, Angew. Chem., Int. Ed., 2012, 51, 5170 CrossRef CAS PubMed; (f) B. Wang, H. Qin, F. Zhang and Y. Jia, Tetrahedron Lett., 2014, 55, 1561 CrossRef CAS PubMed.
  3. (a) R. Srinivasan, J. Am. Chem. Soc., 1963, 85, 3048 CrossRef CAS; (b) J. K. Kochi, Angew. Chem., Int. Ed., 1988, 27, 1227 CrossRef; (c) P. Kohls, D. Jadhav, G. Pandey and O. Reiser, Org. Lett., 2012, 14, 672 CrossRef CAS PubMed; (d) A. L. Hopkins, G. M. Keserü, P. D. Leeson, C. D. Rees and C. H. Reynolds, Nat. Rev. Drug Discovery, 2014, 13, 105 CrossRef CAS PubMed; (e) A. W. Elisse, A. K. Grant and R. W. Bennie, Arch. Biochem. Biophys., 1988, 264, 321 CrossRef; (f) K. K. Hoe, C. S. Verma and D. P. Lane, Nat. Rev. Drug Discovery, 2014, 13, 217 CrossRef PubMed; (g) R. Rupprecht, V. Papadopoulos, G. Rammes, T. C. Baghai, J. Fan, N. Akula, G. Groyer, D. Adams and M. Schumache, Nat. Rev. Drug Discovery, 2010, 9, 971 CrossRef CAS PubMed; (h) H. M. Colquhoun, Z. Zhu and C. J. Cardin, Org. Lett., 2010, 12, 3756 CrossRef CAS PubMed; (i) H. Ying, C. Wu and C. Hu, Lett. Drug Des. Discovery, 2014, 11, 50 CrossRef CAS; (j) X. Dong, J. Yan, D. Lu, P. Wu, J. Gao, T. Liu, B. Yang and Y. Hu, Chem. Biol. Drug Des., 2012, 79, 691 CrossRef CAS PubMed.
  4. (a) Hypervalent Iodine Chemistry, ed. T. Wirth, Springer-Verlag, Berlin, 2003 Search PubMed; (b) S. Quideau, L. Pouységu and D. Deffieux, Synlett, 2008, 4, 467 CrossRef PubMed; (c) V. V. Zhdankin, Sci. Synth., 2007, 31a, 161 CAS; (d) M. Ochiai and K. Miyamoto, Eur. J. Org. Chem., 2008, 25, 4229 CrossRef; (e) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073 RSC; (f) M. S. Yusubov, A. V. Maskaev and V. V. Zhdankin, ARKIVOC, 2011, i, 370 CrossRef; (g) H. Liang and M. A. Ciufolini, Angew. Chem., Int. Ed., 2011, 50, 11849 CrossRef CAS PubMed; (h) E. A. Merritt and B. Olofsson, Synthesis, 2011, 4, 517 Search PubMed; (i) V. V. Zhdankin, J. Org. Chem., 2011, 76, 1185 CrossRef CAS PubMed; (j) G. D. Fernandez, F. Benfatti and J. Waser, ChemCatChem, 2012, 4, 955 CrossRef; (k) M. S. Yusubov and V. V. Zhdankin, Curr. Org. Synth., 2012, 9, 247 CrossRef CAS; (l) M. Brown, U. Farid and T. Wirth, Synlett, 2013, 24, 424 CrossRef CAS PubMed; (m) H. Tohma, Y. Harayama, M. Hashizume, M. Iwata, Y. Kiyono, M. Egi and Y. Kita, J. Am. Chem. Soc., 2003, 125, 11235 CrossRef CAS PubMed; (n) J. L. F. Silva and B. Olofsson, Nat. Prod. Rep., 2011, 28, 1722 RSC; (o) J. C. Zhao, S. M. Yu, Y. Liu and Z. J. Yao, Org. Lett., 2013, 15, 4300 CrossRef CAS PubMed; (p) L. Pouységu, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 2235 CrossRef PubMed.
  5. (a) X. Du, H. Chen, J. Chen and Y. Liu, Synlett, 2011, 7, 1010 Search PubMed; (b) I. Tellitu and E. Domínguez, Synlett, 2012, 23, 2165 CrossRef CAS PubMed; (c) S. Desjardins, J. C. Andrez and S. Canesi, Org. Lett., 2011, 13, 3406 CrossRef CAS PubMed; (d) T. Jen, B. A. Mendelsohn and M. A. Ciufolini, J. Org. Chem., 2011, 76, 728 CrossRef CAS PubMed; (e) L. L. Welbes, T. W. Lyons, K. A. Cychosz and M. S. Sanford, J. Am. Chem. Soc., 2007, 129, 5836 CrossRef CAS PubMed; (f) L. M. Pardo, I. Tellitu and E. Domínguez, Synthesis, 2010, 6, 971 Search PubMed.
  6. Selective examples for amidation via C–C triple bond cyclization see: (a) A. Rodríguez and W. J. Moran, Org. Lett., 2011, 13, 2220 CrossRef PubMed; (b) L. M. Pardo, I. Tellitu and E. Domínguez, Tetrahedron, 2010, 66, 5811 CrossRef CAS PubMed; (c) J. A. Souto, P. Becker, Á. Iglesias and K. Muñiz, J. Am. Chem. Soc., 2012, 134, 15505 CrossRef CAS PubMed.
  7. (a) S. Serna, I. Tellitu, E. Domínguez, I. Moreno and R. SanMartín, Org. Lett., 2005, 7, 3073 CrossRef CAS PubMed; (b) I. Tellitu, S. Serna, M. T. Herrero, I. Moreno, E. Domínguez and R. SanMartin, J. Org. Chem., 2007, 72, 1526 CrossRef CAS PubMed; (c) J. Wang, Y. Yuan, R. Xiong, D. Z. Negrerie, Y. Du and K. Zhao, Org. Lett., 2012, 14, 2210 CrossRef CAS PubMed.
  8. (a) M. Bian, W. Yao, H. Ding and C. Ma, J. Org. Chem., 2010, 75, 269 CrossRef CAS PubMed; (b) B. Yao, C. Jaccoud, Q. Wang and J. Zhu, Chem.–Eur. J., 2012, 18, 5864 CrossRef CAS PubMed; (c) S. Mehta, T. Yao and R. C. Larock, J. Org. Chem., 2012, 77, 10938 CrossRef CAS PubMed; (d) C. Schlemmer, L. Andernach, D. Schollmeyer, B. F. Straub and T. Opatz, J. Org. Chem., 2012, 77, 10118 CrossRef CAS PubMed; (e) M. Jithunsa, M. Ueda and O. Miyata, Org. Lett., 2011, 13, 518 CrossRef CAS PubMed.
  9. (a) N. G. Kundu and M. W. Khan, Tetrahedron, 2000, 56, 4777 CrossRef CAS; (b) J. Hu, L. Liu, X. Wang, Y. Hu, S. Yang and Y. Liang, Green Sustainable Chem., 2011, 1, 165 CrossRef CAS; (c) K. Chikashi and T. Masahiro, Chem.–Asian J., 2009, 4, 1668 CrossRef PubMed; (d) Z. Yan, T. Cunmin, W. Xue, L. Fei, G. Guolin, C. Ximeng, W. Wangsuo and W. Jianjun, Synlett, 2011, 13, 1863 CrossRef PubMed.
  10. T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 1432 CrossRef CAS PubMed.
  11. (a) Q. Huang, M. A. Campo, T. Yao, Q. Tian and R. C. Larock, J. Org. Chem., 2004, 69, 8251 CrossRef CAS PubMed; (b) V. Scartoni, I. Morelli, A. Marsili and S. Catalano, J. Chem. Soc., Perkin Trans. 1, 1977, 20, 2332 RSC; (c) P. Duncanson, Y. K. Cheong, M. Motevalli and D. V. Griffiths, Org. Biomol. Chem., 2012, 10, 4266 RSC.
  12. (a) M. F. Boussard, S. Truche, R. A. Rojas, S. Briss, S. Descamps, M. Droual, M. Wierzbicki, G. Ferry, V. Audinot, P. Delagrange and J. A. Boutin, Eur. J. Med. Chem., 2006, 41, 306 CrossRef CAS PubMed; (b) J. Guillaumel, S. Léonce, A. Pierré, P. Renard, B. Pfeiffer, P. B. Arimondo and C. Monneret, Eur. J. Med. Chem., 2006, 41, 379 CrossRef CAS PubMed; (c) K. Dinnell, G. G. Chicchi, M. J. Dhar, J. M. Elliott, G. J. Hollingworth, M. M. Kurtz, M. P. Ridgill, W. Rycroft, K. L. Tsao, A. R. Williams and C. J. Swain, Bioorg. Med. Chem. Lett., 2001, 11, 1237 CrossRef CAS; (d) M. Wierzbicki, M. F. Boussard, A. Rousseau, J. A. Boutin and P. Delagrange, Eur. Pat. Appl., 2002 Search PubMed EP 1241169 A1 20020918.
  13. 2-iodobenzoic acid was purchased from Sigma-Aldrich Chemicals Pvt. Ltd. and transform into desired starting material 1a–t according to the procedure, see: ref. 8(b).
  14. Fluoroalcohol solvents are highly polar with non-nucleophilic properties and its extensive synthetic use with hypervalent iodine reagents: (a) J. P. Bégué, D. B. Delpon and B. Crusse, Synlett, 2004, 1, 18 Search PubMed; (b) T. Dohi, N. Yamaoka and Y. Kita, Tetrahedron, 2010, 66, 5775 CrossRef CAS PubMed; (c) E. M. Simmons, A. R. Hardin, X. Guo and R. Sarpong, Angew. Chem., Int. Ed., 2008, 47, 6650 CrossRef CAS PubMed; (d) Y. He, J. Huang, D. Liang, L. Liu and Q. Zhu, Chem. Commun., 2013, 49, 7352 RSC.
  15. (a) I. Couto, L. M. Pardo, I. Tellitu and E. Domínguez, J. Org. Chem., 2012, 77, 11192 CrossRef CAS PubMed; (b) See: ref. 7(a) and (b).

Footnote

Electronic supplementary information (ESI) available: Experimental procedures and spectroscopic data 1H NMR, 13C NMR and HRMS (ESI) for all compounds and 2D NMR for some selective compounds. See DOI: 10.1039/c4ra10452h

This journal is © The Royal Society of Chemistry 2015