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Reprogrammable allosteric metamaterials from disor-
dered networks

Nidhi Pashine,a Amir Mohammadi Nasab,a and Rebecca Kramer-Bottiglioa,1

Prior works on disordered mechanical metamaterial networks—consisting of fixed nodes connected
by discrete bonds—have shown that auxetic and allosteric responses can be achieved by pruning a
specific set of the bonds from an originally random network. However, bond pruning is irreversible
and yields a single bulk response. Using material stiffness as a tunable design parameter, we create
metamaterial networks where allosteric responses are achieved without bond removal. Such systems
are experimentally realized through variable stiffness bonds that can strengthen and weaken on-
demand. In a disordered mechanical network with variable stiffness bonds, different subsets of
bonds can be strategically softened to achieve different bulk responses, enabling a multiplicity of
reprogrammable input/output allosteric responses.

1 Introduction
Mechanical metamaterials are materials with unusual mechani-
cal properties not commonly seen in nature, which arise predom-
inantly due to clever structural design rather than material com-
position. There has been considerable interest in metamaterials
that show novel material responses, including metamaterials that
can exhibit more than one mechanical response1–6.

In recent years, there has been notable development of meta-
materials made from disordered systems. In a system composed
of a disordered network of nodes connected by bonds, each bond
contributes differently to the bulk properties of the system7. This
variation can be utilized by modifying individual bonds in a way
that the system evolves to have a specific, programmed response.
One example is a disordered mechanical network wherein an
output strain between two nodes is tuned in response to an in-
put strain applied between two source nodes, where both sets of
nodes are located along the periphery of the network8. This long-
range interaction between input and output sites in a mechanical
network is called an “allosteric” metamaterial, as allostery is the
process by which biological macromolecules transmit the effect of
binding at one site to another (often distal) site.

Allosteric responses have been designed in disordered mechan-
ical networks in various ways such as bond pruning8,9, network
evolution10,11, as well as by using local design rules12,13. In
the case of bond pruning (i.e., the complete removal of network
bonds), once a programmed behavior is designed into a system,
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the output response is immutable7,8,13,14. To enable tunable
and recoverable allosteric metamaterial responses, we seek ap-
proaches to vary the stiffness of select bonds on-demand. With
variable stiffness bonds, a subset of bonds could be softened to
achieve one target response, and another set softened to achieve
a completely different output response. This approach removes
the need to prune bonds and enables any new target response to
be achieved while all prior responses remain fully recoverable.

The field of soft robotics has recently seen substantial devel-
opment of novel composite materials with tunable material prop-
erties, especially material stiffness. A variety of methods have
been employed to attain variable stiffness15, including pneumatic
jamming16,17, magnetorheological and electrorheological mate-
rials18–21, shape memory polymers and alloys22–25, liquid crys-
tal elastomers26–28, and phase-changing materials29–33. Typi-
cally derived from metallic alloys, waxes, or thermoplastic poly-
mers, encapsulated phase-changing materials exhibit a decrease
in modulus via the transition from solid to liquid, and raise in
modulus via the reverse (solidification) transition. One phase-
changing material gaining traction in the literature is Field’s
metal, a eutectic alloy of bismuth, indium, and tin known for
its low melting point of Tm = 62 °C and non-hazardous composi-
tion34–41.

Our instantiation of a re-programmable allosteric metamate-
rial is realized through a disordered mechanical network wherein
we replace a predetermined set of inert bonds with variable stiff-
ness bonds, which are fabricated by incorporating Field’s metal
cores in soft silicone shells. A variable stiffness bond is in the
high-stiffness state when the Field’s metal core is solid and in
the low-stiffness state when the core is liquefied using an embed-
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Fig. 1 A schematic of the design process. I. Apply an external strain at the source site and measure the distribution of resulting tension in the system.
Darker bond corresponds to higher magnitude of tension II. Apply an external strain at the target site and measure the resulting tension distribution.
III. Using I and II, get the distribution of T Source

j × (T Target
j )3. This identifies the bonds that are relevant to linking the source and target and creating

an allosteric response. IV. Soften the selected bond (dashed line) by changing its stiffness from ksti f f to ksti f f ×R, and measure the new η. This
process is repeated iteratively till the desired η is achieved.

ded copper heater. The bond network is designed by incorporat-
ing local stiffness as a parameter in simulations and varying the
bond stiffness to modify the mechanical input/output response
between two peripheral node sets. When different sets of the vari-
able stiffness bonds are softened, different allosteric responses are
achieved with full reversibility and re-programmability.

2 Design Algorithm
Our proposed mechanical network is a spring network inspired
by Rocks et al. 20178. The networks are generated from random
configurations of jammed soft disks in 2D42. By joining the cen-
ters of the disks with an unstretched central-force spring, these
random jammed packings are converted into disordered spring
networks. With a network of N nodes and Nb bonds, the authors
of Rocks et al. tuned the output strain εout between two nodes
in response to the input strain εin applied between two source
nodes, where both sets of nodes are located far away from each
other within the same network—a so-called allosteric response.
In this work, we make allosteric networks by modifying the prun-
ing algorithm presented in13 to a tuning algorithm that is based
on local stress distributions in our system.

Starting with simulations of disordered networks with peri-
odic boundaries, we randomly choose two pairs of nodes halfway
across the system to be our source and target nodes. The success
of our network design is measured in terms of the ratio of strain
at the target nodes to the applied input strain at the source nodes;
strain ratio, η = εout/εin. In our initial network, each bond has an
initial spring constant of ki

sti f f = K 0
sti f f /li, where K 0

sti f f is a con-
stant and li is the length of bond i. Our design algorithm identifies
a set of bonds j in {Bso f ten}, which when softened to a spring con-
stant of k j

so f t = K 0
so f t/l j create an allosteric interaction between

the source and target sites. To tune an allosteric response, we
choose the source and target sites, the desired strain ratio (ηgoal),
and the stiffness ratio of the bonds, R = K 0

so f t/K
0

sti f f . Notably,
the initial network contains no soft modes and any stresses from

an applied strain would dissipate locally. Therefore, the initial
strain ratio of these networks is η0 ≈ 0.

The set of bonds to be softened, {Bso f ten}, is determined based
on the stress distribution in the network under externally applied
strains. We define T Source

i as the tension in bond i as a result
of an applied strain at the source site and T Target

i as the tension
in bond i due to applied strain at target site. A positive value
of Ti corresponds to tension and a negative value corresponds to
compression of bond i.

Our design algorithm is based on the values of T Source
i and

T Target
i for each bond i. These terms calculate how much stress

is channeled into each bond when a strain is applied at a partic-
ular site in the system. Previous work has shown that the prod-
uct of the two terms, T Source

j ×T Target
j , determines the relevance

of each bond in linking the source to the target13. The larger
the value of T Source

j × (T Target
j ), for a given bond, the more it hin-

ders an allosteric interaction. By softening these bonds, we allow
them to stretch or compress easily, hence aiding an allosteric in-
teraction. Until this point, the design process is symmetric with
respect to the source and the target. However, we are design-
ing an inherently assymetric network where the input energy is
provided at the source and an output strain is expected at the
target. In order to break the symmetry, we change the relative
weights of T Source

i and T Target
i by softening the bond with the high-

est T Source
j × (T Target

j )n, where n is an odd integer > 1. Higher
values of n biases the algorithm towards the target by effectively
lowering the energy required to create an output strain at the
target site. Hence, larger values of n lead to more efficient solu-
tions with fewer numbers of softened bonds. On the other hand,
previous work has shown that as the value of n increases, the dis-
crepancy between simulations and experiments also increases13.
In this work, we choose n = 3 as a trade-off between these two
effects.

The design algorithm is summarized in Fig. 1. We measure
T Source

i and T Target
i for each bond, take a product of the two terms,

2 | 1–7Journal Name, [year], [vol.],

Page 2 of 7Soft Matter



Fig. 2 (A) Success rate of networks with different coordination numbers
as a function of stiffness ratio (ratio of stiffness of soft bonds to that
of regular bonds). Networks were designed to have a strain ratio (ratio
of strain at output nodes to the applied input strain) of 1. The vertical
dashed line at 0.01 corresponds to the value of stiffness ratio used for
designing networks that were built in experiments. (B) Percentage of
bonds that need to be softened as a function of stiffness ratio. (C)
Success rate as a function of strain ratio for a stiffness ratio of 0.01. The
vertical dashed line at 1 corresponds to the strain ratio used in plots A
and B.

and soften the bond with the largest value of T Source
j × (T Target

j )3.
We repeat this process iteratively until η reaches its desired value
or the process fails due to creation of a localized low energy
mode. For simplicity, the network drawings in Fig. 1 only show
the magnitude of tensions. However, the sign of each term de-
cides the sign of η . Softening bonds where T Source

j × (T Target
j )3

is positive leads to a positive η , while softening bonds where
T Source

j × (T Target
j )3 is negative leads to a negative η . In this work

we focus on designing networks with η > 0.
The results from simulations of allosteric responses are shown

in Fig. 2. Disordered networks are often characterized by the
average number of bonds coming out of each node, known as the
coordination number (< Z >). The networks in our simulation
are isostatic at an average coordination number of < Z0 >= 4. We
work with three sets of networks with a system size of 70 nodes
with average coordination numbers < Z >= 4.5, < Z >= 4.8, and
< Z >= 5.4. We tune each network using the design protocol
described above. Note that the design process is not dependent
on the strain ratio, η . We simply keep softening bonds one at
a time and call the design process successful as soon as the final
strain ratio goes above the desired η . As a result, the output strain
of these systems is never exactly equal to the desired η but always
slightly higher than it.

Fig. 2A shows the success rate as a function of the stiffness ratio
for η = 1. The stiffness ratio is given as ratio of stiffness of a soft-
ened bond to the stiffness of a regular bond, such that it can take

a value between 0 and 1 and a lower stiffness ratio corresponds
to a higher contrast in bond stiffnesses. The success rate rapidly
declines as the stiffness ratio increases, with the best results at
a stiffness ratio of a few percent (0− 2%). This decrease in the
success rate is expected because the mechanism that incorporates
an allosteric response relies on creating a low energy mode in the
system which is achieved by lowering the strain energy of a partic-
ular set of bonds—ones that are softened. Increasing the stiffness
ratio increases the energy stored in the soft bonds, thereby in-
creasing the total energy of the system and lowering the success
rate. An interesting feature to note here is that the closer these
systems are to isostaticity (< Z >= 4), the higher the success rate.
We speculate that this is a result of the vibrational response of the
original system. It has been shown that the correlation length of
vibrational modes increases as the system goes closer to isostatic-
ity43–45, and since allosteric interactions span the whole system,
they are easier to achieve when extended vibrational modes are
already present in the system.

Another measure of ease of designing allosteric systems is the
number of bonds that need to be softened. As mentioned, our
system achieves an allosteric response by lowering the energy of
allosteric interaction, which is realized by softening the bonds
that contribute the most to this interaction. The net change in the
interaction energy depends on the number of bonds softened, as
well as the amount by which their stiffness is reduced. The higher
the stiffness difference between stiff and soft bonds, the fewer the
number of bonds that need to be modified. This trend can be seen
in Fig. 2B, where the fraction of bonds that need to be softened
is plotted as a function of stiffness ratio. As expected, we see
that with an increase in the stiffness ratio, more bonds need to
be softened in a network. Moreover, this plot shows that the frac-
tion of bonds that need to be softened goes up with an increase
in coordination number. This finding is consistent with the data
from Fig. 2A, which shows that networks with lower coordination
numbers are better for designing an allosteric response.

Fig. 2C shows the success rate as a function of strain ratio, η .
The success rate falls sharply as soon as η goes over 1. We note
that one can achieve a more dramatic response in allosteric net-
works if the bonds are removed instead of softened8,13. This dif-
ference is not surprising considering that softening a bond lowers
the local stress in the region whereas pruning a bond gets rid of
it completely. Achieving high strain ratios requires certain soft
bonds to have high strains, but the residual stress in soft bonds
increases rapidly with an increase in strain, thus preventing them
from showing a high output response.

3 Variable stiffness bonds
Experimental realizations of allosteric networks are built out of
silicone rubber sheets, with the bonds that need to be softened
replaced with variable stiffness bonds. By actuating these variable
bonds, we can switch between two different states of the allosteric
network. The variable bonds are made out of Field’s metal and
silicone, as shown in Fig 3, and are passively stiff. By sending
an electric current through co-located copper heaters, the Field’s
metal inside the variable bonds can be melted via Joule heating,
resulting in a soft bond. In the stiff state, the stiffness of variable
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Fig. 3 (A) Schematic of a variable stiffness bond comprising of a Field’s
metal core and a copper heater that are sandwiched between three layers
of silicone (B) Image of a variable bond.

bonds is comparable to the regular silicone-rubber bonds but in
their soft state, the variable bonds are orders of magnitude softer
than regular bonds. Details about the construction of variable
bonds, regular bonds, and experimental networks containing the
bonds are included in supplementary material S1.

We estimate the spring constant of the bonds by measuring the
force response of both regular and variable bonds using a ma-
terials tester (Instron 3365). The response of regular as well as
variable bonds in both stiff and soft states is shown in Fig. 4A. The
same data is zoomed in at small strains (Fig. 4B), and low forces
(Fig. 4C). The response is averaged over 5 measurements of 3
different bonds of each kind. To calculate the spring constant of
each type of bond, we fit a slope to the force-displacement curve
in the small strain region where the response is mostly linear.
In our experiments, the stiff bonds as well as the regular bonds
(apart from the ones right at the input site) experience negligible
strain. On the other hand, when the variable bonds are in their
soft state, they get strained to around 5%. For the present calcula-
tions, we include strains between 0 and 1.5% and get the follow-
ing spring constants for each bond type: kregular = 4.1±0.2N/mm,
ksti f f = 2.2± 0.6N/mm, kso f t = 0.036± 0.004N/mm. As expected,
the spring constant of bonds in the soft state is much lower than
the other two. Soft bonds are 0.9% as stiff as the regular bonds,
and as shown in the previous section, designing allosteric re-
sponses is very successful at this low stiffness ratio.

We note here that the bonds have a non-linear response over
large strain ranges, as shown in Fig. 4. In particular, the variable
bond in the stiff state gets substantially softer at larger strains.
However, the stiff bonds usually do not experience large strains
and therefore this non-linearity does not have a significant impact
on the response of our networks. The strain distribution within a
simulated network is shown in supplementary material S2.

4 Allosteric networks in experiments
To test the efficacy of our experimental networks, we measure
their response with the variable bonds in stiff and soft states. A
linear spring model is an oversimplification of real material net-

Fig. 4 (A) Force response of regular bonds (red), variable bonds in the
stiff state (blue), and variable bonds in the soft state (black). Response at
(B) low strains, and (C) small forces. Stiffness values (kso f t ,ksti f f ,kregular)
are obtained from the slopes of the force curves for strains between 0
and 1.5%.

works, and previous studies have shown that materials have other
interactions such as angle bending forces and nonlinear stress-
strain response present in them14. Therefore, only a fraction of
allosteric networks designed in simulations show a comparable
response in experiments13.

To evaluate the behavior of incorporating variable stiffness
composites in a way that is decoupled from other effects in our
system, we make two copies of each network that we want to test.
In the first copy, C1, we take the set of selected bonds, Bso f ten,
and replace them with variable stiffness bonds. In the second
copy, C2, we prune the set of bonds, Bso f tened . Then we compare
the response, η(C1) to η(C2). We test 3 such networks and find
that η(C1) = 90± 5% of η(C2). Since there are multiple mecha-
nisms that lead to a loss in output response, the output response
in experiments often ends up being substantially smaller than the
designed response.

The designed allosteric networks show an output strain only
when the correct set of variable bonds is softened. We can build
multiple input and output responses in a single network and our
design process guarantees that each incorporated response works
independently when the corresponding set of variable bonds is
softened. However, as long as different responses have allosteric
pathways that do not overlap spatially, we often see that multiple
allosteric responses can coexist in experiments. One such exam-
ple is shown in Fig. 5(a): bonds in blue correspond to output 1,
and bonds in green correspond to output 2. When the blue bonds
are softened and the green bonds are stiff, an applied strain at the
input site results in a strain at output 1 but not at output 2. Simi-
larly, softening just the green bonds results in a strain at output 2
but not at output 1. Fig. 5(b) shows the measured output strain
responses as a function of input strain at sites 1 and 2, when each
response is activated individually. The responses are linear in the
small strain regime, with output at site 1, η1 = 0.64± 0.01, and
output at site 2, η2 = 0.65± 0.01. Note that both responses are
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Fig. 5 (A) Allosteric network with multiple responses. Variable stiffness
bonds are highlighted in blue and green. Softening blue bonds creates a
response at output 1, softening green bonds shows a response at output
2, and softening both sets of bonds shows responses at output sites 1
and 2. Responses can be seen in movie S3. (B) Strain at output site as
a function of input strain when each response is activated individually.
Output 1 is blue (solid) line and output 2 is green (dashed) line. (C)
Output responses when both outputs are activated simultaneously. (D)
Strain response as a function of time with both outputs activated. Cyclic
input strain (black) results in output strains at output 1 (blue) and output
2 (green). Data has been smoothed, using a Savitzky-Golay filter with a
window length of 300ms, for clarity.

smaller than the designed response of η = 1. These two sets do
not have any bonds in common and the pathways are spatially
separated from each other. In such cases, when both the sets of
bonds are softened, we see a response at both the output sites
1 and 2 without detriment to either of the outputs. Fig. 5(c)
shows the output strain responses as a function of input strain,
when both the responses are activated simultaneously. The out-
put strain responses at each of the output sites are slightly dif-
ferent than before, with η1 = 0.60± 0.02, and η2 = 0.81± 0.01.
Fig. 5(d) shows the strains at input and output sites as a function
of time, where both sets of bonds have been softened and both
output sites simultaneously respond to the input strain.

Although multiple responses can be designed to work simul-
taneously, this is not how this particular network was designed.
Our design process finds independent solutions for each output
which often turn out to work concurrently. Despite some experi-
mental losses in the designed networks, our result shows that this
method of designing allosteric responses with variable stiffness
materials is successful and feasible.

5 Conclusions
The ability to actively tune the behavior of a mechanical metama-
terial is essential for developing the next generation of materials
with increased adaptability and functionality. In this work, we
have demonstrated designing and building disordered allosteric
metamaterials with multiple input and output responses incor-
porated in them that can each be individually activated on de-
mand. To achieve this, we designed and fabricated variable stiff-
ness bonds whose stiffness changes by two orders of magnitude
between their soft and stiff states. This work brings together the
active tunability of material properties and the diversity of re-
sponses that can be achieved in disordered systems to create a
new kind of allosteric metamaterial.

Our work opens further avenues in both theoretical and exper-
imental directions. We introduced material stiffness as a design
parameter in disordered networks, but eventually our variable
bonds exist in one of the two possible states. Further work is
needed to create metamaterial systems that truly utilize the range
of material properties that can be achieved through variable stiff-
ness composites. Such a system might be able to sustain multiple
responses that are not spatially separated. Additionally, our cur-
rent simulation uses a simplified linear spring model which devi-
ates from experiments, especially when extended to large system
sizes or systems with a higher number of responses. More re-
alistic simulations would give us a platform to design and build
networks that can exhibit more diverse and complex responses.

A distinct feature of our design algorithm is that we use a lo-
cal rule, as opposed to a global optimization. Local design rules
provide an ideal framework to build adaptable materials because
the system changes its properties based on local stimuli. Our suc-
cess with using a variable stiffness material inspires us to consider
other materials that respond to external stimuli in different ways,
such as bonds that can connect and disconnect adjacent nodes or
expand or shrink in length. Using a variety of materials that re-
spond to stimuli in different ways will substantially expand our
design space and allow us to build systems with adaptable me-
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chanical responses.
Relatedly, there has been much recent interest in mechani-

cal memory, computing, and supervised learning in physical sys-
tems12,46–51. We believe that variable bonds, and more gener-
ally the concept of locally tunable properties in material systems
50–53, could be applied beyond the case of allostery in materials.
For example, we envision such local stiffness control may con-
tribute toward metamaterials with adaptable force paths, bulk
moduli, and computing functions54,55. This paper lays ground-
work for the development of adaptable smart materials that can
modify their properties based on external stimuli.
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