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Solving complex eigenvalue problems on a quantum an-

nealer with applications to quantum scattering reso-

nances

Alexander Teplukhin,a Brian K. Kendrick,a∗ and Dmitri Babikovb

Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In

previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calcu-

lation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the

original QAE methodology was applicable to real symmetric matrices only. For many physics and

chemistry problems, the diagonalization of complex matrices is required. For example, the calculation

of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real

part of the eigenvalue is the resonance energy and the imaginary part is proportional to the reso-

nance width. In the present work, we generalize the QAE to treat complex matrices: �rst complex

Hermitian matrices and then complex symmetric matrices. These generalizations are then used to

compute a quantum scattering resonance state in a 1D model potential for O + O collisions. These

calculations are performed using both a software (classical) annealer and hardware annealer (the

D-Wave 2000Q). The results of the complex QAE are also benchmarked against a standard linear

algebra library (LAPACK). This work presents the �rst numerical solution of a complex eigenvalue

problem of any kind on a quantum annealer, and it is the �rst treatment of a quantum scattering

resonance on any quantum device.

1 Introduction

Quantum computers are expected to supersede classical comput-
ers one day and scientists around the world are working hard
to bring that day closer. A number of quantum computing mod-
els and physical platforms1,2 to realize reliable qubits are under
investigation and it is still not clear what model and platform
are going to win the competition. In the meantime, scientists
are also pursuing the development of quantum algorithms3,4 for
current Noisy Intermediate-Scale Quantum (NISQ) devices,5 be-
fore true universal quantum computers become available. The
applications of quantum computers and quantum algorithms are
limitless and theoretical chemistry is one of the fields that will
significantly benefit from them.6–8

Currently, the two most dominant quantum computing models
are gate-based quantum computing and adiabatic quantum an-
nealing.6 In the first model of computation, a sequence of quan-
tum gates (i.e., reversible unitary transformations) is applied to
a number of qubits and the states of all qubits are measured at
the end. The model has gained widespread popularity because
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it gives full control over the qubits and computation itself. In
the literature, the Variational Quantum Eigensolver (VQE)9–11 is
one of the most popular algorithms implemented on gate-based
quantum computers. The solver was successfully applied to the
calculation of the electronic ground state energy of a molecule
– one of the most important fundamental problems in computa-
tional chemistry.

Adiabatic quantum annealing is another, probably less popu-
lar model of quantum computation. In this model, the compu-
tation is based on the slow continuous transformation of an ini-
tial (easy-to-prepare) Hamiltonian into a final (target) Hamilto-
nian. The ground state of the initial Hamiltonian adiabatically
becomes the ground state of the final Hamiltonian. In practice, a
given problem must be formulated as an Ising problem or equiv-
alently a Quadratic Unconstrained Binary Optimization (QUBO)
problem. Specifically, a QUBO solver finds the minimum of the
QUBO function xT Qx (called the objective function), where Q is
a matrix describing the problem and x is a binary string (string
of zeros and ones). At the minimum, the optimal solution string
x = xopt is obtained. If a problem can be converted into a QUBO
problem, then it can be solved on an annealer, otherwise it can-
not be solved on that type of quantum device. This significantly
decreases the applicability of quantum annealing, as not every
problem is convertible. In comparison to the gate-based quan-
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tum computers, quantum annealers have a much larger number
of qubits, but this should not be misunderstood, as those qubits
are loosely-connected. In order to emulate an all-to-all connec-
tivity (i.e., full coupling between all of the qubits), one needs to
sacrifice a large portion of the qubits for chain construction which
effectively reduces the number of qubits from 2048 to just 64 on
the D-Wave 2000Q.12 Interestingly, the two models of compu-
tation: gate-based and adiabatic quantum annealing have been
shown to be formally equivalent (at least for ideal quantum de-
vices).13

Due to the limited applicability of quantum annealers, the num-
ber of studies where this type of quantum device is used to solve
chemistry problems is quite small. For example, there are only
two studies where the electronic Hamiltonian is mapped to a
quantum annealer. The method of the first paper14 converts all
Pauli operators of the second-quantized Hamiltonian to the σz op-
erator (the only operator implemented in the current generation
of D-Wave annealers) and makes multiple replicas of basis func-
tions to mimic basis function weights. The method was later im-
plemented on a real D-Wave annealer to find the ground state en-
ergy of H2 and LiH.15 The second approach16 is based on the fact
that if one writes the expectation value of the second-quantized
Hamiltonian in terms of Bloch sphere angles, then the expression
becomes a sum of products of primitive trigonometric functions.
The quadrant of each Bloch angle can be stored using one or two
binary variables. The function of these binary variables is then op-
timized on a quantum annealer while the remaining angles within
the [0, π/2] range are optimized classically.

The Quantum Annealer Eigensolver (QAE)17 can also be used
to solve chemistry problems. For example, previously, the method
has been applied to compute the vibrational spectrum of a
molecule.17 The QAE is a general-purpose eigenvalue solver that
runs on the D-Wave quantum annealer. If a problem can be for-
mulated as eigenvalue problem, then the QAE can be used to
solve that problem. The method is Hamiltonian and basis ag-
nostic as only a matrix needs to be provided.

As a matrix-based method, the QAE inherits all intrinsic lim-
itations of the matrix representation, such as exponential scal-
ing with the problem size for the matrices constructed using di-
rect product basis sets. A smarter choice of the basis potentially
may improve the scaling. However, other methods of solving the
eigenvalue problem on existing annealers (e.g., for the electronic
structure14,16) scale exponentially as well. This is a limitation of
the current generation of D-Wave annealers, which currently do
not implement non-stoquastic Hamiltonians, needed to realize a
better scaling.18

Thus, the primary goal of the QAE17 and the present study is to
show how one can map a fundamental physics or chemistry vari-
ational (eigenvalue) problem onto the existing quantum annealer
hardware or equivalently an Ising Hamiltonian, and demonstrate
it on available quantum devices. While the long-term goals of
quantum computing are to realize a quantum advantage and ulti-
mately an exponential speed-up, these goals are beyond the scope
of the current study and will require more advanced quantum al-
gorithms and hardware.

Specifically, in the present study, we generalize the QAE to solve

complex matrices, both Hermitian and complex symmetric. The
new methodology is then applied to compute quantum scattering
resonances. The real part of a complex eigenvalue is the reso-
nance energy, while the imaginary part is related to the resonance
width Γ via: E = Eres+(−Γ/2)i. The lifetime of a resonance is the
inverse of the resonance width, τ = h̄/Γ. We apply the complex
QAE to a one-dimensional (1D) O + O scattering problem using a
simplified interaction potential to facilitate calculations. The QAE
is run on both a classical annealer and a hardware quantum an-
nealer (the D-Wave 2000Q). Both sets of results are benchmarked
against a standard (classical) numerically exact linear algebra li-
brary (LAPACK).19

To the best of our knowledge, this work is the first time when
a complex eigenvalue problem is solved on a quantum annealer,
and it is the first treatment of a quantum scattering resonance on
any quantum device.

2 Methodology

The Quantum Annealer Eigensolver (QAE)17 is based on the min-
max theorem which states (in the simplest formulation) that for a
n×n Hermitian matrix A the smallest (largest) eigenvalue is equal
to the minimum (maximum) of the Rayleigh-Ritz quotient

RA = (Av,v)/(v,v) (1)

or
RA = (Av,v) (2)

if the vector v is normalized. The vector vmin (vmax) for which this
minimum (maximum) is reached is the associated eigenvector.
One may notice that RA is quite similar to the QUBO expression
xT Qx, which is what the D-Wave quantum annealer optimizes.
First, we will consider real symmetric A and then generalize to
the complex cases below. For the real case, a matrix of real num-
bers is common to both expressions: A for the quotient in Eq. (1)
and Q for the QUBO problem. However, v is a vector of real num-
bers, whereas x is a vector of binary values. To map the first to
the second, we use a fixed-point representation for the elements
of v. In this encoding, an element vα is represented using K binary
variables or qubits qα

i , 1≤ i≤ K, so that each qubit contributes a
fraction (1/2, 1/4, etc.) to the vα and one more qubit is respon-
sible for the sign, see Eq. (10) in the Appendix. The products
of powers-of-two and the matrix elements of A give the matrix
elements of Q. In this way, we have mapped the eigenvalue prob-
lem onto the QUBO problem required for running on a quantum
annealer.

After the mapping is established, one also needs to consider
adding a normalization constraint to the QUBO, because the op-
timal vmin represented by x might be a zero vector (i.e., the triv-
ial solution v = 0). In order to avoid that, we have to augment
the QUBO function with some constraint to encourage ‖v‖ = 1.
The most obvious way is to add a term λ (‖v‖− 1)2 to the QUBO
with some penalty parameter λ , but this will make the QUBO bi-
quadratic in qα

i and unmappable to the D-Wave annealer. There
is a procedure to handle terms beyond quadratic, but it requires
adding more constraints which increases the total number of un-
known penalties (or constraint multipliers). Instead, we suggest
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dropping the second power in the added constraint to keep the
QUBO quadratic in q. In practice, the usage of a linear form of
the constraint does not cause problems, see Results and Discus-
sion section for additional details concerning the constraint form.
The constant shift λ can also be dropped once the constraint is
linear. Thus, the final objective function is given by

F(v) = (v,Av)+λ · (v,v) (3)

While Eq. (3) looks like a Lagrangian and is usually tackled with
the Lagrange multiplier method (for example, see the standard
Hartree-Fock method20), here we will be optimizing F(v) for
multiple values of λ , chosen iteratively (see below). Now, the
v→ q mapping discussed above can be used to construct the cor-
responding QUBO function FQ(q) that can then be minimized on a
quantum annealer. Please see Eqs. (11) and (12) in the Appendix
for the explicit form of FQ(q).

The normalization penalty λ balances two things in the QUBO
function F(v): the expectation value and the norm. One has to
find a “sweet spot”, such that the normalization constraint is sat-
isfied and the expectation value is the lowest possible. With the
linear form of the normalization constraint there is not much of
an actual constraint to satisfy, strictly speaking. However, it does
provide a way to avoid the trivial solution and encourage a non-
zero norm. A small λ causes the norm to be neglected, while a
large λ causes the Hamiltonian contribution to be neglected (rel-
ative to the norm). Thus, the optimal λopt is located somewhere
in between. In the past,17 we did a simple scanning in λ , but
that required specifying the λ -range to scan. Instead, the current
version of the QAE iteratively searches for the best λopt without
any additional input from the user.

The positive and negative values of the maximum matrix ele-
ment of A serve as the range limits where λopt is searched. On
each λ iteration, the QUBO is minimized and the vector v is con-
structed from the binary string q. The vector v is then used to
evaluate the expectation value (v,Av). The expectation value can
be used to guide the next choice of λ . However, for inaccurate
noisy QUBO solvers (see below), the expectation value fluctuates
on each run. Thus, it is not a reliable measure to guide the next
choice for λ . Instead, we base our search on the type of solu-
tion, trivial or non-trivial. The λopt is always located around a
“phase-transition” point – on the edge between trivial and non-
trivial solution areas. Thus, the QAE iteratively shrinks the search
range, so that the solution on the left end is always non-trivial,
whereas the solution on the right end is always trivial. For each
λ the expectation value (v,Av) is stored and the smallest one is
returned to the user once the iterations stop.

Currently, the QAE has two stopping criteria. One tracks how
much the expectation value changes and stops the search if the
recent changes are smaller than a user specified tolerance. The
other condition occurs simply when the λ -search range shrinks to
a single point. The latter one guaranties that the algorithm will
eventually stop even when an inaccurate noisy QUBO solver is
used.

Since the number of qubits required to obtain reliable results is
much large than the number of fully-connected logical qubits on

the D-Wave annealer (64 for the D-Wave 2000Q), the QAE uses
an intermediate (interface) software qbsolv.21 The qbsolv enables
the treatment of large QUBO problems. On each internal itera-
tion, the qbsolv sorts the QUBO variables of a large QUBO in order
of importance, splits the problem into subQUBOs of the size 64
qubits, minimizes each chunk separately, appends the resulting
binary strings and refines the whole solution classically. The sub-
QUBOs can be minimized either classically using a Tabu search
algorithm or on a D-Wave quantum annealer. In this way, the
QAE has two modes of operation: classical and hardware (which
control how qbsolv’s subQUBOs are minimized).

While being a great tool to solve large QUBO problem, the qb-
solv is noisy. Running it many times for the same QUBO problem
gives different results on each run, independent of how the sub-
QUBOs are solved (i.e., either classically or on the D-Wave an-
nealer). This not only leads to fluctuating eigenvalues, but also
limits a number of ways in which λ can be searched. For example,
one cannot simply use gradient-based methods to find λopt .

The QAE algorithm can also be used to compute more than one
eigenpair (i.e., the excited quantum states). The kth eigenpair is
found by repeating the whole procedure for a modified matrix

A′ = A+
k−1

∑
i=0

Si(vi⊗ vi), (4)

where ⊗ denotes the outer product and the multipliers Si shift the
previously computed eigenpairs higher in the spectrum. The Si

should be large enough so that the next eigenpair of interest is the
minimum energy solution of A′. In the current implementation
they are set equal to the maximum matrix element multiplied by
16. However, other multipliers such as 2, 4, 8 have also worked
well. A more robust technique for choosing the Si values could be
investigated but this is not our present focus.

2.1 Complex Hermitian matrices

In the complex case, both the given matrix A and its eigenvec-
tors c are complex. This means that twice the number of qubits
are needed to encode the problem of the same size (n× n) than
for the real case. One half of the qubits encodes the real part
of an eigenvector cRe and the other half encodes the imaginary
part cIm. As shown in the Appendix (see Eqs. (13) and (14))
each (α,β ) term of the objective function F(c) is now a complex
number. However, due to the Hermitian property of A, the sum
of two terms that have their indices exchanged (i.e., (α,β ) with
(β ,α)) gives a real number (see Eq. (15)). Since the diagonal
terms (α,α) are purely real for a Hermitian matrix, the whole ob-
jective function F(c) and the resulting QUBO remain real. This is
fortunate since the D-Wave annealers optimize real QUBOs only.
A real objective function F(c) is expected for Hermitian matrices
since both components of F(c), the expectation value (c,Ac) and
the norm (c,c), have to be real. Thus, there are no changes to
the fundamental algorithm of the QAE for the complex Hermitian
case, other than doubling the qubit count and carefully tracking
real and imaginary parts of the complex numbers involved. The
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final objective function is given by

Fherm(c) = (c,Ac)+λ · (c,c) (5)

2.2 Complex symmetric matrices

The extension of the QAE to complex symmetric matrices is not
as elegant as for the real and complex Hermitian matrices. This
is due to the fact that both F(c) and resulting QUBO are not
real anymore. The sum of the (α,β ) and (β ,α) terms in F(c)
has an imaginary component, which replaces some of the real-
valued terms in the similar expression for Hermitian matrices, see
Eq. (16). Generally speaking, the traditional variational method
is not applicable in the complex symmetric case, because the
eigenvalues are complex E = ERe + iEIm and minimizing only
the real part will not suffice. However, for the quantum scat-
tering problem, we are interested in the lowest lying bound and
quasi-bound (resonance) states which have the smallest energy
ERe and smallest width Γ = −2EIm. This means that the com-
plex eigenvalues of interest are variational in the sense that they
must have both small real and small imaginary parts. In a typical
1D scattering problem, all ro-vibrational states until the disso-
ciation threshold are bound states with purely real eigenvalues
(i.e., they have zero width or infinite lifetime). The quasi-bound
(resonance) states which lie above the dissociation threshold and
are trapped behind the centrifugal barrier (and also include some
states above the barrier energy) have complex eigenvalues with
a finite width that increases with increasing energy. Examples
of this correlation can be found in the literature, see Figure 4 in
Ref. 22 (Lennard-Jones potential with centrifugal term) and Ta-
bles 1, 2 and 4 in Ref. 23 (double barrier symmetric potentials).
That is, the lifetime τ decreases with increasing resonance energy
due to enhanced tunneling through the barrier. At very high en-
ergies above the barrier, the solutions approach the continuum
states which have infinite width (i.e., zero lifetime). Thus, at
least for the complex symmetric matrices generated for quantum
scattering problems, the QAE must be augmented with another
constraint to minimize the imaginary part or width Γ = −2EIm.
Since the width is a positive number and we are trying to mini-
mize it, the addition of the real valued term (−2EIm) in the F(c)
is sufficient. The expression for EIm in terms of the matrix and
vector elements is given in the Appendix (see Eq.(17)).

Similar to the normalization constraint, the new constraint on Γ

has its own penalty γ. As before, the role of the new penalty factor
is to balance components in the objective function and QUBO.
Together, the two penalties, λ and γ, are used to balance three
components of the whole expression: energy, norm and width. As
a result, the search for the optimal weights, λopt and γopt , makes
the complex symmetric QAE more expensive than the real and
Hermitian versions. In practice, we found that the 2D search can
be reduced to semi-2D by letting the λ penalty contribute to the Γ

constraint, resulting in a λγ(−2EIm) form of the new constraint.
The QUBO optimization in λ is now performed for multiple γ

values.

Unfortunately, the proposed changes discussed above were not
sufficient. After examining the QUBO terms, Eq. (16) in the Ap-

pendix, one can see there are only cRe
α cRe

β
and cIm

α cIm
β

products,

but there are no cross-terms cRe
α cIm

β
or cIm

α cRe
β

. This means that
the real and imaginary parts are independent and uncoupled. In
contrast, for the Hermitian case the cross-terms are naturally in-
cluded as part of the energy minimization and, as shown in the
Appendix Eqs. (18) and (19), are responsible for the “angular re-
pulsion” between the vector elements. With these terms added,
the optimization is encouraged to explore the full 2π range of the
complex phase and the complex symmetric QAE becomes stable,
giving reasonable energies and widths. Thus, the final objective
function for the complex symmetric QAE is given by

Fcsym(c) = (c,Ac)+λ · (c,c)−λγ 2EIm−λγ
′X(c) (6)

where X(c) contains all of the cross-terms from the Hermitian
case (see Eq. (18) in the Appendix). The new γ ′ weight is anal-
ogous to the γ weight introduced above for the imaginary con-
straint. It balances the relative contribution of the X(c) constraint
with the other terms in Eq. (6). The QUBO optimization of the
final form of the functional given in Eq. (6) with respect to λ

is now performed for multiple γ and γ ′ values to determine the
overall optimal complex symmetric eigenvalue solution. The ad-
dition of the −2EIm and X(c) constraints does not affect the final
computed energies similar to the normalization constraint.

3 Results and discussion

The new complex QAE methodology is applied to the calculation
of both bound and quasi-bound (resonance) states of molecular
oxygen O2. The focus of the present work is to demonstrate the
new capabilities of QAE. Thus, we use a simplified 1D model for
O2 where the depth of the O2 potential well is artificially de-
creased in order to reduce the number of bound states to just
one or two. The oxygen molecule is also rotationally excited to
j = 6 which gives rise to a small centrifugal barrier that supports
at least one quasi-bound state. The traditional approach for com-
puting the quasi-bound (resonance) spectrum is to add a Complex
Absorbing Potential (CAP) to the Hamiltonian. The Hamiltonian
matrix is constructed using a suitable basis and the matrix is di-
agonalized to obtain the complex eigenvalues and eigenvectors.
In the present work, we use two different basis sets and absorb-
ing potentials with two different O2 model potentials. One model
leads to a Hermitian matrix and the other model gives a complex
symmetric matrix. Thus, with these two model problems we can
demonstrate both the Hermitian and complex symmetric versions
of the new complex QAE methodology.

The 1D model problem is given by the Schrödinger equation[
− h̄2

2 µ

∂ 2

∂ r2 +
h̄2 j( j+1)

2 µ r2 +V (r)+Vabs(r)

]
ψ(r) = E ψ(r) (7)

where µ is the reduced mass of O2, r is the internuclear distance
of O2, j is the rotational quantum number, V (r) is the O2 interac-
tion potential, Vabs(r) is the absorbing potential, ψ(r) is the wave
function and E is the energy. The Hamiltonian operator (H) con-
sists of the terms in the brackets acting on ψ(r) on the left hand
side of Eq. (7) (i.e., H ψ(r) = E ψ(r)). The interaction poten-
tial is chosen to be a standard Morse potential given by V (r) =
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De {exp[−b(r− r0)]exp[−b(r− r0)]−2exp[−b(r− r0)]} where De,
b, and r0 are parameters specified below. Two forms of the ab-
sorbing potential (Vabs) are utilized, a real quadratic potential

Vrap(r) = η(r− rc)
2 (r ≥ rc)

= 0 (r < rc)

(8)

and a complex (purely imaginary) quadratic potential

Vcap(r) = iη(r− rc)
2 (r ≥ rc)

= 0 (r < rc)

(9)

where η is the potential strength and rc is its origin.

In the Hermitian model, the real absorbing potential of Eq. (8)
(with η = 0.01 and rc = 8.5a0) is used in Eq. (7). The wave func-
tion ψ(r) in Eq. (7) is expanded using a complex Fourier basis
given by ψ j(r) = ∑

+mmax
m=−mmax

c j
m exp(imφ)/

√
2π where φk = 2π k/n,

k is an integer labeling the kth grid point, and n = 2m+ 1 de-
notes the total number of grid points. The grid in r is defined
as: rk = rmid + φk dr where dr = (r f − ri)/2π and ri, r f and rmid

denote the initial, final and midpoint of the grid. The grid pa-
rameters used in the Hermitian model are ri = 1.5a0, r f = 9.5a0,
and rmid = 5.5a0. The complex expansion coefficients c j

m are the
eigenvectors. These are computed by diagonalizing the Hamilto-
nian matrix (H) which when evaluated in the complex Fourier ba-
sis is a Hermitian matrix. In order to keep the problem size small
for QAE so that it fits on the existing quantum hardware (e.g.,
the D-Wave annealer), we chose a small basis m = 10 which gives
n = 21 grid points and a 21×21 dimensional Hermitian matrix.
A discretization with K = 10 qubits was used which results in a
210×210 dimensional QUBO. To keep the problem size manage-
able, we also chose the positions of the absorbing potential wall
to be as close as possible rc = 8.5a0 to the barrier. The dynamic
range of the Hamiltonian matrix was also reduced by setting all
matrix elements with absolute value larger than Emax = 200cm−1

equal to Emax. This avoids wasting “precious” qubits in resolving
the large matrix elements associated with the repulsive regions of
the potential (we chose Emax large enough so not to significantly
affect the low-lying eigensolutions of interest).

The true 1D potential for O2 contains too many bound states
(even with the centrifugal component added), which causes the
QAE to do a lot of work before it can reach the first resonance
state above the threshold. The QAE performs spectrum trans-
formations using the previously computed low-energy states, as
was explained earlier (see Eq. (4)). This not only takes time, but
also introduces noise (from the qbsolv) to the transformed matri-
ces A′, which may in turn corrupt high-energy solutions. Since
the focus of the present work is to compute quasi-bound states,
we artificially lowered the well depth of our O2 model poten-
tial so that it supports only one or two bound states. For the
Hermitian model, the Morse parameters for O2 were chosen as
De = 200cm−1, b = 2.5836, and r0 = 2.28189a0 (we note that the b
and r0 values are the correct values for O2 and were unchanged,
only the De was reduced from its true value of 44,457.26cm−1).
The corresponding model potential curve V (r) is plotted in Fig-

ure 1 (the thick black curve). This choice of Morse parameters
together with j = 6 supports two bound bound states and one
quasi-bound state (a shape resonance trapped behind the broad
centrifugal barrier).

The results of using the Hermitian QAE are shown in Figure 1.
For comparison, we calculated all three states using a standard
numerical diagonalization library (LAPACK)19 plotted in solid
blue. The QAE results in classical mode are plotted in dashed red,
and the QAE results in hardware mode on the D-Wave annealer
are plotted in dashed black (thinner line). As one can see, there is
not much difference between the three methods. Thus, the Her-
mitian QAE is working well for the calculation of both bound and
resonance state energies and wave functions. The energies are
all collected in Table 1. The optimal normalization penalty, deter-
mined iteratively, for each of the three states is λbound1 = 90.625,
λbound2 = 31.25, and λres = −7.53326, respectively. The eigenvec-
tors computed using LAPACK and QAE were found to agree up
to an overall arbitrary phase. The QAE eigenvectors had a dif-
ferent phase on each run, which nicely demonstrates a property
of Hermitian matrix eigenvectors – the arbitrariness of the phase.
It seems that the qbsolv noise ultimately determines the phase,
rather than the less-influential hardware noise. In contrast, the
LAPACK eigenvectors had the same phase on each run.
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Fig. 1 Application of the Hermitian QAE to the calculation of bound and

resonance states. Two bound states and one resonance were calculated

in a model O2 potential for j = 6 (black curve). The model Hamiltonian

was diagonalized using LAPACK (blue), and the QAE in both classical

(dashed red) and hardware (D-Wave,dashed black) modes. The wave

functions of all three methods are close to each other. The di�erences

in state energies (horizontal dashed lines) are small (see Table I).

Table 1 The Hermitian bound and resonance state energies (cm−1)

computed using LAPACK, QAE in classical mode (QAE Cl.) and QAE

in hardware mode (QAE Hw.)

State LAPACK QAE Cl. QAE Hw.
Bound #1 -97.36 -96.44 -95.73
Bound #2 -32.00 -31.48 -30.73
Resonance 2.85 3.94 4.46

For the complex symmetric model, the imaginary absorbing
potential of Eq. (9) (with η = 0.005 and rc = 13.0a0) is used
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in Eq. (7). The wave function ψ(r) in Eq. (7) is expanded
using real valued particle-in-a-box basis functions: ψ j(r) =√

2/L∑
mmax
m=1 c j

m sin(mπ r/L) where L is the width of the box L =

r f −ri. The grid parameters used in the complex symmetric model
are ri = 1.5a0 and r f = 13.5a0. The size of the basis set was
mmax = 20 which gives a 20×20 dimensional complex symmet-
ric matrix. A discretization of K = 10 qubits was used which re-
sults in a 200×200 dimensional QUBO. For the complex symmet-
ric model, the Morse parameter De = 125cm−1 was chosen for O2

(the b and r0 are the same as in the Hermitian model). The cor-
responding potential curve V (r) is plotted in Figure 2 (the thick
black curve). The smaller De value together with j = 6 supports
one bound state and one quasi-bound (resonance) state. As was
done for the Hermitian case, the dynamic range of the Hamil-
tonian matrix was reduced by setting all matrix elements with
absolute value larger than Emax = 75cm−1 equal to Emax.

The QUBO optimization in the QAE with respect to λ in Eq. (6)
was repeated on a 9×9 grid for a total of 81 values of the two
new penalties γ and γ ′. Specifically, each penalty was discretized
on a grid of 9 values decreasing by a factor of two each time:
0.05, 0.025, 0.0125 0.00625, etc. In the present problem, only pos-
itive values of γ and γ ′ need be considered. The optimal values
for these penalties were determined by running QAE ten times at
each of the 81 values of γ and γ ′. The real part of the QAE en-
ergy eigenvalue was averaged over the ten runs at each point
and the point with the lowest average energy value was cho-
sen. This procedure is repeated for each of the eigensolutions.
The optimal γ and γ ′ for the bound and excited states were de-
termined to be (γbound = 7.8125× 10−3, γ ′bound = 1.5625× 10−2)
and (γres = 7.8125× 10−3, γ ′res = 0.25), respectively. The optimal
normalization penalty for each state, determined iteratively, is
λbound = 29.301453 and λres =−7.983398.

Figure 2 shows the QAE results for the complex symmetric ma-
trix. Again the matrix was diagonalized using three methods: a
traditional LAPACK diagonalization (blue) and the QAE in both
classical (dashed red) and hardware (dashed black) modes. As
with the Hermitian matrices, the differences in the energy and
wave function computed using the three methods are very small.
However, these new calculations treat the imaginary component
of the energy explicitly and therefore provide the lifetime of the
resonance. In contrast, the Hermitian approach gives only the
real part of the eigenvalue (i.e., the resonance energy but no res-
onance lifetime). The complex symmetric energies and lifetimes
are collected in Table 2.

Table 2 The complex symmetric bound and resonance state energies

(cm−1) computed using LAPACK, QAE in classical mode (QAE Cl.) and

QAE in hardware mode (QAE Hw.). The resonance lifetimes (ps) are

also listed

State LAPACK QAE Cl. QAE Hw.
Bound E -32.16 + i 0.003 -31.87 + i 0.003 -31.51 + i 0.003
Resonance E 6.76 - i 0.102 7.05 - i 0.108 7.75 - i 0.097
Resonance τ 26.0 24.5 27.3

There are a number of points about the QAE that are worth
discussing. As it was mentioned in the methodology section, we
cannot afford the second power of the normalization constraint
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Fig. 2 Application of the complex symmetric QAE to the calculation of

bound and resonance states. One bound and one resonance state were

calculated in a model O2 potential for j = 6 (black solid curve). The

same complex symmetric matrix was solved using LAPACK (blue) and

the QAE in both classical (dashed red) and hardware (D-Wave, dashed

black) modes. The wave functions of all three methods are close to each

other. The energies of both states computed using the three methods

are almost the same (horizontal dashed lines).

and, because of that, we had to change the form of the constraint
to linear. In a sense, this means that the correct value of the
norm, unity, is approached from a single side, from zero to one,
and nothing is preventing it from exceeding unity. With a full two-
sided (quadratic) constraint, the minimum of the QUBO F(v) will
be the minimum of the expectation value part (v,Av), for some
reasonable λ . For the one-sided constraint that we use, the two
minima diverge, the QUBO minimum diverge further and further
from the expectation value minimum as λ increases (the excessive
norm drives the solution away). In this case, we have to use the
expectation value and the solution type (trivial or non-trivial) to
guide the choice of λ and avoid following the QUBO minimum
as λ increases. However, λ is not known for the full (quadratic)
constraint either and therefore requires searching as well. Thus,
both forms of the normalization constraint (linear and quadratic)
are practicality the same, as both require λ -searching. However,
the one-sided constraint has an advantage of being linear (and
therefore quadratic in q) and thus programmable on the D-Wave
annealer.

Specifically for quantum scattering problems, the imaginary
part of the energy has to be negative, because the physical state
width is always a positive number. This means that we do not
need the qubit that is responsible for the sign of the imaginary
part of eigenvector element. Thus, we can probably save n qubits
for this particular class of problems and this may help to improve
the quality of solution.

The QAE energies and lifetimes reported in Tables 1 and 2 are
not exactly the same as those computed using LAPACK. We found
that the qbsolv software, that is used to divide large QUBO prob-
lems into smaller ones, is noisy and causes discrepancies in ener-
gies and lifetimes. More details and possible ways to improve the
accuracy can be found in the original QAE paper.17
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The addition of the Hermitian cross-terms (i.e., the coupling
between the real and imaginary components X(c)) as an addi-
tional constraint in the complex symmetric QAE might be im-
proved upon. The choice of this constraint was motivated by the
Hermitian expression but other forms for this constraint might
be derived and investigated which could lead to more accurate
solutions.

Finally, the method is limited by the number of fully-connected
qubits. It uses as many of those as are available (only 64 on the
D-Wave 2000Q) which are realized as chains of loosely-connected
physical qubits. The lack of full connectivity is compensated clas-
sically by the qbsolv interface which effectively boosts the number
of fully-connected qubits by two orders of magnitude. As a con-
sequence, for a typical level of discretization K = 10 used in the
present work for the real and imaginary parts, the largest com-
plex matrix that can probably be targeted is about 300×300, or a
diatomic molecule. This estimate is very approximate and should
be taken with caution. While the upcoming D-Wave Advantage
will have 5k qubits and better connectivity, it is hard to tell if res-
onances in a triatomic molecule could be computed reliably. The
classical part of the QAE (constructing the matrix and submitting
QUBOs) has negligible resource requirements.

4 Conclusions

In the present work, we generalized the Quantum Annealer
Eigensolver to the complex Hermitian and complex symmetric
matrices. The Hermitian case is fundamentally very similar to
the real case, since the imaginary terms in the underlying QUBO
expression completely cancel out. Thus, the problem is solvable
on D-Wave annealers as in the real case. In the complex sym-
metric case, the imaginary part does not vanish and is treated
as another real valued constraint in the QUBO. Since the bound
states have zero width (i.e., their eigenvalues are purely real) and
the quasi-bound (shape resonance) states also have small widths
that increase with increasing resonance energy, we constrain the
imaginary part of the QUBO to be of small magnitude. The com-
plex symmetric case also requires yet another constraint between
the real and imaginary components in order to maintain stability
and converge to a reasonable solution. The Hermitian QUBO pro-
vides motivation for a natural choice for this constraint but other
possibilities could exist.

Using the newly developed complex QAE extensions, a few ro-
vibrational states of molecular oxygen O2 were calculated in a
tuned 1D potential including a centrifugal component with j = 6.
The Hermitian QAE gives only real energies, whereas the complex
symmetric QAE gives complex eigenvalues which include both the
energy and width. All of the bound and resonance state proper-
ties, i.e. energies, lifetimes and wave functions, were reproduced
by the QAE quite well. The D-Wave 2000Q and qbsolv software
were used to solve the underlying QUBO problems. In principle,
the method can be easily extended to molecules with multiple
degrees of freedom by constructing a Hamiltonian matrix in a
direct-product or any other optimal basis set and using exactly
the same QAE methodology to solve the matrix on an annealer.17

This, however, would require very substantial quantum resources.
This first-ever treatment of scattering resonances on a quantum

annealer opens the door to the calculation of rate coefficients of
chemical reactions that proceed through formation of long-lived
intermediate species, described in quantum mechanics by scatter-
ing resonances, and the modeling of chemical dynamics on quan-
tum annealers. We hope that this work will help stimulate addi-
tional studies in this fascinating new computational paradigm.

5 Appendix

This appendix gives detailed QUBO expressions for the real, Her-
mitian and complex symmetric input matrices.

5.1 Real matrix QUBO

We approximate each vector element vα with a finite number of
qubits qα

k (1≤ k ≤ K) using a fixed-point representation:

vα =
K−1

∑
k=1

2k−Kqα
k −qα

K ∈ [−1;1) (10)

As a result, the F(v) function is approximated by

FQ(q) =
n,n

∑
α,β

vα (Aα,β +λδα,β )vβ =
n,K;n,K

∑
α,k;β ,l

Qα,k;β ,lq
α
k qβ

l , (11)

where the QUBO matrix element is defined as

Qα,k;β ,l = (Aα,β +λδα,β )×2k+l−2K(−1)δk,K+δl,K (12)

Thus, in order to obtain a QUBO element, an element of the in-
put matrix A, with λ added to the diagonal, has to be multiplied
by the appropriate power of two with the correct sign. Most of
QUBO elements are positive, except those that have either k or l
equal to K (but not both simultaneously). The expression for Q
in Eq. (12) is symmetric with respect to the exchange α,k⇔ β , l
pairs of indices which is a property of any QUBO problem.

5.2 Complex QUBO elements

Since the eigenvectors of a complex matrix A are complex, we
have to introduce separate real cRe

α and imaginary cIm
α parts of

an eigenvector element cα . The λ -normalization constraint does
not change, so we can introduce a complex matrix Z = A+λ I for
convenience. The objective function that we want to minimize
becomes

F(c) =
n,n

∑
α,β

c̄α Zα,β cβ , (13)

where a bar above cα is complex conjugation. A single term of
the sum is a complex number

c̄α Zαβ cβ = (ZRe
αβ

+ iZIm
αβ

)cRe
α cRe

β

+(iZRe
αβ
−ZIm

αβ
)cRe

α cIm
β

+(ZIm
αβ
− iZRe

αβ
)cIm

α cRe
β

+(ZRe
αβ

+ iZIm
αβ

)cIm
α cIm

β

(14)

Next, we will see what happens to the sum of the (α,β ) and (β ,α)

terms, when the matrix A is Hermitian or complex symmetric.
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5.2.1 Hermitian matrix QUBO

Because Zαβ = Z̄βα for the Hermitian matrix A, the sum of two
opposite (α,β ) and (β ,α) terms of the objective function F(c) is
a real number

c̄α Zαβ cβ + c̄β Zβα cα = 2ZRe
αβ

cRe
α cRe

β

−2ZIm
αβ

cRe
α cIm

β

+2ZIm
αβ

cIm
α cRe

β

+2ZRe
αβ

cIm
α cIm

β

= 2Re(c̄α Zαβ cβ )

(15)

Thus, for a Hermitian matrix the eigenvectors are complex but
the QUBO expression is purely real, due to the cancellation of the
imaginary part in the sum over the (α,β ) and (β ,α) terms. This
is consistent with the property that eigenvalues of a Hermitian
matrix are real.

Although the sum has reduced to the simple form of Re((α,β )),
all four terms in Eq. (15) have to be added to the QUBO,
with both cRe

α and cIm
α discretized as in the real symmetric case

(Eqs. (10),(11) and (12)). We note that by using the four terms
in Eq. (15), the sums over α and β in constructing the functional
F(c) in Eq. (13) are now restricted to α = 1,2, . . .n with β ≥ α.

5.2.2 Complex symmetric matrix QUBO

For the complex symmetric case, Zαβ = Zβα . In contrast to the
Hermitian case, the sum of (α,β ) and (β ,α) terms in the QUBO
is a complex number

c̄α Zαβ cβ + c̄β Zβα cα = Zαβ (c̄α cβ + c̄β cα )

= 2Zαβ (c
Re
α cRe

β
+ cIm

α cIm
β
)

= 2ZRe
αβ

cRe
α cRe

β

+2ZIm
αβ

cRe
α cRe

β
× i

+2ZIm
αβ

cIm
α cIm

β
× i

+2ZRe
αβ

cIm
α cIm

β

(16)

The first and fourth terms in Eq.(16) are identical to those in
Eq.(15), but the second and third terms are different and now
imaginary. Thus, in the complex symmetric case the sum of (α,β )

and (β ,α) does not reduce to a real number. This presents a
problem, since the QUBO function has to be real. To overcome
this, we treat the imaginary terms as real and include them in the
functional as a second constraint (−2EIm) which must be mini-
mized along with the expectation value and normalization con-
straint (see Eq. 6 in the main text)

−2EIm
αβ

= 2ZIm
αβ

cRe
α cRe

β
+2ZIm

αβ
cIm

α cIm
β

(17)

We also note that there is no coupling (cross terms) between
the real cRe and imaginary cIm in Eq. (16) in contrast to Eq. (15),

which leads to stability issues. To overcome this problem, a third
constraint X(c) (see Eq. (6)) is added to the QUBO. The pairwise
terms of X(c) are the cross terms from Eq. (15)

−Xαβ (c) =−2ZIm
αβ

cRe
α cIm

β
+2ZIm

αβ
cIm

α cRe
β

(18)

The role of the X(c) constraint becomes clear, once one recognizes
the cross product between the cα and cβ , represented as vectors
on the complex plane (with x = Re and y = Im)

−Xαβ (c) =−2ZIm
αβ
|cα ||cβ |sin(θαβ ), (19)

where |cα | and |cβ | are vector magnitudes and θαβ is the rela-
tive angle between the vectors. Thus, the X(c) constraint is a
weighted sum of pairwise terms, which encourages the optimiza-
tion to explore regions away from sin(θαβ ) = 0 (i.e. to explore
the full 2π range in θαβ ) similar to the normalization constraint
which encourages solutions with non-zero norm. Without this
“angular repulsion” between the vector elements, the optimiza-
tion collapses to θαβ = 0 and does not explore the full 2π range
of possibilities. It therefore never converges to a solution and/or
becomes unstable. The normalization constraint separately en-
courages non-zero |cα | and |cβ |. Again, all the sums over α and
β are restricted to α = 1,2, . . .n with β ≥ α.

5.3 D-Wave setup

The D-Wave 2000Q was accessed using the D-Wave’s Ocean tools.
Since in an actual quantum annealer some qubits and couplers
are not active (unrepresented), we have been using the Virtual
Full-Yield Chimera (VFYC) version of a hardware QUBO solver,
which postprocess a QUBO solution to fix unrepresented qubits
and couplers. This allows for the development of a “portable”
code. The embedding (mapping QUBO variables to qubits) was
done automatically based on Ocean’s heuristic algorithms, and
the default annealing schedule was employed.
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The Quantum Annealer Eigensolver (QAE) is applied to the calculation of quantum scattering 
resonances and their lifetimes on a D-Wave quantum annealer.

Page 10 of 11Physical Chemistry Chemical Physics



Page 11 of 11 Physical Chemistry Chemical Physics


