Issue 11, 2013

Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules

Abstract

By reversing the biological metabolic reaction pathway of three dehydrogenases, a formate dehydrogenase, a formaldehyde dehydrogenase and an alcohol dehydrogenase, it was possible to transform CO2 into methanol by a cascade reaction. The activity of each enzyme was examined separately and then the relative amount of each enzyme for the cascade reaction was optimized. The enzymes consume one molecule of the NADH cofactor each to run which should be regenerated for cost reasons. Three different NAD+ regenerating systems were compared: 2 enzymes (phosphite dehydrogenase (PTDH) and glycerol dehydrogenase) and a natural photosystem extracted from spinach leaves (chloroplasts). PTDH was proven to be more efficient at neutral pH. The new polyenzymatic system (4 enzymes) was then encapsulated in silica nanocapsules (internal diameter 30 nm) nanostructured by phospholipids (NPS). This hybrid nanobioreactor showed an activity 55 times higher than the free enzymes in solution. A methanol production of 42 μmol gNPS−1 corresponding to 4.3 mmol gcommercial enzymatic powder−1 in 3 h at room temperature and 5 bar was obtained.

Graphical abstract: Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules

Supplementary files

Article information

Article type
Paper
Submitted
25 jún. 2013
Accepted
19 ágú. 2013
First published
20 ágú. 2013

New J. Chem., 2013,37, 3721-3730

Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules

R. Cazelles, J. Drone, F. Fajula, O. Ersen, S. Moldovan and A. Galarneau, New J. Chem., 2013, 37, 3721 DOI: 10.1039/C3NJ00688C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements