Supramolecular catalysis of H/D exchange in pyruvate by macrocyclic polyamines involving a reactive iminium intermediate

(Note: The full text of this document is currently only available in the PDF Version )

Hicham Fenniri, Carol Dallaire, Daniel P. Funeriu and Jean-Marie Lehn


Abstract

The activity of a series of macrocyclic polyamines as catalysts for proton exchange has been investigated. Structural and physico-chemical studies demonstrate the ability of these receptors to recognize pyruvate, form a covalent iminium intermediate and catalyse H/D exchange at the CH3 position. The reaction follows Michaelis–Menten kinetics with a rate enhancement higher than 4.8 × 105 (kcat/kuncat). The process also represents a potential entry into the catalysis of aldol condensation reactions.


References

  1. (a) A. Fersht, Enzyme Structure and Mechanisms, W. H. Freeman, New York, 2nd edn., 1984, pp. 69–75 Search PubMed; (b) W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications, New York, 1987, pp. 120–128 Search PubMed; (c) L. Stryer, Biochemistry, W. H. Freeman, New York, 3rd edn., 1988 Search PubMed; (d) C.-H. Wong and G. M. Whitesides, Enzymes in Synthetic Organic Chemistry, Tetrahedron Organic Chemistry Series, vol. 12, Pergamon Press, Oxford, 1994, pp. 195–251 Search PubMed; (e) I. A. Rose, Methods Enzymol., 1982, 87, 84 CrossRef CAS; (f) L. C. Kurz, S. Shah, B. R. Crane, L. J. Donald, H. W. Duckworth and G. R. Drysdale, Biochemistry, 1992, 31, 7899 CrossRef CAS; (g) G. M. Smith and A. S. Mildvan, Biochemistry, 1981, 20, 4340 CrossRef CAS; (h) G. A. Hamilton and F. H. Westheimer, J. Am. Chem. Soc., 1959, 81, 6332 CrossRef CAS; (i) S. G. Warren, B. Zerner and F. H. Westheimer, Biochemistry, 1966, 5, 817 CrossRef CAS; (j) E. Grazi, T. Cheng and B. L. Horecker, Biochem. Biophys. Res. Commun., 1962, 7, 250 CrossRef CAS; (k) J. C. Speck, Jr., P. T. Rowley and B. L. Horecker, J. Am. Chem. Soc., 1963, 85, 1012 CrossRef; (l) B. L. Horecker, O. Tsolas and C. Y. Lai, The Enzymes, 1972, 7, 213 Search PubMed; (m) O. Tsolas and C. Y. Lai, The Enzymes, 1972, 7, 259 Search PubMed; (n) R. F. Gould, Bioorganic Chemistry, American Chemical Society, Washington, DC, 1971, pp. 390–412 Search PubMed.
  2. (a) The Chemistry of Enols, ed. Z. Rappoport, Wiley, New York, 1990 Search PubMed; (b) Iminium Salts in Organic Chemistry, Advances in Organic Chemistry, ed. E. C. Taylor, Wiley, New York, 1976 Search PubMed.
  3. (a) W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications, New York, 1987, pp. 133–146 Search PubMed; (b) H. Dugas, Bioorganic Chemistry, Springer Verlag, New York, 2nd edn., 1989, p. 527 Search PubMed; (c) C. Walsh, Ann. Rev. Biochem., 1978, 47, 881 Search PubMed; (d) J. N. Lowe and L. L. Ingraham, An Introduction to Biochemical Reaction Mechanisms, Foundation of Molecular Biology Series, Prentice Hall, Englewood Cliffs, NJ, 1974 Search PubMed.
  4. (a) R. Breslow, J. W. Canary, M. Varney, S. T. Wadell and D. Yang, J. Am. Chem. Soc., 1990, 112, 5212 CrossRef CAS; (b) M. Ando, H. Kuzuhara and J. Watanabe, Bull. Chem. Soc. Jpn., 1990, 63, 88 CAS; (c) I. Tabushi, Pure Appl. Chem., 1986, 58, 1529 CAS; (d) Y. Murakami, J.-I. Kikuchi and N. Shiratori, Bull. Chem. Soc. Jpn., 1989, 62, 2045 CAS; (e) M. D. Broadhurst and D. J. Cram, J. Am. Chem. Soc., 1974, 96, 581 CrossRef CAS; (f) Y. Murakami, J.-I. Kikuchi, Y. Hisaeda and O. Hayashida, Chem. Rev., 1996, 96, 721 CrossRef CAS; (g) E. E. Snell and S. J. Di Mari, The Enzymes, 1970, 2, 335 Search PubMed; (h) O. A. Gansow and R. H. Holm, J. Am. Chem. Soc., 1969, 91, 5984 CrossRef CAS; (i) S. C. Zimmerman and R. Breslow, J. Am. Chem. Soc., 1986, 106, 1490; (j) R. Breslow, A. W. Czarnik, M. Lauer, R. Leppkes, J. Winkler and S. C. Zimmerman, J. Am. Chem. Soc., 1986, 108, 1969 CrossRef CAS; (k) I. Tabushi, Y. Kuroda, M. Yamada, H. Higashima and R. Breslow, J. Am. Chem. Soc., 1985, 107, 5545 CrossRef CAS; (l) F. P. Schmidtchen, in Bioorganic Chemistry in Healthcare and Technology, ed. U. K. Pandit and F. C. Alderweireldt, Plenum Press, New York, 1991 Search PubMed; (m) D. A. Jaeger, M. D. Broadhurst and D. J. Cram, J. Am. Chem. Soc., 1979, 101, 717 CrossRef CAS; (n) R. Breslow and A. W. Czarnik, J. Am. Chem. Soc., 1983, 105, 1390 CrossRef CAS; (o) V. M. Shanbhag and A. E. Martell, J. Am. Chem. Soc., 1991, 113, 6479 CrossRef CAS; (p) J. T. Koh, L. Delaude and R. Breslow, J. Am. Chem. Soc., 1994, 116, 11234 CrossRef CAS.
  5. (a) A. Bianchi, M. Micheloni and P. Paoletti, Coord. Chem. Rev., 1991, 110, 17 CrossRef CAS; (b) B. Dietrich, M. W. Hosseini, J.-M. Lehn and R. B. Sessions, Helv. Chim. Acta, 1983, 66, 1262 CrossRef CAS; (c) E. Kimura, Top. Curr. Chem., 1985, 128, 113 CAS; (d) B. Dietrich, Pure Appl. Chem., 1993, 65, 1457 CrossRef CAS.
  6. (a) J.-M. Lehn, Pure Appl. Chem., 1979, 51, 979 CAS; Ann. N.Y. Acad. Sci., 1986, 471, 41 Search PubMed; Angew. Chem., Intl. Ed. Engl., 1988, 27, 89 Search PubMed; Supramolecular Chemistry, VCH, Weinheim, 1995, ch. 5 Search PubMed; (b) M. W. Hosseini, Bioorg. Chem. Front., 1993, 3, 67 Search PubMed.
  7. H. Fenniri, J.-M. Lehn and A. M. Rigault, Angew. Chem., Intl. Ed. Engl., 1996, 35, 337 CrossRef CAS.
  8. pKa of pyruvic acid in water = 2.26;9a this value was expected to increase by up to 3–6 pKa units in the semi-organic medium used in this study.9b,c The pH profile (Fig. 5) indicates that the pKa is around 4. pKa of α-CH3 of pyruvate in water = 16.58.10.
  9. (a) A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1977, vol. 3 Search PubMed; (b) C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 2nd edn., 1990, pp. 81–85 Search PubMed; (c) E. Buncel and H. Wilson, Adv. Phys. Org. Chem., 1977, 14, 133 CAS.
  10. Y. Chiang, A. J. Kresge and P. Pruszynski, J. Am. Chem. Soc., 1992, 114, 3103 CrossRef CAS.
  11. J. Hine, F. E. Rogers and R. E. Notari, J. Am. Chem. Soc., 1968, 90, 3279 CrossRef CAS; J. Hine, E. F. Glod, R. E. Notari, F. E. Rogers and F. C. Schmalstieg, J. Am. Chem. Soc., 1973, 95, 2537 CrossRef CAS; J. Hine, M. S. Sholod and R. A. King, J. Am. Chem. Soc., 1974, 96, 835 CrossRef CAS; J. Hine and R. L. Flachskam, Jr., J. Org. Chem., 1974, 39, 863 CrossRef CAS; J. Hine and S. S. Ulrey, J. Org. Chem., 1974, 39, 3231 CrossRef CAS; J. Hine, Acc. Chem. Res., 1978, 11, 1 CrossRef CAS.
  12. (a) W. J. Albery, R. P. Bell and A. L. Powell, Trans. Faraday Soc., 1965, 61, 1194 RSC; (b) J. Damitio, G. Smith, J. E. Meany and Y. Pocker, J. Am. Chem. Soc., 1992, 114, 3081 CrossRef CAS.
  13. J. Comarmond, P. Plumeré, J.-M. Lehn, Y. Agnus, R. Louis, R. Weiss, O. Kahn and I. Morgenstern-Badarau, J. Am. Chem. Soc., 1982, 104, 6330 CrossRef.
  14. R. Menif, A. E. Martell, P. J. Squattrito and A. Clearfield, Inorg. Chem., 1990, 29, 4723 CrossRef CAS.
  15. A. E. Martell, in Crown Compounds, Towards Future Applications, ed. S. R. Cooper, VCH, Weinheim, 1992, pp. 99–134 Search PubMed.
  16. J. Jazwinski, J.-M. Lehn, R. Meric and J.-P. Vigneron, Tetrahedron Lett., 1987, 28, 3489 CrossRef CAS.
  17. For an estimate of the lifetime of various iminium species, see: S. Eldin and W. P. Jencks, J. Am. Chem. Soc., 1995, 117, 4851 Search PubMed.
  18. [5]= 10 mM, [acetoacetate]= 50 mM, pD 7, 25 °C, 50%(CD3)2SOD2O. The control experiment was performed under the same experimental conditions in the absence of 5.
  19. J. P. Guthrie and F. Jordan, J. Am. Chem. Soc., 1972, 94, 9136 CrossRef CAS.
  20. Electrostatic acceleration by a factor of about 104 has been reported for cationic ketones: J. B. Tobin and P. A. Frey, J. Am. Chem. Soc., 1996, 118, 12 253 Search PubMed.
  21. In the aqueous–organic media used in these studies, the pKa values of the polyamines investigated should not be affected significantly.10 For the pKa values of 1 and 2, see ref. 5a, for 3, see ref. 13, for 5, see ref. 14, for analogues of 4 and 9 see: C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P. Paoletti, A. Stefani and B. Valtancoli, J. Chem. Soc., Perkin Trans. 2, 1995, 275 Search PubMed For the other macrocyclic polyamines, see ref. 5a,b for an overall view about the structural effects on the pKa values and the protonation pattern.
  22. The rate advantage of α-proton abstraction from an iminium compound compared to the corresponding ketone can be as high as 108-fold and is dependent on the pH, the pKa of the amine and the pKa of the acceptor base: R. D. Roberts, H. E. Ferran, Jr., M. J. Gula and T. A. Spencer, J. Am. Chem. Soc., 1980, 102, 7054 Search PubMed.
  23. (a) E. H. Cordes and W. P. Jencks, Biochemistry, 1962, 1, 773 CrossRef CAS; (b) W. P. Jencks and E. Cordes, in Proceedings of a Symposium on Chemical and Biological Aspects of Pyridoxal Catalysis, ed. E. E. Snell, P. M. Fasella, A. Braunstein and A. Fanelli, Pergamon Press, New York, 1963, p. 57 Search PubMed.
  24. The ratio hydrate–ketone determined by 1H NMR spectroscopy is the same within 5–10% in the absence and presence of 10. At pH 2, 3, 4, 5 and 6 the percentage of pyruvate in the hydrate form is respectively 57, 55, 33, 8 and 2.
  25. H. Adams, N. A. Bailey, D. E. Fenton, C. Fukuhara and M. Kanesato, Supramolecular Chem., 1993, 2, 325 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.