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Water Impact Statement

Maintaining sustainable drinking water distribution systems will require enhanced monitoring 
methods that can quickly reveal when water quality is compromised. Methods for quantifying 
total microbial cells, like FCM and ATP, have tremendous potential to transform the way 
drinking water quality is monitored in drinking water distribution systems. Yet, research applying 
these novel tools to disinfected systems is scarce. This work demonstrates the unique insights 
gained from monitoring total microbial cells in several full-scale disinfected distribution systems 
and lays a foundation for statistical approaches that could provide a basis for applying these 
tools through water quality monitoring.
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Abstract 

In piped drinking water distribution systems, microbial water quality depends on the quantities 

and types of microorganisms present as well as the physicochemical conditions that influence 

them. Accurately assessing microbial water quality in these systems is important to maintain 

water quality throughout distribution. Microbial water quality can be assessed directly, using 

measures of microbial abundance, and indirectly, by measuring pH, temperature, and 

disinfectant residual. In the United States, total coliform bacteria measurement is the only 

regulated parameter for microbial abundance, but because levels are required to be 

maintained below the quantification limit, this parameter provides little insight into the total 

microbial abundance. In this study, alternate measures of microbial abundance were 

assessed in six drinking water distribution systems with a wide range of free chlorine (<0.02 

to 2.14 mg/L as Cl2) and total chlorine residuals (<0.02 to 2.9 mg/L as Cl2). Five measures of 

microbial abundance were compared for quantifiability and variability throughout distribution: 

total and intact cell counts, total and intracellular ATP concentrations, and heterotrophic plate 

counts. We found that: (1) intracellular ATP and intact cell counts had significant and strong 

correlations with disinfectant concentration; (2) these correlations were stronger in chlorinated 

systems compared to chloraminated systems; (3)  97.6% of samples had a quantifiable intact 

cell counts, with only four samples below the intact cell count quantifiaction limit at the highest 

residual concentration in chlorinated drinking water distribution systems (1.5 - 2.0 mg/L as 

Cl2); and (4) variance between technical replicates was lowest for total ATP followed by total 

and intact cell counts as compared to heterotrophic plate counts and intracellular ATP. We 

also demonstrated that a generalized linear mixed model could be used to estimate the 

combined effect of common water quality parameters on intact cell counts in a chloraminated 

distribution system: total chlorine had the greatest inverse effect on intact cells with a greater 

positive effect of temperature at lower levels of total chlorine. We discuss the purpose and 

interpretation of typical microbial water quality parameters, such as heterotrophic plate count 
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and disinfectant residual, and consider the future role of ATP and flow cytometry-based 

methods. 

Key words: drinking water; distribution system; cell count; flow cytometry; ATP; chlorine; 
chloramine; generalized linear mixed model
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5 1 Introduction
6

7 Microbial water quality in piped drinking water distribution systems depends on complex 

8 interactions between the microbial community (composition, abundance, and growth rates of 

9 microorganisms) and chemical and physical conditions. Over the last five years, researchers have 

10 made great progress to better understand these interactions with the common goal of guiding 

11 drinking water providers toward more efficient management of microbial water quality in piped 

12 drinking water systems with continuous or intermittent flow (1-11). Advances in meta-omics 

13 techniques allow researchers to characterize changes in the microbial community composition 

14 throughout piped distribution (12,13), but these techniques often do not quantify absolute 

15 microbial abundance. Increases in microbial abundance in piped drinking water distribution 

16 systems can signal mobilization of loose deposits (14,15), loss of disinfectant residual (16-18), 

17 treatment breakthrough (19), nitrification (20,21), stagnation (22,23), and intrusion or backflow 

18 (1). It is important to pair measures of microbial abundance with compositional data to better 

19 characterize microbial water quality in drinking water systems.

20

21 In the United States, total coliform bacteria are the only regulated parameter for microbial 

22 abundance, but because levels are required to be maintained below the quantifiaction limit, this 

23 parameter provides little insight into the total microbial abundance. Given this limitation, other 

24 measures of microbial abundance have been used that include heterotrophic plate counts (HPC), 

25 which are the most common (9,24), and newer methods that aim to capture the entire microbial 

26 community such as adenosine triphosphate (ATP) assays (25,26) and flow cytometry-based 

27 assays (27,28). Each assay has its limitations. The World Health Organization recommends HPC 

28 for monitoring the “general bacterial content” of water (24), but the HPC assay has been shown 

29 to quantify a varied fraction of total bacteria in drinking water (29) that can be several orders of 
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30 magnitude smaller than total cell counts and usually requires two days to complete (30). However, 

31 HPC may require less technical skill than ATP or cell counts if user-friendly proprietary HPC kits 

32 are used. As an alternative to HPC, the quantification of intracellular ATP has been used to 

33 estimate the viable biomass in water samples (31-33). However, ATP concentration depends on 

34 the types of microorganisms present (34) and local conditions (35,36), which hinders accurate 

35 quantification of microbial abundance. In addition, ATP assays require an extra filtration step 

36 during sample processing to measure total ATP (both intracellular and extracellular) as well as 

37 extracellular ATP (ATP in 0.1 µm filtered sample), which is subtracted from total ATP to obtain 

38 intracellular ATP (25). In contrast, flow cytometry-based methods can be used to quantify 

39 microbial cells (37,38) with high reproducibility (<5% error (39)), low limits of quantification (<25 

40 cells/mL (40)), and rapid sample turnaround. Flow cytometry-based monitoring has been 

41 estimated to cost twice that of standard monitoring methods using HPC (41), and that cost does 

42 not include the cost of instruments needed, which for flow cytometry are currently more expensive 

43 than for HPC. For flow cytometry-based monitoring, an assessment of viability can be included 

44 by distinguishing between total cells and intact cells through staining procedures.

45

46 Drinking water distribution systems are dynamic, and changes in physical and chemical conditions 

47 in full-scale systems also influence the microbial abundance. For example, seasonal variations in 

48 drinking water quality have been linked to changes in intact cell count in a full-scale system without 

49 disinfectant residual (28). In drinking water systems with residual disinfectants, characterizing 

50 these impacts can be difficult because environmental factors that can impact microorganisms can 

51 also impact the efficacy of disinfection (e.g., temperature, pH) (42). In addition, high levels of 

52 residual disinfectant can make microbial abundance difficult to quantify because it might drive the 

53 quantity of microorganisms below the quantification limit of the assay. Flow cytometry-based 

54 methods have only been applied in full-scale systems with relatively low residual concentrations 

55 (<0.9 mg/L free chlorine and <1.8 mg/L combined chlorine) (8,16,18,43-45), while drinking water 
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56 systems in the United States have reported free chlorine concentrations of up to 4 mg/L as Cl2 

57 after primary disinfection (46). The understanding of disinfectant residual, and its interaction with 

58 other physical and chemical parameters, on total microbial abundance is still far from complete. 

59 Nonetheless, measures of microbial abundance that better reflect the entire microbial community, 

60 rather than a small fraction, and that are quantifiable throughout the range of conditions 

61 encountered in piped drinking water distribution systems, have the potential to provide more 

62 insight to guide the safe management of drinking water.

63

64 In this study, we compared five measures of microbial abundance (total and intact cell counts, 

65 total and intracellular ATP, and HPC) in six piped drinking water distribution systems. The drinking 

66 water systems had different treatment trains and used either free chlorine or chloramine as a 

67 residual disinfectant. We surveyed these systems to: (1) assess the impact of commonly 

68 measured parameters (disinfectant concentration, pH, and temperature) on microbial abundance, 

69 including statistical approaches to account for interactions between parameters; and (2) compare 

70 the quantifiability and variability of five measures of microbial abundance under the conditions of 

71 distribution. To our knowledge, this study is the first to apply flow cytometry-based total and intact 

72 cell counts in drinking water distribution systems with high disinfectant residual concentrations 

73 (>0.9 mg/L free chlorine and >1.8 mg/L total chlorine). These data will serve as points of 

74 comparison for future studies applying these methods in similar water systems.

75
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76 2 Methods 
77 2.1 Sampling Locations
78

79 Piped drinking water distribution systems in California and Texas were sampled as indicated 

80 in Table S1. Treatment processes and other metadata for these systems are shown in Table 

81 1. Sampling efforts were coordinated with drinking water providers, and samples were 

82 collected from a subset of their routine monitoring locations. Systems A and B were sampled 

83 one time each in both 2016 and 2018. Systems C, D, and E were sampled one time in 2016. 

84 System F was sampled six times in 2018 (Table S1). Prior to bulk water grab sampling, 

85 drinking water distribution system site taps were flushed for 10 minutes and 500-mL grab 

86 samples of bulk water were aseptically collected in autoclaved-sterilized glass bottles. pH 

87 (Electrode Sealed SJ F; Fisher Scientific) was determined within eight hours of sampling. 

88 Temperature (Electrode Sealed SJ F; Fisher Scientific) and free and total chlorine 

89 measurements (HACH pocket colorimeter II) were determined onsite at the time of sampling. 

90 Samples for quantification of microbial abundance were treated with sodium thiosulfate in 

91 excess to quench disinfectant residual and kept at 4oC until processing within 24 hours of 

92 sampling. For DWDS F, water ages for each site were provided by the utility based on an 

93 internal model of the full distribution system developed using SynerGEE Water (v4.7.0). 

94 Consumables, including filtered pipette tips (RAININ TerraRack or Finntip Flex) and 2-mL 

95 microcentrifuge tubes (Thermo Scientific) used for microbial analyses were purchased 

96 presterilized and free of DNA, DNase, and RNase as well as of ATP when available. 

97
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98 Table 1: Treatment processes for each drinking water distribution system sampled in this study, 
99 presented in their sequential order at the treatment plant, where source water type is either 

100 surface water (S) and/or ground water (G).
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A S 12 X X X free chlorine

B1+ S 5.5 X X X free chlorine

B2+ S 5.5 X X X free chlorine

C S 200 X X X X X chloramine

D S/G 40 X X X‡ X‡ free chlorine*

E G 30 X X X free chlorine*

F S 144 X X X X X X chloramine
101 *These systems also have free chlorine addition at several locations in the distribution system
102 ‡ both chlorine dioxide and free chlorine are used as primary disinfectants
103 +System B had two parallel trains fed with the same source water that are combined before distribution with 
104 about 40% of flow from B1and 60% of flow from B2
105
106 2.2 Cell counts by fluorescent staining and flow cytometry
107

108 Total and intact cell concentrations were measured following the methods of Miller et al. (40). 

109 Briefly, cell concentrations were measured using flow cytometry with SYBRⓇ Green I (S9430; 

110 Sigma-Aldrich, St. Louis, MO) and propidium iodide (30 mM P1304MP; Life Technologies, 

111 Carlsbad, CA) to distinguish cells with intact membranes. From each bulk water grab sample, a 

112 1000-µL aliquot of each triplicate was processed and the geometric mean and geometric standard 

113 deviation were calculated. Measurements were performed on two separate flow cytometers, an 

114 Accuri C6 flow cytometer (Accuri; BD Biosciences, San Jose, CA) and a BD FACSCanto cell 

115 analyzer (Canto; BD Biosciences, San Jose, CA). The Accuri was used to sample all locations 

116 but had to be sent in for repair during field sampling at DWDS F. While the Accuri was not available 

117 the Canto was used, which was during sampling of DWDS F (data files in the supplemental 

118 information include which cytometer was used to generate each data point). The Accuri was 
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119 equipped with a 50 mW laser emitting a fixed wavelength of 488 nm, and measurements were 

120 performed at the “fast” flow rate of 66 µL minute-1 on sample volumes of 50 µL. Microbial cell 

121 signals were distinguished and enumerated from background and instrument noise on density 

122 plots of green (FL1; 533 ± 30 nm) and red (FL3; >670 nm) fluorescence using FlowJo gating 

123 software (v 10.5.3). Gate positions were modified slightly from a template publicly available for 

124 the BD Accuri C6 (38) to adapt for FlowJo software. The Canto was equipped with a 20 mW laser 

125 emitting a fixed wavelength of 488 nm, and measurements were performed at a flow rate of 1 µL 

126 s-1 for 50 seconds. Microbial cell signals were distinguished and enumerated from background 

127 and instrument noise on density plots of green (FTIC; 530 ± 30 nm) and red (PerCP; 695 ± 40 

128 nm) fluorescence using FlowJo gating software. Gate positions were modified slightly compared 

129 to BD Accuri C6 gating based on calibration beads (Spherotech, Catalog #NFPPS-52-4K, Lake 

130 Forest, IL). For the Accuri, the lower quantification limits were determined for intact cell count (22 

131 cells per mL) and total cell count (12 cells per mL) by Miller et al. using the same instrument used 

132 in this study (40). All data from the Canto were deemed detectable based on the recommended 

133 lower quantification limit (>102 cells per mL; 38) after gate adjustment (more information can be 

134 found in the Supplemental Information). All of our flow cytometric measurements were at least an 

135 order of magnitude lower than the upper recommended upper quantification limit (<107 cells per 

136 mL; 38). For a negative control, 0.22 µm filtered, Millipore Milli-Q water was used.

137  

138 2.3 Adenosine tri-phosphate concentrations
139

140 Total and intracellular ATP concentrations were measured following the methods of Miller et 

141 al. (40). Briefly, ATP concentrations were measured using the BacTiter-GloTM Microbial Cell 

142 Viability Assay (G8231, Promega Corporation, Madison, WI) and GloMaxR 20/20 

143 Luminometer (Turner BioSystems, Sunnyvale, CA). From each bulk water grab sample, a 

144 500-µL aliquot of each triplicate was processed and the geometric mean and geometric 
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145 standard deviation were calculated. Relative light units from the luminometer were converted 

146 to ATP concentrations using calibration curves made with a pure ATP standard (P1132; 

147 Promega Corporation, Madison, WI). Extracellular ATP was separated from total ATP prior to 

148 sample incubation through removal of microbial cells by filtration (0.1 µm, Millex-VV Syringe 

149 Filter Unit; Millipore, Billerica, MA). For total and extracellular ATP, the quantification limits 

150 were set by the standard curve, which ranged from 1x10-4 nM to 10 nM. No total or 

151 extracellular ATP measurement was higher than the upper quantification limit. The lower 

152 quantification limit for intracellular ATP was determined by Miller et al. (40) as 1.83x10-5 nM. 

153 Empty tube measurements and reagent-only measurements were used as negative controls 

154 and reagent controls respectfully.

155

156 2.4 Heterotrophic plate counts
157

158 Heterotrophic plate counts (HPC) were determined using Quanti-Tray 2000 (IDEXX US; 

159 Westbrook, Maine) with HPC for Quanti-Tray media (IDEXX US; Westbrook, Maine) following 

160 the manufacturer’s instructions with the trays incubated at 37oC for 44-72 hours. 100 mL of 

161 bulk water grab sample was transferred to autoclave sterilized bottles for each replicate and 

162 the geometric mean and geometric standard deviation were calculated. Technical duplicates 

163 of all samples were completed except samples from distribution system B in 2016, for which 

164 there were no replicates. The lower limit of quantification was set using the IDEXX Quanti-

165 Tray format at a most probable number of one cell per 100 mL. The upper limit of quantification 

166 was set at a most probable number of 2419.6 cells per 100 mL (a fully positive IDEXX tray).

167

168

169 2.5 Statistical Analyses
170
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171 Our dataset had inherent dependencies for which we needed to account in our analysis, 

172 including dependent variables that may be correlated with each other (e.g., pH, temperature, 

173 chlorine residual), samples collected from the same drinking water distribution system on the 

174 same day, or at the same location within a distribution system over time. Thus, relationships 

175 between microbial abundance and water quality parameters were assessed via correlation 

176 analyses and generalized linear mixed models using R (3.6.2) (47). To investigate potential 

177 multicollinearity, Spearman’s Correlation values of all chemical and microbial water quality 

178 parameters were determined using Hmisc (4.3-0) (48) and GGally (1.4.0) (49). Data 

179 exploration was completed following Zuur et. al (50) using Cleveland dot plots to detect 

180 outliers, GGgally to assess colinearity, and scatter plots of all covariates to visualize 

181 relationships (50,51). Outliers and collinearity between covariates were not detected. 

182 Generalized linear mixed model (GLMM) analysis and validation was completed following the 

183 methods of Zuur et. al (51,52). Prior to analysis, microbial abundance metrics were tested for 

184 goodness of fit to a normal distribution, log-normal distribution, and gamma distribution (53) 

185 using goft (1.3.4) (54). The GLMM was fitted to raw intact cell counts from distribution system 

186 F with centered and scaled predictors (to improve the parameter optimization process) using 

187 lme4 (1.1-23) (55) with site as a random variable. The most optimal model was selected based 

188 on minimizing conditional Akaike information criterion with MuMIn (1.43.15) (56) through 

189 backward stepwise model selection. Wald confidence intervals for fixed effects were 

190 calculated using lme4. For correlation, GLMM, and summary statistic calculations, values 

191 below the quantification limit of intracellular ATP, total ATP, intact cell counts, total cell counts, 

192 HPC, free chlorine and total chlorine were replaced with the respective lower quantification 

193 limit for the assay to be conservative. However, for calculations of the coefficient of variation, 

194 only the quantifiable samples were used (Table 4). In figures, these data were plotted at a 

195 value below the quantification limit for visualization. Four HPC samples were above the 

196 quantification limit and were removed from all statistical analyses and figures. Plotting was 
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197 completed using ggplot2 (3.2.1) (57), tables were generated using stargazer (5.2.2) (58), plot 

198 fonts were set using extrafont (0.17) (59), figures with multiple plots were generated using 

199 ggpubr (0.4.0) (60), and color palettes were chosen from viridis (0.5.1) (61). The full 

200 reproducible code  and csv files that have all data used in this paper is available in the 

201 Supplementary Materials as well as through GitHub  

202 (https://zenodo.org/record/3993877#.X5n0Qy9h1TZ).

203
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204 3 Results
205 3.1 Impacts of physicochemical parameters on microbial abundance
206
207
208 We expected disinfectant residual concentration to be a master variable affecting microbial 

209 abundance across the various the drinking water distribution systems that were sampled. Thus, 

210 we plotted all data for each measure of microbial abundance as a function of disinfectant residual 

211 concentration. Of the five measurements of microbial abundance we applied, we observed 

212 inverse trends for two of them: intact cell counts (Figure 1A & 1D) and intracellular ATP (Figure 

213 1B & 1E).  The trends for HPC (Figure 1C and 1F), total cell counts in chloraminated systems 

214 (Figure S1A), and total ATP (Figure S1C and S1D) were less clear. In free chlorinated systems, 

215 a similar trend was observed for total cell count (Figure S1B) as for intact cell count (Figure 1D) 

216 likely because chlorine is a stronger disinfectant than chloramine (42). Thus, signal from non-

217 viable cells and free DNA likely decreases more rapidly than in chlorinated systems. We also did 

218 not observe a trend for proportion of potentially viable cells (intact:total cells) (Figure S2). 

219

220 In addition to disinfectant residual concentration, we recognized that temperature and pH might 

221 influence microbial abundance. To explore these relationships statistically, we used Spearman’s 

222 correlation coefficients (rs) to assess the strength of correlation between the various microbial 

223 abundance metrics, disinfectant concentration, temperature, and pH (Figures 2A & 2B). The 

224 correlation between microbial abundance metrics and residual disinfectant concentration is 

225 discussed first.  In both chloraminated and chlorinated systems, total chlorine concentration was 

226 significantly and inversely correlated with both intracellular ATP and intact cell counts (rs values 

227 between -0.65 and -0.85 ; p-values <0.001; Figures 2A & 2B), consistent with the visual trends in 

228 Figure 1. HPC were only significantly correlated with disinfectant residual in chloraminated 

229 systems (rs= -0.46; p <0.001; Figure 2A). In contrast, we found that intracellular ATP was more 

230 strongly correlated with disinfectant concentration in chlorinated systems (rs value -0.77 ; p 
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231 <0.001; Figures 2B) compared to chloraminated systems (rs value -0.67 ; p <0.001; Figures 2A), 

232 but intact cell count was similar in both chlorinated (rs values -0.63; p <0.01; Figures 2B) and 

233 chloraminated (rs value -0.65; p <0.001; Figures 2A) systems. In chlorinated systems, the majority 

234 of the total chlorine concentration consisted of free chlorine except for in two cases for which total 

235 chlorine concentrations were <0.3 mg/L as Cl2. Thus free and total chlorine concentrations were 

236 strongly correlated and appear to have similar impacts on measures of microbial abundance 

237 (Figure 2B). However, in chloraminated systems free chlorine concentration varied and was not 

238 significantly correlated with any microbial abundance parameters (Figure 2A).

239

240 In terms of the other two commonly monitored water quality variables, we observed significant 

241 correlations in chloraminated systems of temperature with intact cell counts (rs = 0.44; p < 0.001) 

242 and with intracellular ATP (rs = 0.48; p <0.001), but temperature was not correlated with any 

243 measures of microbial abundance in chlorinated systems (Figure 2A & 2B). pH was not 

244 significantly correlated with any measure of microbial abundance.  We note that our dataset 

245 included ranges for disinfectant residual, temperature, and pH that are typical of drinking water 

246 distribution systems located in the western/ southwestern United States (Table S2).

247

248  In the chloraminated distribution system, microbial abundance measures were strongly 

249 correlated with both disinfect residual and temperature, and pH was strongly correlated with 

250 disinfectant residual. We wanted to assess relationships between these variables using a model. 

251 However, we needed to account for interactions between variables and for measurements from 

252 the same location that were not independent. For this approach, we focused on intact cell counts 

253 and developed a mixed model using data from distribution system F (n=80). Raw intact cell counts 

254 were not normally or log normally distributed, but the fit to a gamma distribution was not rejected 

255 (53). Thus, scaled and centered predictor variables (pH, temperature, free and total chlorine) and 

256 raw intact cell counts were used in a generalized linear mixed model with log link function 
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257 (Equation 1). The log link function was chosen because it requires positive fitted values. Sampling 

258 location within distribution system F (“site”) was used as a random intercept to account for 

259 dependency associated with samples taken from the same site. 

260 (Equation 1)

261 𝐼𝐶𝐶𝑖𝑗 ~ 𝐺𝑎𝑚𝑚𝑎(𝜇𝑖𝑗,𝜏)

262
log (𝜇𝑖𝑗) =  𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 +  𝑓𝑟𝑒𝑒 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 + 𝑝𝐻𝑖𝑗 + 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 + 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 𝑝𝐻𝑖𝑗

+ 𝑓𝑟𝑒𝑒 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 𝑝𝐻𝑖𝑗 + 𝑓𝑟𝑒𝑒 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 +  𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 +  𝑠𝑖𝑡𝑒𝑖

263 𝑠𝑖𝑡𝑒𝑖 ~ 𝑁(0,𝜎2
𝑠𝑖𝑡𝑒)

264

265 In Equation 1, ICCij is the intact cell count (with mean ) for the jth observation of sitei. ICCij is μij

266 assumed to follow a gamma distribution with scale parameter, , and shape parameter, . The μij 𝜏

267 random intercept, sitei, is assumed to be normally distributed with mean of 0 and variance of  . σ2
site

268 Fixed effects include total chlorine, free chlorine, pH, temperature, and their interactions (included 

269 as interaction terms). We applied stepwise model selection (Table S3) to determine the most 

270 optimal model (Equation 2) with parameter estimates in Table 2.

271

272 (Equation 2)

273 𝐼𝐶𝐶𝑖𝑗 ~ 𝐺𝑎𝑚𝑚𝑎(𝜇𝑖𝑗,𝜏)

274
log (𝜇𝑖𝑗)

=  𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 +  𝑝𝐻𝑖𝑗 + 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 + 𝑓𝑟𝑒𝑒 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 𝑝𝐻𝑖𝑗 +  𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑖𝑗 𝑋 
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 +  𝑠𝑖𝑡𝑒𝑖

275 𝑠𝑖𝑡𝑒𝑖 ~ 𝑁(0,𝜎2
𝑠𝑖𝑡𝑒)

276

277 The most optimal model shows that lower total chlorine concentrations resulted in higher intact 

278 cell counts; as expected, there was also an interaction with temperature that could result in higher 

279 intact cell counts at lower total chlorine values and higher temperatures (Figure 3). In Figure 3, 
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280 quantiles of temperature, from lowest (purple line) to highest (yellow line), are used in Equation 2 

281 at a range of total chlorine concentrations. The total chlorine term was the largest parameter 

282 estimate for a fixed effect in this model (Table 2), which indicates that total chlorine had a large 

283 inverse effect on intact cell counts. In addition, higher pH and temperature values resulted in 

284 higher intact cell counts (Figure S3 & Table 2). However, the effect of temperature and pH on 

285 intact cell counts was smaller than that of total chlorine (Table 2). In addition, the interaction 

286 between pH and free chlorine in the optimized model was indistinguishable from 0 (0 falls within 

287 the confidence intervals shown in Table 2). It is known that free chlorine disinfection is more 

288 effective at pH values below 7.5 (42), but the minimum pH value in system F was 7.4 (Table S4). 

289 Thus, the pH in this system likely did not vary enough to produce an accurate estimate for this 

290 interaction term (Table S4). 

291

292 Table 2: Estimated parameters, standard errors, and confidence intervals for each covariate of 
293 the most optimal model of intact cell counts in distribution system F (Equation 2). Generalized 
294 linear mixed model for intact cell counts with sampling location (“site”) as a random variable, 
295 where 2

site = 0.26 and  = 1.72.τ

parameter estimate standard error
lower 

confidence 
interval (5%)

upper
confidence 

interval (95%)
intercept 8.6 0.19 8.3 9.0

total chlorine -1.3 0.13 -1.6 -1.1

pH 0.40 0.17 0.062 0.73
temperature 0.35 0.097 0.16 0.54

pH *
free chlorine 0.39 0.23 -0.066 0.84

total chlorine * 
temperature -0.24 0.12 -0.47 -0.0087

296 *Indicates interaction terms

297 We hypothesized that another variable in drinking water distribution systems that may correlate 

298 with microbial abundance is water age, given that the concentration of chlorine residual is known 

299 to diminish with water age, which could have substantial impacts on microbial abundance (62). 
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300 To investigate the impacts of water age on water quality, we compared water age with intact cell 

301 counts, intracellular ATP, HPC, and total chlorine concentration in distribution system F (Figure 

302 4). Surprisingly, the measures of microbial abundance generally did not trend with water age 

303 (Figure 4 A-C). However, total chlorine generally decreased with water age during each specific 

304 sampling event (Figure S4). To investigate the variability in chlorine residual at individual sampling 

305 sites, we aggregated data from a year of sampling at 21 sites in distribution system F (Figure S5). 

306 Total chlorine at each sited varied over the course of a year depending on the location sampled 

307 and was not directly correlated with the water age at that site (Figure S5). These results suggest 

308 that total chlorine had a large impact on microbial abundance that was independent of water age 

309 in distribution system F.

310

311 3.2 Quantifiability and variability of five measures of microbial abundance
312
313
314 To evaluate the utility of the microbial abundance assays, we determined which measures of 

315 microbial abundance were most frequently quantifiable in disinfected drinking water systems. 

316 Intact cell counts yielded the highest percentage of results that were above lower quantification 

317 limits (97.6% of samples, n= 166; Table 3). In contrast, intracellular ATP was quantifiable in only 

318 68.9% of samples (n= 113), and HPC were quantifiable in only 81.4% of samples (n= 102; 18.6% 

319 of samples either above or below limits of quantification). Total ATP and total cell counts were 

320 quantifiable in 100% of samples, as no samples were below the limit of quantification (Table 3). 

321 Interestingly, quantifiability of intracellular ATP was dependent on the system sampled (Tables 

322 S5 & S6). In particular, we saw a greater fraction of samples with concentrations of intracellular 

323 ATP above lower quantification limits from distribution system A (90.9% of samples with n= 11; 

324 Table S5) and distribution system B (90% of samples with n= 10; Table S5) and lower 

325 quantifiability in samples from distribution system F (64.1% of samples with n= 92; Table S5). 

326
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327 To evaluate the variability of the microbial abundance assays, we determined which measures of 

328 microbial abundance had the lowest average coefficients of variation. The coefficient of variation 

329 is commonly used to assess variability in quantitative bioassays and is reported as a percentage 

330 with a higher percentage indicating more variation among replicates (63). To summarize the 

331 variability across all samples taken in this study, we calculated an average coefficient of variation 

332 for each of the measures of microbial abundance by taking the arithmetic mean of all sample 

333 coefficients of variation (Table 4). Notably, variability was lower for total ATP (9.29%; Table 4), 

334 total cell counts (17.0%; Table 4), and intact cell counts (16.9%; Table 4), compared to 

335 intracellular ATP (56.0%; Table 4) and HPC (49.4%; Table 4). 

336

337 Table 3: Percent of samples above quantification limit, below quantification limit, and quantifiable 
338 in all drinking water distribution systems sampled for this study for each microbial water quality 
339 assessment method. “n” is the number of samples per assay.

Assay n percent 
quantifiable

percent below 
quantification limit

percent above 
quantification limit

intact cell counts 166 97.6 2.4 0

total cell counts 166 100 0 0
intracellular ATP 113 69.9 30.1 0

total ATP 113 100 0 0
HPC 102 81.4 14.7 3.9

340
341
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342
343 Table 4: Ranges in coefficient of variation determined by geometric mean (%; min, median, and 
344 max) and average coefficient of variation (%) for replicates taken in all drinking water distribution 
345 systems sampled for this study for each microbial water quality assessment method. “n” is the 
346 number of samples per assay.

Assay n
Min

coefficient of 
variation

Median
coefficient of 

variation

Max
coefficient of 

variation

Average 
coefficient of 

variation
intact cell 

counts 162 0.0266 9.78 148 16.9

total cell 
counts 166 0.318 6.15 255 17.0

intracellular 
ATP 79 43.0 48.6 328 56.0

total ATP 113 0.389 4.81 66.0 9.29
HPC 73 0 27.1 293 49.4

347

348 4 Discussion
349

350 We compared five measures of microbial abundance by surveying drinking water systems that 

351 apply residual disinfectants in California and Texas. In one chloraminated system, we used a 

352 generalized linear mixed model to estimate the effect of commonly measured water quality 

353 parameters on intact cell counts. In the following sections, we discuss the purpose and 

354 interpretation of typical microbial water quality factors and consider the future role of enhanced 

355 measures of microbial water quality for three applications: routine monitoring, diagnostics, and 

356 research.

357
358 4.1  Considerations for routine monitoring of drinking water systems
359

360 A key finding from this study is that disinfectant concentration in drinking water distribution 

361 systems provided an indirect measure of microbial abundance, which has useful implications for 

362 routine monitoring of distribution systems. Disinfectant residual had the largest inverse correlation 

363 coefficient regardless of residual type (Figure 2A & 2B). Furthermore, total chlorine had the 

364 greatest inverse effect on intact cell counts in a chloraminated drinking water distribution system 
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365 (distribution system F). Gillespie et al. (16) and Nescerecka et al. (18) also surveyed disinfected 

366 distribution systems, but did not report trends between intact cell counts and disinfectant residual. 

367 Gillespie et al. (16) sampled in chlorinated systems with free chlorine <0.8 mg/L as Cl2 and 

368 recommend maintaining free chlorine above 0.5 mg/L as Cl2 to keep the fraction of potentially 

369 viable cells below 0.2. In contrast, we did not observe a similar trend with the fraction of viable 

370 cells (Figure S2), but we did find that intact cell count decreased to <100 cells/mL at free chlorine 

371 concentrations above 1.5 mg/L as Cl2. We assessed intact cell counts at a wider range of 

372 disinfectant concentrations and observed a clear trend between disinfectant residual and intact 

373 cell counts.

374 We presented a proof of concept that development of mixed models could help relate routinely 

375 monitored physicochemical data to intact cell counts in drinking water distribution systems. 

376 Drinking water providers in the United States commonly monitor pH, temperature, free chlorine, 

377 and total chorine, and we incorporated these data into a model to estimate intact cell counts using 

378 data from a chloraminated distribution system. The most optimal model (Equation 2) suggests 

379 that total chlorine had the largest effect on intact cell counts and that this effect depended on 

380 temperature. Zhang et al. (64) also found that disinfectant concentration had an inverse effect on 

381 log-transformed HPC and visually observed higher values of log transformed HPC in the summer 

382 than in the winter, but statistical results were inconsistent, likely due to variability in HPC results. 

383 Using intact cell counts, instead of just the small fraction of total coliform bacteria or HPC, holds 

384 promise to model a commonly observed phenomenon: in summer, a higher residual disinfectant 

385 is necessary to maintain microbial water quality (65).  This study focused on routinely measured 

386 parameters in drinking water distribution systems in the southwestern United States, but more 

387 research is needed to expand the dataset and modeling approach. This approach could include 

388 a dataset that accounts for seasonal variability and  source water quality changes as well as 

389 includes additional biological (e.g., assimilable organic carbon) and physicochemical parameters 

390 (e.g., total organic carbon concentration). However, including more parameters would require a 
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391 larger sample size than we collected for our model (n=80). In addition, modeling completed using 

392 data from multiple distribution systems will introduce a nested dependency structure in which both 

393 samples from the same system will be correlated as well as samples from the same site within a 

394 distribution system over time. With a more complete dataset, it might be possible to generate a 

395 model for which consistent deviations from model predictions at specific sites may be indicative 

396 of water quality problems, such as pipe corrosion or nitrification.

397
398 4.2 Intact cell counts and intracellular ATP assays as diagnostic tools 
399

400 To better understand observed or expected changes in water quality, such the impact of 

401 nitrification, upgrading treatment processes, or incorporating a new treated water source (e.g., 

402 potable reuse), diagnostic monitoring can be necessary. However, the culturing methods 

403 commonly employed in routine monitoring, such as for total coliforms and HPC, often produce 

404 unquantifiable or unrepresentative results. For example, in a survey of U.S. drinking water 

405 providers, 57% of respondents reported never detecting total coliforms while the other 43% 

406 reported having fewer than 12 positive samples per year (n= 256 respondents; (46)). Similarly, 

407 our results support previous claims that HPC vastly underestimates drinking water microbial 

408 abundance as compared with intact cell counts (30). HPC only quantifies bacteria that can utilize 

409 organic nutrients for growth (29,41) and they have been shown to comprise <1% of bacteria in 

410 some drinking water samples (31,66). Prest et al. (28) reported a very high fraction of treated 

411 drinking water samples with HPC results below 5 CFU/mL while total cell counts ranged from 9.0 

412 x 104 to 4.5 x 105 cells/mL. 

413

414 For diagnostic purposes, use of intact cell counts would allow drinking water providers to detect 

415 changes in microbial water quality that are not observable using traditional microbial monitoring 

416 methods like HPC or total coliform quantification (30,41,43,67-69). In this study, 97.6% of samples 
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417 had quantifiable intact cell counts. Only four samples were below the intact cell count 

418 quantification limit, which occurred at the highest residual concentration observed in chlorinated 

419 drinking water distribution systems (1.5 - 2.0 mg/L as Cl2; Figure 1). Intact cell counts spanned 

420 four orders of magnitude in chloraminated systems (from <22 cell/mL to 1.09 x 105 cells/mL) and 

421 more than two orders of magnitude in the chlorinated systems (<22 cells/mL to 2.12 x 103 

422 cells/mL). As might be expected, these cell counts were lower than those reported in other studies 

423 with lower maximum residual disinfectant values or in systems without disinfectant residuals. For 

424 chlorinated distribution systems, the maximum cell counts from this study are about 1000 times 

425 less than those reported in Gillespie et. al (16). In addition, the geometric mean of intact cell 

426 counts of all distribution system samples in our study (3 x 103 cells/mL) was about 100 times lower 

427 than that of total cell counts reported for a system that does not apply a residual disinfectant (1 x 

428 105 cells/ mL) (70). 

429

430 Intracellular ATP may also be useful for diagnostic purposes because the values measured in this 

431 study correlated strongly with intact cell counts and ATP assays are less expensive. Drinking 

432 water providers monitoring microbial abundance for diagnostic purposes will need to choose 

433 measures of microbial abundance that maximize information gained and minimize expense. For 

434 this reason, it is important to consider how much each technique overlaps with other measures of 

435 microbial abundance and with chemical or physical water quality parameters. Intact cell counts 

436 and intracellular ATP results were strongly correlated (Figure 2A & 4B), and other studies have 

437 found similar correlations between ATP and intact cell counts among both chloraminated and 

438 chlorinated systems (18,28,30,66). Our results support the likelihood that most microbial 

439 abundance information will be obtained if either intact cell counts or intracellular ATP is measured. 

440 However, intact cell count was still more quantifiable and consistent compared to intracellular 

441 ATP. Intracellular ATP was quantifiable in only 69% of samples (Table 3) and technical replicates 
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442 varied considerably (average coefficient of variation = 55%; Table 4). Thus, intracellular ATP may 

443 only be preferable when expense is a primary concern.

444

445 4.3 Assessment of biostability and risk in disinfected drinking water systems
446

447 While there is no evidence that the safety of drinking water is compromised simply due to 

448 variations in microbial abundance, microbial growth in distribution systems is generally considered 

449 to be a risk (27,71,72). Choosing universal guidelines to maintain microbial water quality is not 

450 straightforward because microbial abundance is not directly linked to specific risks to 

451 infrastructure or public health. For example, setting a numerical operational limit for cell counts 

452 (e.g., 100 cells/mL) is not logical because microbial abundance varies considerably by water 

453 source and even within the same distribution system (17). In lieu of numerical operational limits, 

454 researchers have proposed maintaining biologically stable water, in which microbial abundance 

455 and composition does not significantly change throughout a distribution system (70,73). However, 

456 biologically stable drinking water is difficult to maintain in disinfected drinking water distribution 

457 systems (17,18) because disinfectant residual concentration has been shown to degrade in 

458 drinking water distribution systems as it reacts with pipe walls and organic matter (Figure S4) (62). 

459 In this study, disinfectant residual varied over a large range within chloraminated and chlorinated 

460 distribution systems, and there was a strong inverse correlation between the residual 

461 concentration and the microbial abundance.  

462

463 Instead of maintaining biologically stable water, setting more subjective operational limits might 

464 be necessary in disinfected drinking water systems. Subjective operational limits have been set 

465 for HPC in the United Kingdom, France, the Netherlands, and Belgium where the upper limit is 

466 “no abnormal change” in HPC (30). While it is difficult to define “normal” in drinking water systems, 

467 normal can be operationally defined by measuring microbial water quality under a range of 
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468 conditions encountered in the system to establish a baseline and to discern contamination events 

469 from natural fluctuations (74,75) that have been well documented in drinking water distribution 

470 systems (76). To establish a baseline microbial abundance in drinking water systems, water 

471 providers could monitor intact cell counts or intracellular ATP data throughout the range of 

472 chemical and physical water quality conditions encountered in their systems under routine 

473 operations. The generalized linear mixed model presented in this paper represents one way to 

474 establish such a baseline and the methodology could be applied in other systems. 

475

476 To more thoroughly assess health risk in drinking water systems, more research is needed to pair 

477 absolute microbial abundance measures with assessments of microbial community composition 

478 and the concentration of specific pathogens of concern. Significant research is underway to 

479 characterize microbial communities in drinking water using high-throughput sequencing 

480 technologies (e.g., 16S rRNA gene amplicon and metagenomic sequencing). Some researchers 

481 have paired microbial abundance data with sequencing data using quantitative polymerase chain 

482 reaction (qPCR) methods to provide a deeper characterization of microbial water quality 

483 (77,78,79). Combining qPCR with viability dyes brings a similar benefit as cell counts and ATP 

484 assays in that cell membrane damage can be used as a viability metric (80). However, these 

485 methods have limitations discussed previously (81), including limited resolution (twofold changes 

486 in gene copies; 82), bias introduced from assay design (82,83), and bias introduced with PCR 

487 (84). Others have paired flow cytometry with sequencing data to provide a similar characterization 

488 of microbial water quality without bias introduced from PCR (39,81,85). Ultimately, these studies 

489 may provide a sophisticated understanding of the complex interactions and factors that govern 

490 microbial ecology in drinking water systems. However, not all microbial ecology studies report 

491 absolute microbial abundance data. Pairing measures of microbial abundance with sequencing 

492 results has the potential to characterize microbial water quality in greater resolution than using 

493 any single method. This approach can provide more insight into risk in drinking water distribution 
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494 systems including potential exposure to opportunistic pathogens and other microbially induced 

495 issues, such as pipe corrosion (86,87), nitrification (88,89), and aesthetic deterioration of finished 

496 water (90). 

497

498 For meta-omics research, we believe that the microbial abundance measures we studied that will 

499 be most useful to include are intact and total cell counts. Our flow cytometry results indicate that 

500 a varied fraction of cells in the sites we sampled were viable (Figure S2). Intact and total cell 

501 counts are quantified by a fluorescent dye that intercalates with DNA (91) and are a more direct 

502 measure of microbial abundance compared to ATP assays. Though cell count data were 

503 correlated with ATP data, ATP results were varied and often unquantifiable in these systems. 

504 While total cell count is more reflective of the sequenced microbial community, intact cell count is 

505 more reflective of the risk imposed by the microbial community. Thus, both total and intact cell 

506 counts could be useful to pair with meta-omics data and provide a more informative assessment 

507 of microbial water quality in drinking water systems.

508 5 Conclusions
509
510 Applying measures of microbial abundance in piped drinking water systems can be useful for 

511 routine monitoring, diagnostics, and research. Our results support that disinfectant residual is an 

512 indirect measure of microbial abundance, and the necessity of pairing it with direct measures is 

513 questionable for routine monitoring. However, for diagnostic purposes, additional monitoring data 

514 in systems with large ranges in microbial and physicochemical water quality conditions could help 

515 drinking water providers diagnose issues early and move beyond the goal of ensuring total 

516 coliforms are not detectable (92,93). For research, pairing meta-omics data with measures of 

517 microbial abundance can help researchers better characterize microbial water quality. Our results 

518 support that HPC assays are uninformative in these systems because these results are variable 

519 and often unquantifiable. Microorganisms are present throughout drinking water systems, and by 
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520 limiting analyses to HPC, the true microbial water quality cannot be observed. Instead, we 

521 recommend using either intracellular ATP or intact cell counts for diagnostic purposes and both 

522 intact and total cell counts to pair with meta-omics data. Our main findings are summarized as 

523 follows:

524  Intact cells were measured in all six piped drinking water distribution systems, 
525 including chloraminated sites with total chlorine > 2.5 mg/L as Cl2
526  Only 2.4% of sampling sites, with the highest free chlorine concentrations (i.e., 1.5-2 
527 mg/L as Cl2), had intact cell counts below quantification limits 
528  Residual disinfectant concentration was significantly and strongly correlated with 
529 intracellular ATP and intact cell counts in distribution systems
530  Negative correlations between residual disinfectant concentration and intracellular 
531 ATP were stronger in chlorinated systems than in chloraminated systems
532  The parameter that had the greatest impact on intact cell counts in a chloraminated 
533 drinking water distribution system was total chlorine concentration, which interacted 
534 with temperature 
535  Of the five measures of microbial abundance, only total cell counts and total ATP were 
536 quantifiable in all samples, but these assays do not assess viability of cells
537  Total ATP had the least variability among technical replicates followed by intact cell 
538 counts and total cell counts
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Microbial abundance measures in the drinking water distribution systems sampled in this study by 
disinfectant concentration. Left (chloraminated systems): intact cell counts (A), intracellular ATP (B), and 
HPC (C) in distribution system C (A) and distribution system F (A-C). Shapes denote sites in distribution 
system F that were sampled at least six times between August 2017 and April 2018. Right (chlorinated 

systems): intact cell counts (D), intracellular ATP (E), and HPC (F) in distribution system A (D-F), 
distribution system B (D-F), and distribution systems D and E (D). Shapes denote locations in distribution 
systems A and B that were sampled once in 2016 and repeated in 2018. Horizontal dashed lines denote 

quantification limits for each assay. Points are the geometric mean of the technical replicates and error bars 
represent the variation associated with technical replicates as quantified by the geometric standard deviation 

for technical replicates. 
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A) Spearman’s correlation coefficient heat map for all samples with complete water quality data collected 
from a chloraminated drinking water distribution system (n= 61) (B) Spearman’s correlation coefficient heat 
map for all samples with complete water quality data collected from chlorinated drinking water distribution 
systems (n= 21). Insignificant coefficients are shown in grey where significance is coded as * p< 0.01; ** 

p<0.001; *** p<0.0001. 
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Visual representation of the most optimal model of intact cell counts in distribution system F (Equation 2). 
To generate dashed grey line, all fixed effects were held constant at their average value except for total 

chlorine (with bootstrapped 95% confidence intervals are shown in grey). To generate other lines, 
temperature was varied in the model at each quantile value (-1.9, -0.10, -0.53, 0.87, and 2.1). In Figure 

S3, other fixed effects are shown. 
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Intact cell counts (A), intracellular ATP (B), HPC (C), and total chlorine concentration (D) by water age 
(hours) in distribution system F. Shapes denote locations in distribution system F that were sampled at least 
six times between August 2017 and April 2018. Horizontal dashed lines denote quantification limits for each 

assay. Points are the geometric mean of the technical replicates and error bars represent the variation 
associated with technical replicates as quantified by the geometric standard deviation for technical 

replicates. 
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