
Emerging investigator series: Modeling of Wastewater 
Treatment Bioprocesses:  Current Development and Future 

Opportunities 

Journal: Environmental Science: Water Research & Technology

Manuscript ID EW-PER-10-2021-000739.R1

Article Type: Perspective

 

Environmental Science: Water Research & Technology



Water Impact  

Wastewater treatment bioprocesses are conventionally modeled using mechanistic, data-driven, or 

hybrid models. Herein, we identify the knowledge gaps in those models. We also propose potential 

modeling strategies to incorporate genomic data for handling a large amount of the physical, 

biochemical, and microbiological data collected from biological wastewater treatment systems, 

with the overarching goal to achieve real-time monitoring and optimize system performance.  
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15 Abstract

16 For more than a half-century, modelers have developed various modeling strategies to facilitate 

17 the transition of wastewater treatment bioprocesses from lab-scale demonstration to full-scale 

18 applications. This review presents the mathematical fundamentals of mechanistic models, 

19 machine learning algorithms of data-driven models, and hybrid modeling strategies for different 

20 biological wastewater treatment systems including activated sludge processes, anaerobic 

21 digesters, anammox processes, and bioelectrochemical systems. The discussion is focused on the 

22 biological principles in those modeling strategies. The conventional Monod expressions are a 

23 prevailing tool to describe the mathematical connection between microbial kinetics and state 

24 variables in mechanistic models. Stoichiometric equations and steady-state conditions are also 

25 required for the mechanistic modeling approach to predict system performance such as the 

26 removal of carbon, nitrogen, and phosphorus. On the other hand, data-driven models statistically 

27 link the inputs and outputs for the prediction and optimization of system performance with a 

28 minimum requirement of a priori knowledge. Although this strategy shows outstanding learning 

29 ability of data interpolation, the predictions are often uninterpretable due to the black-box nature. 

30 Hybrid modeling strategies have the potential to dress the inherent limitations of standalone 

31 models. Currently, the mechanistic and data-driven components in hybrid models are still 

32 structured based on microbial kinetics and trained with physical and biochemical data, 

33 respectively. This problem can be potentially solved by incorporating genomics data into model 

34 construction to link microbial kinetic to microbial population and functional dynamics. We 

35 discuss the perspectives of incorporating genomic data into model construction and propose 

36 genomics-enabled hybrid modeling strategies for future research.

37
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40 1. Introduction

41 A variety of wastewater treatment systems are developed to harness microorganisms to remove 

42 organic contaminants and nutrients.1 These include activated sludge processes, anaerobic 

43 digesters, and membrane bioreactors that have been extensively applied in full-scale treatment 

44 plants, as well as emerging technologies such as anaerobic ammonium oxidation (anammox) and 

45 bioelectrochemical systems. By taking advantage of the metabolic versatility of microorganisms, 

46 some of those systems can be engineered to achieve sustainable treatment of complex waste 

47 streams. For example, anammox as an anaerobic and autotrophic process converts ammonia to 

48 nitrogen gas with little energy input,2 and bioelectrochemical systems can recover energy and 

49 resource from waste streams.3

50

51 Biological wastewater treatment systems are commonly monitored using real-time biochemical 

52 data such as biological oxygen demand (BOD), chemical oxygen demand (COD), and mixed 

53 liquor volatile suspended solids (MLVSS) as an indication of biomass concentration.4–6 This is 

54 an operationally simple method that leads to a quick assessment of the microbiological activity 

55 and system performance. However, those macroscopic state variables sometimes do not help 

56 explain the inconsistency in treatment performance caused by environmental and operational 

57 perturbations, primarily because they are unable to reflect the complex microbial physiology, 

58 community structure, metabolism, and interspecies interactions in the systems.4 As conventional 

59 bioprocesses face challenges from emerging pollutants and more stringent discharge limits over 

60 the past decades,7 real-time monitoring and experimental trials are laborious and frequently fall 

61 short to provide insights into system optimization. 

62
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63 The high complexity of bioprocesses and the pressing need to develop more sustainable systems 

64 drive environmental researchers and engineers to build computational models to gain 

65 mechanistic and predictive understandings of the dynamic behaviors in the systems.8 A 

66 prevailing strategy is to build mechanistic models, also known as white-box or first-principle 

67 models, based on the mathematical expressions of the physical/chemical/biological principles of 

68 the processes involved.8 This modeling strategy starts with defining the model purpose followed 

69 by model structure selection, input identification, data collection/reconciliation, and model 

70 calibration/correction.9 To improve the robustness of mechanistic models, it is important to 

71 understand the fundamental microbial kinetics. Monod expressions are the most well-established 

72 tool for modeling microbial growth and substrate utilization kinetics and have been extensively 

73 applied to simulate many bioprocesses.10–15 The kinetic parameters in Monod equations are 

74 commonly derived from biochemical measurements.16 For ill-defined systems that are driven by 

75 uncharacterized functional populations, it becomes challenging to determine which biochemical 

76 indicators to measure to reliably reflect their growth and substrate utilization kinetics.  

77

78 Data-driven models seek to establish statistical connections between the inputs and outputs and 

79 require little knowledge about the fundamental principles of the processes involved. This is of 

80 great interest to the modeling of bioprocesses, in which the lifestyles of many functional 

81 populations remain unknown.17 Data-driven modeling strategies started to attract 

82 environmental/biological engineers’ attention in the early 90s with the practical implementation 

83 of artificial neural networks (ANNs) and major advances in machine learning.18–20 Using 

84 appropriate training datasets and network architecture, neural networks were trained to directly 

85 predict wastewater treatment performance,20,21 as well as the effects of sludge volume index and 
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86 total nitrogen concentration on the effluent quality.22 Recent studies demonstrated the 

87 applicability of several machine learning algorithms, including support vector machine, random 

88 forest, extreme gradient boosting, and k-nearest neighbors, to full-scale digesters.23 Those 

89 algorithms have also been used to train models with biochemical data collected from literature, 

90 presenting a powerful tool for data mining.24 Despite the outstanding learning performance, data-

91 driven models are black boxes that often generate uninterpretable predictions.25 This is 

92 particularly problematic for bioprocesses when the models are trained solely with physical and 

93 biochemical data.21–23,26 

94

95 Hybrid models are built through the integration of mechanistic and data-driven sub-models to 

96 improve the shortcomings of those individual modeling strategies.27 Hybrid models are ideal for 

97 ill-defined systems in which only part of the process can be mechanistically described (e.g., the 

98 mass balance of measurable biochemical variables), while another part of the process is too 

99 complicated to be derived from first principles (e.g. microbial interactions).28 Depending on the 

100 significance of the known and unknown processes in a system, the mechanistic and data-driven 

101 sub-models can be integrated through parallel, in series, or a mix of both structures.29 Such 

102 integration allows the designer to structure the model more flexibly based on the availability of 

103 the a priori knowledge.28 Recent studies demonstrate that hybrid models are more accurate and 

104 flexible in predicting the dynamic behaviors of wastewater treatment bioprocesses.30,31 

105

106 This review discusses the applications and drawbacks of major modeling approaches that have 

107 been developed for simulating wastewater treatment bioprocesses over the past 60 years in 

108 chronological order (Figure 1). We first review the mechanistic modeling of several systems 
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109 including activated sludge processes, anaerobic digesters, anammox, and bioelectrochemical 

110 systems. The discussion of this modeling strategy is focused on the biological principles, in 

111 particular microbial growth and substrate utilization kinetics. In the following sections, we 

112 review data-driven models capable of capturing the dynamic behaviors of bioprocesses, as well 

113 as hybrid models that take advantage of both modeling strategies (Figure 2). We also discuss the 

114 potential of incorporating high-throughput sequencing data into model construction to unfold the 

115 underlying interactions among microbial kinetics, community structure, and functional dynamics. 

116 Finally, we propose a conceptual framework to build hybrid models with omics-based results for 

117 robust and interpretable prediction of microbial interactions and wastewater treatment 

118 performance. 

119

120 2. Mechanistic Modeling of Wastewater Treatment Bioprocesses

121 2.1 Early development of microbial kinetic model

122 Microbial growth is impacted by several factors such as cell metabolic activity, substrate 

123 availability, oxygen concentration, temperature, etc. Among them, the substrate is arguably the 

124 most important one as it is directly involved in cell metabolism.32 To model the kinetic behaviors 

125 of microbial growth, a greater understanding of the effects of substrate concentration on 

126 metabolic quotients, specific growth rate, and yield is required. Between the 1920s and 1960s, 

127 many hypotheses and models were proposed to explain the biological mechanisms of substrate 

128 consumption for cellular metabolism and storage.33

129

130 The Monod equation is a microbial kinetic model that describes the hyperbolic growth behavior 

131 of microbes in batch systems at exponential and steady-state phases.16 In the Monod equation, 
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132 the specific growth rate of a culture is a function of the concentration of a given substrate,34 with 

133 the substrate saturation constant (i.e., the substrate concentration when the specific growth rate is 

134 half of the maximum specific growth rate) indicating the affinity of the substrate to cell growth.16 

135 The Monod equation and its modified expressions were demonstrated to be robust for modeling 

136 different pure cultures under varied conditions.35 Since then, a variety of mechanistic models 

137 have been built on Monod expressions.10,13,36–38

138  

139 Several studies pointed out the inadequacy of the original Monod expression in dealing with 

140 substrate inhibition, cell decay, diffusional limitation, etc.36,39 Substrate inhibition as a common 

141 issue arises when the complex composition in wastewater shows different affinity to microbial 

142 cells, leading to competition among functional populations and/or inhibition to cell growth. The 

143 Haldane-Andrews equation included an inhibition constant in the Monod expression to reflect 

144 substrate inhibition.36 However, because the constant is inferred through the generalized 

145 substrate inhibition model, a normal distribution method with an error range, such a modification 

146 does not reveal the actual impacts of substrate inhibition on microbial growth.40 

147

148 2.2 Modeling of activated sludge processes

149 The activated sludge models have been developed for more than 70 years since the early 60s.11 

150 Early mechanistic models were derived based on steady-state applications in which the cell 

151 growth rate remained constant.34 The biochemical parameters used to quantify cell growth were 

152 total organic carbon (TOC), total oxygen demand (TOD), and COD along with 5-day BOD.41 

153 They are sufficient for modeling steady-state conditions but have severe limitations in real-time 

154 situations where cell growth behaves dynamically under the influence of substrate variation. 
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155 Oxygen uptake rate and mixed liquor volatile suspended solid were later included to address the 

156 limitation.36,41 Mathematical techniques such as the feedforward-feedback strategy were also 

157 applied to control the flowrate disturbance. These modifications allowed mechanistic models to 

158 respond to dynamic situations with real-time biochemical data.41 

159   

160 In 1982, the International Association on Water Pollution Research and Control published a 

161 preliminary model on activated sludge systems. Later, Dold and Marais incorporated the 

162 preliminary model to a final version called the Activated Sludge Model No. 1 (ASM1). 12,42 

163 ASM1 is considered a reference model and is generally accepted as a fundamental component 

164 for wastewater treatment modeling.43 In particular, the Monod equation in ASM1 was proven 

165 reasonably appropriate to describe the microbial growth and substrate utilization behaviors in 

166 wastewater.44  

167

168 The microbiological principles of ASM1 include the growth of aerobic and anoxic heterotrophic 

169 organisms, the growth of aerobic autotrophic organisms, the decay of heterotrophs and 

170 autotrophs, hydrolysis of slowly biodegradable substrate, ammonification, and hydrolysis of 

171 organic nitrogen.10 In addition, the model also describes the following dynamic mass balances 

172 that have impacts on biomass concentration: 1) readily biodegradable substrates, 2) slowly 

173 biodegradable substrates, 3) inert particulate substances, 4) particulate organic nitrogen, 5) 

174 soluble organic nitrogen, 6) ammonia, 7) nitrate, and 8) oxygen.10 These state variables serve as 

175 explicit indicators of the nutrient removal processes. Among all parameters used in ASM1, the 

176 growth and decay rates are of key importance as they control the biomass concentration as a 

177 function of the influent substrate concentration. The full description of ASM1 and the 
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178 comprehensive review of model development can be found elsewhere.8,10 The robustness of 

179 ASM1 has been demonstrated by numerous studies. Forty years after its first implementation, 

180 ASM1 is still playing a central role in the mechanistic modeling of bioprocesses and has been 

181 incorporated in commercial software as a core structure for the simulation of full-scale 

182 wastewater treatment plants.45 

183

184 Advancing from ASM1, ASM2 incorporates polyphosphate-accumulating organisms (PAO), a 

185 functional population enriched during enhanced biological phosphorus removal in activated 

186 sludge systems. In addition to common microbial kinetics, the model structure for PAO also 

187 includes the storage of glycogen, polyhydroxyalkanoate, and polyphosphate, which are 

188 expressed as a function of oxygen availability according to their physiological traits.46 In the 

189 1990s, ASM2d was developed based on ASM2 by including the ability of PAOs to use internal 

190 cellular materials for denitrification,10 thus linking the metabolism of nitrate and phosphorous 

191 under anoxic conditions. In the absence of oxygen, PAOs can use nitrate as a terminal electron 

192 acceptor for phosphorous uptake.10,47 In ASM2d, a fraction of the maximum growth rate of PAO 

193 is assigned to complete denitrification. The fraction varies depending on PAOs’ activity 

194 including growth, denitrification, and anoxic phosphorus uptake.48 ASM2 and ASM2d are 

195 comprehensively reviewed by Henze et al.10 

196

197 ASM3 was modified to improve the prediction of oxygen consumption, sludge production, 

198 nitrification, and denitrification. Key modifications include cellular storage of organic substrates 

199 and the consumption of dead cells through endogenous respiration (instead of the decay and 

200 recycling processes described by ASM1).37 With these modifications, ASM3 is more accurate in 
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201 describing the substrate uptake and storage behaviors, but the enhanced prediction may not be 

202 relevant for most treatment plants where ASM1 is sufficient for simulation of general 

203 performance.46 Therefore, ASM3 is needed only when specific metabolic activities are modeled. 

204

205 There are several commercial software packages available to simulate the activated sludge 

206 processes following the development of ASM1/2/3. Olsson and Newell provided a detailed 

207 overview of the simulator environments for the bioprocesses in wastewater treatment plants.49 

208 Some of the simulators, such as MATLAB-based Simulink, serve a general purpose with high 

209 flexibility to complete simulation. Other simulators contain a library of predetermined models 

210 for specific bioprocesses, and the process configuration is a unit-based simulation environment. 

211 Examples of this type of simulator are AQUASIM, BioWin, EFOR, GPS-X, SIMBA, STOAT, 

212 and WEST. The computation package can solve mechanistic models with multiple mathematical 

213 equations simultaneously.50 BioWin, for example, is a flexible software tool that includes 

214 multiple microbial processes presented in ASMs and anaerobic digestor models (ADMs).51–55 It 

215 has been used to model the biological systems in full-scale wastewater treatment plants,52–55 

216 including activated sludge,56 anaerobic digestion,57,58 and anammox processes.51 In some of the 

217 studies, BioWin provided a good match between the measured and predicted data (difference 

218 <10%) for both small-scale batch reactors and full-scale systems,56–58 and it can perform 

219 optimization of sludge retention time and nitrogen removal under different DO and return 

220 activated sludge flows.53 In most of the studies, however, model calibration is required to 

221 improve the prediction performance. Improper calibration, for example, with nitrogen, 

222 phosphorus, and other microbial inhibitory substances has been reported to cause inaccurate 

223 prediction of methane production in anaerobic digestion.58 Because commercial software still 
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224 requires both in-depth knowledge of the bioprocess and expertise in modeling, it is not very user-

225 friendly to treatment plant staff.  

226

227 2.3 Modeling of anaerobic digesters

228 Anaerobic digesters have a highly complex microbial community composed of fermentative 

229 bacteria, syntrophs, acidogens/acetogens, and methanogens.59 The model structure in early 

230 models was improved with a greater understanding of the microbial kinetics of those functional 

231 populations and the associated biochemical reactions. For example, Andrews applied the 

232 Haldane function on the Monod expression to modify the substrate uptake function with 

233 inhibition under rate-limiting conditions,60 Andrews and Graef later proposed to include the 

234 effects of pH change and buffering through liquid-gas phase interaction and carbonate 

235 equilibrium, leading to more accurate modeling of microbial kinetics.61 Based on those studies, 

236 Hill and Barth further included a function that described the inhibition effects of volatile fatty 

237 acids (VFAs) and ammonia on methanogens, as well as charge balance to correct temperature-

238 dependent pH.62 

239

240 After decades of study of the microbial ecology in anaerobic environments, a task group from the 

241 International Water Association consolidated the up-to-date knowledge and formulated 

242 Anaerobic Digester Model No. 1 (ADM1) as a common platform model for anaerobic 

243 processes.13 This model involves 4 typical digestion processes (hydrolysis, acidogenesis, 

244 acetogenesis, and methanogenesis) and several physicochemical steps including gas-liquid 

245 diffusion, ion association, and dissociation. ADM1 describes in total 29 processes and 32 

246 variables at dynamic state, 24 of which are based on the Monod equation and first-order kinetics. 
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247 The model also allows modifications for specific applications such as sulfate reduction, 

248 phosphorous conversion, and mineral precipitation.13 ADM1 has been successfully implemented 

249 to simulate effluent characteristics with various types of substrates and operating conditions. The 

250 most common function of this comprehensive model is to predict and optimize biogas production. 

251 Satpathy et al. applied ADM1 to simulate biogas production from rare substrates such as chicken 

252 manure.63 Other applications of ADM1 include the prediction of effluent quality from systems 

253 fed with winery wastewater64 or treating phenol from olive mill waste.65 For example, Ozkan-

254 Yucel and Gokcay applied ADM1 to a full-scale anaerobic digester under varying organic 

255 loading rates to predict total VFAs and COD in the effluent.66 Modified ADM1 can also help 

256 troubleshoot operational problems caused by inhibition effects,48 in particular, the accumulation 

257 of VFAs.68 

258

259 Despite successful implementation for specific applications, the extensions of sulfate reduction 

260 and mineral precipitation can cause a significant computational burden. This is because the 

261 precipitation of multiple components (CaHPO4, struvite, and other unknown compounds) and 

262 their release mechanisms involve a large number of processes, in which the fundamental 

263 knowledge is not available for the model to perform ab initio prediction.69 Another critical issue 

264 is that ADM1 is still not able to fully recapitulate the actual functional populations due to the 

265 lack of an in-depth understanding of the microbial community. Specifically, ADM1 is structured 

266 without considering the production of different short-chain VFAs, alcohols, and hydrogen. The 

267 model is thus not able to meet the growing interest in those value-added products.64 Shi et al. 

268 attempted to solve this problem by redefining the pseudo-stoichiometric dynamic parameters of 

269 VFAs and alcohols corresponding to the hydrogen partial pressure.70 The modified model 
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270 successfully predicted the concentrations of acetate, propionate, butyrate, ethanol, and hydrogen 

271 with standard errors < 0.04. However, there remains some discrepancy between the predicted and 

272 observed hydrogen levels and effluent COD when the system was fed with high-strength 

273 streams.70 In terms of methane production, the model did not include the methanogenic 

274 population via direct interspecies electron transfer,71 which was recently found to be a ubiquitous 

275 electron transfer mechanism in many engineered and natural environments.72 A reaction-

276 diffusion-electrochemistry model composed of activation and ohmic losses predicted that 

277 methanogenesis could be an order of magnitude faster via direct interspecies electron transfer 

278 than via the classic route of interspecies hydrogen transfer.73 Modified ADM1 further predicted 

279 over one-third of the CH4 produced via this novel electron transfer mechanism,74 underpinning 

280 its critical role in methane production. 

281

282 2.4 Modeling of emerging bioprocesses 

283 Discovered in the 90s, anammox has been applied as an alternative technology for biological 

284 nitrogen removal.75 Anammox can be engineered as a single-step process, which is efficient in 

285 terms of energy, space, and cost compared with conventional two-step 

286 nitrification/denitrification.76 In anammox systems, part of the ammonium is oxidized by 

287 ammonium oxidizing bacteria through partial nitrification to nitrite, which serves as the electron 

288 acceptor for anammox bacteria to oxidize the remaining ammonium to nitrogen gas.77 Due to the 

289 unique bioprocesses, a previous study built an anammox model from fundamental processes 

290 including diffusion, hydrolysis, and microbial kinetics of anammox bacteria for simulation of 

291 long-term nitrogen and COD removal by a granular up-flow anaerobic sludge blanket reactor.15 

292 Because the model only assumed cell growth under optimum conditions, the predicted and 
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293 observed nitrogen removal did not correlate well. The anammox process was later modeled using 

294 modified ASM1. Through experimental calibration, the model yielded satisfactory prediction of 

295 nitrogen removal efficiency of a laboratory-scale bioreactor.78 Interestingly, anammox is better 

296 simulated when coupled to other bioprocesses, e.g., sulfur-driven denitrification,14 as the kinetic 

297 parameters in the model can be more accurately estimated by varying both sulfur (sulfite, sulfur, 

298 and sulfate) and nitrogen (ammonium, nitrogen, nitrite, and nitrate).14 Although the models have 

299 demonstrated the potential of anammox systems, the modeling of anammox is still challenging 

300 because the system performance is highly dependent on the dynamic interactions between 

301 ammonium/nitrite oxidizing bacteria and anammox bacteria.14 A reliable method is to calibrate 

302 the maximum growth rates of ammonium oxidizing bacteria, nitrite oxidizing bacteria, and 

303 anammox bacteria using experimental data from the full-scale bioreactors and validate the 

304 calibration based on the sensitivity analysis.79 In addition, the substrate affinity coefficients 

305 should be adjusted based on reported literature to fit the microbial substrate utilization under the 

306 possible effects of mass transfer in flocs.79 

307

308 In addition to predicting and optimizing the performance of well-developed bioprocesses such as 

309 anammox, mechanistic models can also be implemented for emerging biotechnology such as 

310 bioelectrochemical systems to gain an in-depth understanding of their potential and facilitate 

311 practical applications. A typical bioelectrochemical system is composed of a cathode and an 

312 anode in which the electrochemical reactions are catalyzed by microorganisms. It is challenging 

313 to model bioelectrochemical systems primarily because of the close yet uncharacterized 

314 connections among microbial kinetics, extracellular electron transfer mechanisms, and 

315 electrochemical factors (e.g., internal/external resistance).80 A few mathematical models for this 
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316 novel system have been developed and reviewed elsewhere.17,81–83 Noticeably, the growth and 

317 substrate utilization rates of the functional groups are still based on the Monod expression and 

318 corrected with electron mediator concentration, which in turn is expressed as a function of the 

319 substrate utilization rate of electroactive bacterial.18,31,84–86 Meanwhile, the Nernst-Michaelis-

320 Menten equation was used to calculate the electron transfer rate in the system87 and the Nernst-

321 Planck equation was introduced to represent ion diffusion through the membrane between anode 

322 and cathode.88,89

323

324 2.5 Inherent drawbacks of mechanistic modeling

325 The model structure in response to intracellular biochemical reactions is oftentimes inadequate, 

326 which represents a major limitation of mechanistic models. Structural inadequacy stems from the 

327 generalization of microbial growth and substrate utilization kinetics with Monod expressions.8 

328 Ideally, the Monod expression for the growth rate of a functional population should consider all 

329 degradable and inhibitory compounds and the corresponding factors. The substrates in practical 

330 applications (e.g., wastewater) contain various degradable and inhibitory compounds that result 

331 in highly complex microbial communities, in which many of the functional populations are 

332 uncharacterized.90–92 Therefore, it is not clear which substrates should be experimentally 

333 measured to reflect their growth and substrate utilization kinetics. The absence of expressions for 

334 novel methanogenesis mechanism via direct interspecies electron transfer is an example of 

335 inadequate model structure.57 Such an issue is more problematic for emerging bioprocesses. The 

336 models for bioelectrochemical systems were typically structured with fermentative, electroactive, 

337 and methanogenic populations. Although the microbial community in bioelectrochemical 

338 systems is much more diverse than those in anaerobic digestors,93,94 uncharacterized populations 
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339 cannot be incorporated into the model structure because their physiological traits related to 

340 growth and substrate utilization are poorly understood.95–97 

341

342 Another challenge lies in the unmeasurable kinetic parameters in Monod expressions. Most of 

343 the kinetic parameters such as inhibition constant, maximum growth rates, half-saturation 

344 constants, and substrate utilization rates can only be derived from biochemical measurements 

345 (e.g., substrate concentration).98 From an experimental perspective, when microbial kinetics 

346 responds to changing influent characteristics in real-time, it is unrealistic to derive the kinetic 

347 parameters throughout the variation. As the operating condition changes, biochemical 

348 measurements can vary significantly, and the estimation of kinetic parameters becomes 

349 conditional.27 The identifiability of unmeasurable kinetic parameters, i.e., the possibility to 

350 derive a unique set of values for the parameters from experimental data, is then of great concern. 

351 Firstly, uncertainty issues arise because the derivation of the kinetic parameters is obtained 

352 through rate-controlling experiments with specific temperatures, pH, BOD, and COD, etc.,34 

353 while in wastewater treatment processes, microbial cells are exposed to varied substrates. Those 

354 parameters need constant calibration. An uncalibrated model is not likely to yield accurate 

355 predictions. As a result, it is not certain to what extent the predictions can be used to explain the 

356 observed physical, chemical, and biological mechanisms..99 Secondly, to identify the kinetics 

357 parameters, the identification of the biochemical and physical parameters responsible for 

358 biomass concentrations must be achieved first. Flotats et al. applied the Taylor Series Expansion 

359 to four state variables (acetate, propionate, valerate, and methane) of ADM1 to identify the 

360 parameters related to valerate consumption and biomass concentration.100 Such a method has 

361 only been reported to solve simple models with a few unidentifiable parameters.101,102 For 
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362 complex models such as second-order models, parameter identification was handled with the 

363 asymptotic behavior of the maximum likelihood estimator and multiple shooting approach 

364 described in Muller et al.103 Those previous studies collectively show that the identification and 

365 computation processes of kinetic parameters are cumbersome and uncertain in reality.  

366

367 3. Data-Driven Modeling of Wastewater Treatment Bioprocesses 

368 3.1 Neural networks

369 Neural networks, first reported in 1943, are arguably the most prevailing data-driven models 

370 across various research fields.104,105 A neural network is composed of multiple layers of 

371 interconnected nodes (neurons), through which the inputs are propagated to the final output 

372 layer.106 Each input to a neuron has a weight factor that determines the interconnection strength 

373 to the next neuron. By adjusting the weight factors, a neural network can be properly trained to 

374 perform problem-solving. The training algorithm can be divided into three types: supervised, 

375 unsupervised, and hybrid training. In supervised training, neural networks are trained with a 

376 labeled dataset that provides feedback about the prediction accuracy.106 Unsupervised training 

377 allows networks to be trained with unlabeled data, and the algorithm extracts features and 

378 patterns on its own.106 The hybrid training strategy uses unsupervised training for the hidden 

379 neurons and supervised training for the output neurons.107

380

381 Neural networks were first implemented for continuously stirred bioreactors to predict the 

382 fermentation products and pH in the effluent.108 Boger applied the modeling strategy to full-scale 

383 wastewater treatment plants and showed that neural networks could be a solution for simulating 

384 expert rules, a set of boundary values that confined the neural network prediction, from historical 
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385 operating data.19 Traditionally, neural networks were trained in a feed-forward fashion, meaning 

386 that the feed was directed forward-only through layers of training. Yang and Linkenst found that 

387 the back-propagation method, which fed outputs from a random layer back to a previous layer, 

388 could help the network lower the error rate of prediction.109 Backpropagation thus became a 

389 prevailing algorithm of neural network modeling. Several studies used this method to predict 

390 effluent COD, biogas production, and NH4
+-N removal in different biological wastewater 

391 treatment systems including activated sludge processes,21 up-flow anaerobic sludge blanket 

392 reactors,26 sequencing batch reactors,110 and anaerobic digesters.111 

393

394 Previous studies have combined neural networks with other types of data-driven models to 

395 improve the simulation of ill-defined systems. One of the strategies is to use the genetic 

396 algorithm to select the initial dataset for downstream neural network training, thereby identifying 

397 the optimal training parameters and reducing the computational burden.112 Bagheri et al. have 

398 successfully applied the genetic algorithm to optimize the weights and thresholds of neural 

399 networks to accurately predict sludge volume index.22 Neural networks can also be coupled to 

400 particle swarm optimization, a population-based optimization technique that searches for optimal 

401 weights and biases through multiple iterations of particle positions in a given search space. This 

402 coupling approach was intended to lower the training time and computational cost for finding an 

403 optimal neural network structure.113 Compared to the genetic algorithm, neural networks coupled 

404 to particle swarm optimization is more memory-efficient in searching optimal weight parameters 

405 but is less practical because it has no crossover and mutation in its operator.114 

406
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407 Neural networks have been proven feasible for interpolation within the training data range.91 

408 Insufficient training data can result in low prediction accuracy, particularly when prediction is 

409 performed with a dataset of fewer than 10 samples.93 Another issue is that the model structure is 

410 often determined based on a trial-and-error approach, leading to significant time consumption 

411 and computational cost.92 The fact that neural networks are black box built based on data fitting 

412 rather than the mechanistic understanding of the processes suggests that their outputs cannot be 

413 used to explain the mechanisms where the inputs are sourced.25

414

415 3.2 Random forest 

416 Random forest is initially developed as a stochastic discrimination approach for classification 

417 purposes in the 90s.115 Later, the approach was extended to combine bagging and random 

418 selection features to construct a collection of decision-making trees with control variance.116 To 

419 use the random forest algorithm, the input data are classified through layers of tree branches 

420 consisting of a variety of features and classes, and multiple trees composed of the same number 

421 of features and classes are collectively used for prediction.116

422

423 In the wastewater treatment field, the random forest algorithm has been implemented for 

424 activated sludge processes, anaerobic digesters, membrane bioreactors, and anammox 

425 processes.117–120 The main use of random forest-based models includes the prediction of system 

426 performance, fault finding, big data handling, model comparisons, and exploration of datasets 

427 with applicable reservations and constraints.121 Although random forest-based models, similar to 

428 other data-driven models, are not able to integrate biological principles, these models allow for 

429 the identification of key features and conditions that are most influential on the process. The 
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430 inference can shed light on the underlying biochemical mechanisms. Song et al. implemented 

431 this modeling approach with wastewater treatment inputs as multivariate datasets to predict N2O 

432 emission from the aerated zones of activated sludge processes.118 Based on the model inference, 

433 they identified inorganic carbon concentration and specific ammonia oxidation activity as two of 

434 the dominant factors that determined treatment performance.118 The model was further used to 

435 identify the different mechanisms of N2O generation in oxic and anoxic environments and 

436 demonstrated the key role of N2O in those zones in promoting niche-specific biochemical 

437 reactions.122 

438

439 Random forest can be combined with other algorithms such as principal component analysis 

440 (PCA) and neural networks to improve the prediction of effluent quality. Preprocessing of data 

441 using PCA could enhance the robustness of random forest-based models, leading to a more 

442 accurate prediction of membrane flux in membrane bioreactors as compared with neural 

443 networks.117 When coupled to neural networks, random forest-based models could be trained to 

444 predict the settleability in the biological reactor chamber,119 as well as to evaluate the effects of 

445 key operating factors on treatment performance.123 The results suggested that such a combined 

446 strategy could help achieve real-time monitoring and optimize operating conditions.124 

447

448 3.3 Fuzzy logic 

449 Fuzzy logic is an if-then algorithm that can be used to develop a set of flexible rules for 

450 diagnosis and control. A fuzzy logic-based system has four robust components: a fuzzifier, a 

451 fuzzy rule-base, an inference engine, and a defuzzifier.125 The fuzzifier is responsible for 

452 converting crisp inputs into fuzzy sets, which are mapped by the inference engine to produce 
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453 another fuzzy set as the output. The fuzzy rule base is a collection of rules that guide the fuzzy 

454 engine to produce the outputs. Finally, the defuzzifier transfers the output fuzzy sets back to 

455 crisp values.125 

456

457 Fuzzy logic can be applied to numerous scenarios in wastewater treatment bioprocesses such as 

458 diagnosis and control of sequencing batch reactor processes,126 simulations and prediction of 

459 phosphorus removal,127 as well as design, evaluation, and decision optimization of activated 

460 sludge processes.128 Robles et al. developed a fuzzy logic-based controller to optimize biogas 

461 production and VFA concentration at varied influent flow rates.129 The designed controller was 

462 able to help prevent acidification in a closed-loop setting.129

463

464 A combination of fuzzy logic and neural networks could bring together the learning powers of 

465 both algorithms, enabling fault tolerance during the modeling of complex systems.107,108 For 

466 example, the adaptive neuro-fuzzy inference system that pairs neural networks with fuzzy logic 

467 allows modelers to insert a priori knowledge into the neural network structure as rules for 

468 training. The combined modeling strategy was used to predict suspended solids, COD, pH and 

469 DO levels in activated sludge systems.108–110 Using the adaptive neuro-fuzzy inference system, 

470 Essienubong et al. obtained a strong correlation between the experimental and predicted biogas 

471 production with temperature, pH, substrate/water ratio, and hydraulic retention time as the 

472 inputs.134  The work by Hosseinzadeh et al. also demonstrated a higher sensitivity of the adaptive 

473 neuro-fuzzy inference system when predicting water flux in an osmotic membrane bioreactor.112 

474 In addition to neural networks, fuzzy logic was coupled to genetic algorithms and particle swarm 
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475 optimization, which outperformed the adaptive neuro-fuzzy inference system during the 

476 prediction of BOD, ammonium, and suspended solids in specific bioprocesses.136

477

478 Although fuzzy logic models are powerful tools for predicting system outputs using observable 

479 environmental data and human-like logic, these data-driven models cannot capture the behaviors 

480 of the complex kinetic reactions in engineered biological bioprocesses, which presents the major 

481 criticism among other concerns of implementation.137 From an engineering point of view, 

482 detailed descriptions of the chemical, physical, and microbiological principles in bioprocesses 

483 and computing-based predictive methodology are equally important.138 Unfortunately, fuzzy 

484 logic systems, like most of the data-driven models, are incapable of providing mechanistic 

485 insight into troubleshooting and system optimization due to their black-box nature.

486

487 4. Hybrid Models That Address the Limitations of Conventional Modeling Strategies

488 The concept of combining mechanistic and data-driven sub-models for hybrid modeling was first 

489 proposed in the early 90s and immediately implemented for a fermentation bioprocess to reduce 

490 the dependence on microbial kinetics.29 Hybrid modeling strategies were further examined with 

491 activated sludge processes and anaerobic digesters through parallel or serial combinations of the 

492 mechanistic and data-driven components.139,140 

493

494 In a parallel structure, the outputs from the mechanistic and data-driven components are 

495 combined primarily through pure superposition (i.e., summation of the outputs).106,140–142 

496 Weighing functions can be introduced to adjust the weight of the outputs, thereby improving the 

497 overall prediction accuracy.143 It should be noted that the prediction performance of a parallel-
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498 structured hybrid model is highly dependent on the robustness of the individual sub-models.141 In 

499 cases when a biological system is too dynamics/nonlinear and some of the biochemical data are 

500 too expensive to collect in real-time (e.g., H2 in anaerobic digesters), neither the mechanistic nor 

501 the data-driven components could predict accurately, leading to poor prediction performance of 

502 the hybrid model. It is therefore argued that the sub-models in a parallel structure are not well 

503 integrated due to the lack of interactions (e.g., cross-feeding of the outputs as done in a serial 

504 structure). 

505

506 In a serial structure, the data-driven component acts as a parameter simulator and estimates 

507 kinetic parameters for the mechanistic component to complete simulation.29,140 Serial coupling of 

508 the sub-models leverages the prediction power of the data-driven component and is sometimes 

509 capable of extrapolating system outputs outside of the observation range. A mixture of both 

510 structures has been implemented for chemical systems but not bioprocesses.106 As the selection 

511 of the structures depends on the availability of the mechanistic information,142 we argue that with 

512 more functional populations being characterized in wastewater biological systems,144 a serial or 

513 mixed structure may better reflect the underlying biological mechanisms whilst accurately 

514 predicting the system performance.

515

516 One of the advantages of hybrid modeling is that unmeasurable mechanistic parameters, in 

517 particular microbial growth and substrate utilization rates, can be determined by the data-driven 

518 component (Figure 2).29,145 This was done in the first study of hybrid modeling of engineered 

519 bioprocesses, in which a neural network was trained to estimate the specific growth rate of the 

520 overall microbial community, and the outputs were used to establish a biomass balance, resulting 
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521 in more accurate predictions than those from a standalone neural network.29 Compared to 

522 conventional mechanistic models that perform one-time estimation of the kinetic parameters, the 

523 data-driven component in hybrid models allows the microbial kinetics to be updated in a timely 

524 manner based on the collected data, thereby making the hybrid model more robust under varied 

525 conditions.29 Another benefit is that the data-driven component can capture more dynamic data 

526 to compensate for the prediction of the mechanistic component. For instance, a neural network 

527 was used to estimate the operational data at time t+1 based on the influent and operational data at 

528 time t, and the outputs were subsequently used to correct the mechanistic predictions at time 

529 t+1.140 In this way, the hybrid model could capture the disturbance caused by shock loadings of 

530 toxic compounds and deliver more accurate prediction of the effluent composition.140

531

532 Similar to standalone mechanistic models, hybrid models still contain a Monod expression-based 

533 model structure. As previously discussed, Monod expressions approximate the physiological 

534 traits of functional populations (i.e., microbial growth and substrate utilization) by assuming a 

535 homogeneous culture.16,35 Real wastewater and sewage sludge are highly heterogeneous with 

536 various degradable and inhibitory compounds that result in diverse microbial populations.43,55 

537 For well-characterized populations with known functions, unmeasurable kinetic parameters are 

538 predominantly derived from biochemical measurements.14,16,34,35,40 Although the data-driven 

539 component can help correct the estimates and improve the prediction performance, the estimated 

540 kinetic parameters do not necessarily reflect the actual activity of those populations. This is even 

541 more problematic for uncharacterized functional populations, whose microbial activity 

542 information can be inferred with the data-driven component but does not help interpret the final 

543 prediction because those populations are frequently overlooked in the mechanistic component. 
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544 Therefore, conventional hybrid models constructed with biochemical and physical data still 

545 suffer from interpretation issues. A potential solution is to incorporate microbial population and 

546 functional dynamics directly into the mechanistic and data-driven components.

547  

548 5. Genomics-Enabled Modeling Strategies for Accurate and Interpretable Prediction  

549 5.1 Genomics-enabled data-driven modeling 

550 The rapid development of high throughput sequencing techniques and bioinformatics has led to a 

551 greater understanding of the microbiomes in wastewater treatment bioprocesses.146–149 

552 Recovering the 16s rRNA sequences allows us to unfold the taxonomy and phylogeny of the 

553 core populations in activated sludge, anaerobic digester, and many other systems.146 Meanwhile, 

554 metagenomic and meta-transcriptomic data have greatly advanced our knowledge about the 

555 genetic potential and functional dynamics of uncharacterized populations.147,148 The findings 

556 gained with those powerful tools have validated the mechanistic structure of existing models 

557 formulated with known functional populations.149 The million-dollar question now is how to 

558 incorporate those genomic data into modeling in a more direct manner (Figure 3). 

559

560 Two pioneering studies integrated 16S rRNA amplicon sequencing data with machine learning 

561 algorithms (neural networks and Bayesian networks) to reconstruct the microbial communities in 

562 natural ecosystems.150,151 Following similar strategies, several machine learning-based models 

563 were trained with microbial taxon abundance and generated semi-interpretable predictions of 

564 system performance and stability.152,153 The inferences suggested that for specific systems, 

565 classifying taxonomic data at the family level could enhance the prediction accuracy, whilst 

566 abundances of specific genera could act as better predictors, highlighting the potential to improve 
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567 the prediction interpretability with proper data preparation. Before training Bayesian networks, 

568 Yuan et al. prepared the genomic data collected from a bioelectrochemical system by selecting 

569 dominant taxa at the phylum, genus (Figure 4A), and operational taxonomic unit levels.154 The 

570 genomics-enabled data-driven modeling approach was rigorously cross-validated using three 

571 validation strategies.154 Firstly, the difference between the predicted and observed relative 

572 abundances of the selected populations remained within an acceptable range as indicated by a 

573 relative root-mean-square error (RMSE) of ~20%. Secondly, the microbial communities 

574 reconstructed with the predicted abundances of the selected populations shared high Bray-Curtis 

575 similarity with the observed communities at all taxonomic levels. Finally, the predicted system 

576 outputs agreed well with the experimental data. For example, current production as the most 

577 important system performance for bioelectrochemical systems was predicted with high accuracy 

578 at the order level (R2 = 0.97 for prediction vs. observation, Figure 4B). After validation, the 

579 model was used to predict current production as a function of operating conditions (e.g., 

580 substrate salinity, Figure 4C) and provided practical insights into system optimization. 

581

582 Functional genomic data as the training input can improve prediction interpretability. A previous 

583 study trained ANNs with gene expression levels to infer metabolic behaviors, resulting in a 

584 plausible explanation of microbes’ stress adaptation behaviors under environmental 

585 perturbations.155 Using a similar but more dynamic modeling strategy, Yuan et al. trained 

586 Bayesian networks with meta-transcriptomic data to explain the contribution of interspecies 

587 hydrogen transfer and direct interspecies electron transfer to methanogenesis.30 It is highly 

588 desired to develop a predictive understanding of the involvement of the two mechanisms due to 

589 the lack of measurement techniques.73,74 To prepare data for model training, the genes for alcohol 
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590 metabolism, hydrogen metabolism, extracellular electron transfer, and methanogenesis were 

591 extracted from the metagenome-assembled genomes of the dominant microbes. A Bayesian 

592 network trained with those genes is composed of two components (Figure 5A): upstream gene-

593 gene interactions that predict the expression level of the relevant genes in methanogens, and a 

594 downstream sub-network that links the genes encoding methanogenesis to methane. A complete 

595 network could accurately predict methane production (R2 = 0.96 for prediction vs. observation, 

596 Figure 5B). To statistically infer the contribution of the electron transfer mechanisms, relevant 

597 genes were manually silenced. When the simulation was performed without the genes for 

598 hydrogen metabolism, the prediction accuracy was significantly compromised as evidenced by 

599 the noticeable difference between the predicted and observed methane production and high 

600 RMSE (∆IHT in Figure 5B). In contrast, the prediction remained accurate with in silico knockout 

601 of the genes for direct interspecies electron transfer (∆DIET in Figure 5B). The results thus 

602 implied a more critical role of hydrogen-mediated electron transfer in methane production. 

603

604 5.2 Genomics-enabled hybrid modeling 

605 Thus far, genomic data have only been used to train data-driven models for semi-interpretable 

606 prediction. There is a growing interest to incorporate it into hybrid modeling to predict the 

607 underlying mechanisms for system design and optimization. One potential strategy is to infer 

608 unidentifiable kinetic parameters from microbial population and gene dynamics. The mechanistic 

609 component can be formulated following conventional modeling procedures to estimate kinetic 

610 parameters, and the estimates can be combined with microbial taxon abundance and operating 

611 conditions to train the data-driven component. The resulting hybrid model is therefore a kinetics 
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612 simulator that statistically infers kinetic parameters, which can then be fed back to the 

613 mechanistic component for prediction of system performance. 

614

615 The concept has been proven valid by a recent study,31 in which a genomics-enabled hybrid 

616 model was implemented for bioelectrochemical systems based on 77 samples collected from 13 

617 publications. The mechanistic component of the hybrid model was built to estimate the 

618 maximum growth and substrate utilization rates of three functional populations: fermentative, 

619 electroactive, and methanogenic microbes, which were subsequently combined with the relative 

620 abundances of 38 core taxa at the genus level to train a hybrid Bayesian network (Figure 6A). 

621 When examined with six new samples that were not included in network training, the hybrid 

622 model achieved the most accurate prediction of current production (Hybrid + Mechanistic in 

623 Figure 6B) compared with standalone data-driven models. The enhanced prediction performance 

624 of the hybrid model likely results from the close connection between population dynamics and 

625 microbial kinetics.

626

627 An alternative strategy to incorporate genomic data into hybrid modeling is to replace Monod 

628 expression-based model structures in conventional mechanistic models by simulating microbial 

629 population dynamics. This can be achieved with an iterative strategy, in which the data-driven 

630 component trained with processed genomic data infers instantaneous biochemical and microbial 

631 intermediates, and the intermediates are fed into the mechanistic component to predict steady-

632 state biochemical outputs. This novel strategy mimics microbial community assembly driven by 

633 environmental perturbations in engineered systems:156–158 operating conditions and biochemical 

634 inputs impose selective pressure and together shape the microbial community structure, and the 
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635 enriched functional populations produce biochemical intermediates that are rapidly mixed with 

636 the inputs to form a new steady-state, causing the community structure to further shift until the 

637 biochemical outputs reach equilibrium. The proposed strategy thus frees models from microbial 

638 kinetics-based structures, while the abiotic and microbial processes and their interplay are 

639 revealed in each iteration. Successful modeling with this strategy relies on the ability of hybrid 

640 models to act as a community simulator to predict microbial taxon abundance and reconstruct 

641 microbial communities in silico. For example, Bayesian networks could infer the relative 

642 abundances of dominant taxa, resulting in Bray-Curtis similarity of over 90% between the 

643 simulated and observed microbial communities at the phylum level.156 However, the similarity 

644 dropped to 83% at the order level and 69% at the OTU level, likely because of the presence of 

645 functionally redundant taxa in the small data pool. The potential of the proposed strategy 

646 warrants investigation with big data collected from global databases.

647

648 6. Conclusions 

649 This review focuses on three major types of models: mechanistic, data-driven, and hybrid models. 

650 Mechanistic models can provide fundamental insights but need laborious calibration because the 

651 Monod-based model structure is inadequate to reflect the biological principles whilst the 

652 microbial kinetic parameters are largely unidentifiable. As a result, a mechanistic model built for 

653 a specific system frequently falls short when applied to other bioprocesses. Data-driven models 

654 can provide predictive insights but yield uninterpretable predictions due to their black-box nature. 

655 Hybrid models are believed to overcome the issues of structural inadequacy, parametric 

656 unidentifiability, and uninterpretable prediction of the standalone models. Recent 

657 biotechnological development such as high throughput sequencing data and omics-based analysis 
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658 can further enable the incorporation of microbial population and functional dynamics into the 

659 model to directly reflect the biological principles. Genomics-enabled hybrid modeling strategies 

660 require the mechanistic and data-driven components to be integrated interactively. Two strategies 

661 are proposed: kinetics simulator and community simulator, and their applicability warrant further 

662 studies. Although hybrid models can potentially overcome the drawbacks of standalone models, 

663 the main rationale of modeling selection and design is largely dependent on its intended use. 

664 Additionally, the availability of omics-based data and computational cost require more effort in 

665 preparation, collection, process, and analysis, which demands technical labor, time, and financial 

666 investment. All these factors need to be taken into consideration when modelers design and 

667 modify existing models.
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1096

1097 Figure 2. The characteristics and advantages of mechanistic, data-driven, and hybrid models

1098
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1099

1100 Figure 3. Incorporation of genomic data into model construction. The diagrams of S-, N-, and C-

1101 cycle are originated from the study of Wu and Yin7. The figures of phylogenic trees, PCoA, and 

1102 data-driven modeling analysis on functional expression are based on the study of Cheng et al.31
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1103

1104 Figure 4. (A) A Bayesian network trained with the microbial population dynamics at the order 

1105 level in a bioelectrochemical system. (B) Predicted vs. observed current production. (C) 

1106 Prediction of current production as a function of substrate salinity. Figures adapted from Yuan et 

1107 al.154
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1108

1109 Figure 5. (A) A Bayesian network trained with the genes for alcohol metabolism, hydrogen 

1110 metabolism, direct interspecies electron transfer, and methanogenesis from dominant microbes. 

1111 (B) Prediction of methane production with a complete Bayesian network and in-silico knockout 

1112 of relevant genes. Figures adapted from Yuan et al.30
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1113

1114 Figure 6. (A) A Bayesian network as the data-driven component of the hybrid model was trained 

1115 with microbial population dynamics and microbial kinetic parameters estimated from the 

1116 mechanistic component (green oval nodes). (B) Predicted vs. observed current production. 

1117 Figures adapted from Cheng et al.31
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