Themed collection New memory paradigms: memristive phenomena and neuromorphic applications

35 items
Front/Back Matter

Correction: RRAM-based synapse devices for neuromorphic systems

Front/Back Matter

Poster list

Front/Back Matter

List of participants

Editorial

Preface

Ilia Valov and Philip Bartlett introduce the Faraday Discussion volume on New memory paradigms: memristive phenomena and neuromorphic applications.

Graphical abstract: Preface
Paper

Introduction to new memory paradigms: memristive phenomena and neuromorphic applications

This article provides a brief introduction to the Faraday Discussion “New memory paradigms: memristive phenomena and neuromorphic applications” held in Aachen, Germany, 15–17 October 2018.

Graphical abstract: Introduction to new memory paradigms: memristive phenomena and neuromorphic applications
Paper

Summary of the Faraday Discussion on New memory paradigms: memristive phenomena and neuromorphic applications

The Faraday Discussion on New memory paradigms: memristive phenomena and neuromorphic systems was held from October 15–17 on the campus of the Rheinisch-Westfälische Technische Hochschule Aachen University, or RWTH Aachen University, under the auspices of the Royal Society of Chemistry.

Graphical abstract: Summary of the Faraday Discussion on New memory paradigms: memristive phenomena and neuromorphic applications
Open Access Paper

Spike sorting using non-volatile metal-oxide memristors

We demonstrate how the intrinsic analogue programmability of memristive devices can be exploited to perform spike-sorting on single devices.

Graphical abstract: Spike sorting using non-volatile metal-oxide memristors
Paper

RRAM-based synapse devices for neuromorphic systems

We demonstrated a proton-based 3-terminal synapse device which shows symmetric conductance change characteristics. Using the optimized device, we successfully confirmed the improved classification accuracy of neural networks for on-chip training.

Graphical abstract: RRAM-based synapse devices for neuromorphic systems
Paper

Impact of radiation induced crystallization on programmable metallization cell electrical characteristics and reliability

Chalcogenide-based, programmable metallization cells (PMC) cells have been characterized after exposure to increasing levels of absorbed dose (i.e., ionizing radiation exposure).

Graphical abstract: Impact of radiation induced crystallization on programmable metallization cell electrical characteristics and reliability
Open Access Paper

Exploiting nanoscale effects in phase change memories

Nano-confined phase change memory cells based on pure Sb have been electrically characterized.

Graphical abstract: Exploiting nanoscale effects in phase change memories
Paper

Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations

Molecular dynamics simulations provide insights into the priming effects in the crystallization of the phase change compound GeTe.

Graphical abstract: Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations
Paper

Synaptic dynamics in complex self-assembled nanoparticle networks

We report a detailed study of neuromorphic switching behaviour in inherently complex percolating networks of self-assembled metal nanoparticles.

Graphical abstract: Synaptic dynamics in complex self-assembled nanoparticle networks
Paper

Interfacial redox processes in memristive devices based on valence change and electrochemical metallization

We show direct evidence for interfacial redox reactions in memristive devices based on both valence change and electrochemical metallization mechanisms.

Graphical abstract: Interfacial redox processes in memristive devices based on valence change and electrochemical metallization
Open Access Paper

Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices

We compare SiOx and HfO2 ReRAM technologies with fixed C and Ti electrodes to understand the role played by the switching layer.

Graphical abstract: Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices
Open Access Paper

Spectroscopic elucidation of ionic motion processes in tunnel oxide-based memristive devices

Operando photoelectron spectroscopy of memristive devices indicates a reversible shift of oxygen during biasing which proceeds even after device breakdown.

Graphical abstract: Spectroscopic elucidation of ionic motion processes in tunnel oxide-based memristive devices
Open Access Paper

The ultimate switching speed limit of redox-based resistive switching devices

In this work, the ultimate switching speed limit of redox-based resistive switching devices is discussed. Based on a theoretical analysis of the underlying physical processes, it is derived that the switching speed is limited by the phonon frequency.

Graphical abstract: The ultimate switching speed limit of redox-based resistive switching devices
Paper

Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model

This paper presents rules based on the physical behaviour of the device to instantiate logic gates for further computation and a method of understanding the memristor’s operation as a type of non-linear, sequence-sensitive perceptron.

Graphical abstract: Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model
Paper

Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS

In situ measurements using XPS were performed on Pt/TiO2/TiOx/graphene structures to chemically address switching and hysteresis.

Graphical abstract: Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS
Paper

Ab initio phase diagrams of Hf–O, Zr–O and Y–O: a comparative study

We present phase diagrams of binary oxides, Hf–O, Zr–O and Y–O, obtained by ab initio evolutionary simulations, in order to explore possible metastable crystalline suboxide structures which could be quenched during the electroforming processes within the conductive filaments in stoichiometric HfO2, ZrO2 and Y2O3 host materials, in resistive switching devices.

Graphical abstract: Ab initio phase diagrams of Hf–O, Zr–O and Y–O: a comparative study
Paper

Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodeposition

The design and fabrication of a 2D passive phase change memory matrix by non-aqueous electrodeposition of confined Ge–Sb–Te cells.

Graphical abstract: Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodeposition
Open Access Paper

Local crystallographic shear structures in a[201] extended mixed dislocations of SrTiO3 unraveled by atomic-scale imaging using transmission electron microscopy and spectroscopy

Atomic details of extended mixed dislocations in a SrTiO3 bicrystal are studied using scanning transmission electron microscopy, electron energy loss spectroscopy, and energy dispersive X-ray spectroscopy techniques.

Graphical abstract: Local crystallographic shear structures in a[201] extended mixed dislocations of SrTiO3 unraveled by atomic-scale imaging using transmission electron microscopy and spectroscopy
Paper

Training fully connected networks with resistive memories: impact of device failures

This paper explores the impact of device failures, NVM conductances that may contribute read current but which cannot be programmed, on DNN training and test accuracy.

Graphical abstract: Training fully connected networks with resistive memories: impact of device failures
Paper

Structural transition pathway and bipolar switching of the GeTe–Sb2Te3 superlattice as interfacial phase-change memory

We investigated the resistive switching mechanism between the high-resistance state (HRS) and the low-resistance state (LRS) of the GeTe–Sb2Te3 (GST) superlattice.

Graphical abstract: Structural transition pathway and bipolar switching of the GeTe–Sb2Te3 superlattice as interfacial phase-change memory
Paper

A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation

In this paper, we present a spiking neural network architecture that supports the use of non-ideal memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits to mitigate/exploit such non-idealities for neuromorphic computation.

Graphical abstract: A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation
Open Access Paper

Computing of temporal information in spiking neural networks with ReRAM synapses

This work addresses the methodology and implementation of a neuromorphic SNN system to compute the temporal information among neural spikes using ReRAM synapses capable of spike-timing dependent plasticity (STDP).

Graphical abstract: Computing of temporal information in spiking neural networks with ReRAM synapses
Open Access Paper

The interplay between structure and function in redox-based resistance switching

We report a study of the relationship between oxide microstructure at the scale of tens of nanometres and resistance switching behaviour in silicon oxide.

Graphical abstract: The interplay between structure and function in redox-based resistance switching
Paper

Bio-inspired protonic memristor devices based on metal complexes with proton-coupled electron transfer

A new type of memristor inspired by bio-membranes is presented, based on the proton movement resulting from proton-coupled electron transfer (PCET) processes in dinuclear Ru complexes, whereby a two-terminal device based on said Ru complexes and a proton-conducting polymer was constructed as a proof-of-concept.

Graphical abstract: Bio-inspired protonic memristor devices based on metal complexes with proton-coupled electron transfer
Paper

Key material parameters driving CBRAM device performances

This study is focused on Conductive Bridging Random Access Memory (CBRAM) devices based on chalcogenide electrolyte and Cu-supply materials, and aims at identifying the key material parameters controlling memory properties.

Graphical abstract: Key material parameters driving CBRAM device performances
Paper

On the universality of the IV switching characteristics in non-volatile and volatile resistive switching oxides

In this paper, we want to review the correlation between filamentary (width) switching and the (SET) IV characteristics by discussing the existing models.

Graphical abstract: On the universality of the I–V switching characteristics in non-volatile and volatile resistive switching oxides
Paper

Electrochemically prepared oxides for resistive switching memories

Electrochemically grown anodic oxides of different compositions and properties were tested as solid electrolytes for resistive switching memories.

Graphical abstract: Electrochemically prepared oxides for resistive switching memories
Paper

Resistivity control by the electrochemical removal of dopant atoms from a nanodot

Here, we propose a technique, based on the electrochemical potential of dopant atoms in a material, that enables the dynamic control of the number of dopant atoms through the application of bias to the material.

Graphical abstract: Resistivity control by the electrochemical removal of dopant atoms from a nanodot
Discussion

Synaptic and neuromorphic functions: general discussion

Discussion

Phase-change memories (PCM) – Experiments and modelling: general discussion

Discussion

Valence change ReRAMs (VCM) - Experiments and modelling: general discussion

Discussion

Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: general discussion

35 items

About this collection

We are delighted to share with you a selection of the papers which will be presented at our Faraday Discussion on New Memory Paradigms: Memristive Phenomena and Neuromorphic Applications taking place in Aachen, Germany in October 2018. More information about the event may be found here: http://rsc.li/memristors-fd2018. Additional articles will be added to the collection as they are published. The final versions of all the articles presented and a record of the live discussions will be published after the event.

Atomically scaled “smart” devices, artificial intelligence, neuromorphic functions, alternative logic operations and computing, new memory storage paradigms, ultra-fast/bio-inspired/flexible/transparent/energy-efficient nanoelectronics – these contemporary concepts are driving forces for progressive development of science and technology, mirroring society expectations and solving its problems. Inspired by the concept of the memristor (memory resistor), Redox-based resistive switching Random Access Memories (ReRAM) and Phase Change Memories (PCM) are thought capable of all these operations and functionalities. In addition, researchers aim to use these memristive systems to enable fundamental properties of life, including order, plasticity, response to stimuli, metabolism, homeostasis, growth, heredity or reproduction, based on functionalities of biological systems.

Despite the attractiveness and apparent simplicity of the ReRAM/PCM concepts, it is challenging to experimentally approach and theoretically describe the nanoscale systems. The small dimensions lead to difficulties in distinguishing experimental signals from noise and show inevitable deviations from the classical macroscopic thermodynamic description, transport properties and stability. Joint efforts by experts in physics, chemistry, biology, materials science, computing and engineering are essential to understand the systems’ behaviour and to formulate general design rules. 

The Faraday Discussion will bring together experts in a field of research which represents one of the hottest multidisciplinary topics, including major players from the computer and nanoelectronics industry, leading academic research groups in physics, chemistry, materials science, thin film technology, device engineering, computer science, neurology and brain-research and logic, and neuromorphic circuit engineering. It will discuss the fundamentals as well as specific demands and limitations in e.g. materials selection, processing, suitable model systems, technical requirements and the potential device applications, providing a bridge for terminologies, theories, models and applications.

Spotlight

Advertisements