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Halide Anion Discrimination by a Tripodal Hydroxylamine Ligand 
in Gas and Condensed Phases 
Thibault Cheisson,†,a Jiwen Jian,†,b,d Jing Su,†,c Teresa M. Eaton,b,e Michael R. Gau,a Patrick J. 
Carroll,a Enrique R. Batista,*,c Ping Yang,*,c John K. Gibson,*,b and Eric J. Schelter*,a

Electrospray ionization of solutions containing a tripodal hydroxylamine ligand, H3TriNOx ([((2-tBuNOH)C6H4CH2)3N]) 
denoted as L, and a hydrogen halide HX: HCl, HBr and/or HI, yielded gas-phase anion complexes [L(X)]− and [L(HX2)]−. 
Collision induced dissociation (CID) of mixed-halide complexes, [L(HXaXb)]−, indicated highest affinity for I− and lowest for 
Cl−. Structures and energetics computed by density functional theory are in accord with the CID results, and indicate that 
the gas-phase binding preference is a manifestation of differing stabilities of the HX molecules. A high halide affinity of 
[L(H)]+ in solution was also demonstrated, though with a highest preference for Cl− and lowest for I−, the opposite 
observation of, but not in conflict with, what is observed in gas phase. The results suggest a connection between gas- and 
condensed-phase chemistry and computational approaches, and shed light on the aggregation and anion recognition 
properties of hydroxylamine receptors.

Introduction
Halide anions are prevalent in essentially all aspects of 
chemistry, with their use, transport, speciation, and reactivity 
being critical to processes ranging from those in living 
organisms1 to nuclear technologies. In the latter case, uranium 
is enriched through its volatile hexafluoride salt,2 plutonium 
legacy-waste contains high chloride concentrations,3-4 while 
iodine-129 is an abundant long-lived (half-life = 1.57  107 y) 
fission product generated in nuclear reactors.5 As a 
consequence, halides represent a substantial fraction of low-, 
intermediate-, and high-level wastes.6-7 Vitrification has been 
proposed for long-term immobilization and sequestration of 
radionuclides.8-10 However, incorporation of a large 
concentration of halide anions is detrimental to the quality 
and sustainability of the formed glass such that these anions 
must be separated prior to vitrification.6-7, 11-12 Typical 
methodologies encompass precipitation, reduction to the 
volatile elemental gas, or anion exchange.6 On the other hand, 

halide binding and recognition have been long-standing13-15 
subjects of interest in supramolecular chemistry.16-23 Although 
other strategies have been proposed,22, 24 the hydrogen bond 
motif has been ubiquitous in these systems. In that context, 
functional groups such as (thio)urea, amide, pyrrole, or 
imidazole have attracted considerable attention due to their 
donor/acceptor properties and geometrical features.15, 22-23

Given our interest in hydroxylamine ligands (R1R2NOH),25-31 
and recognizing their potential for anion binding by means of 
vicinal H-bond acceptors associated with mildly acidic protons, 
we initiated studies on the propensity of a tripodal receptor 
(H3TriNOx) for anion capture (Scheme 1). As hydroxylamine 
moieties have not been examined in this context previously, it 
was of interest to interrogate their interactions with halides 
under a range of conditions, including condensed and gas 
phases, to determine fundamental thermodynamic trends.
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Scheme 1. Structure and characteristics of H3TriNOx (L) and the halide anions 
considered in this work. Ionic radii according to Shannon;32 electronegativities (𝜒
) according to Rahm.33

Gas-phase ion chemistry is a versatile technique for 
obtaining fundamental insights for relatively simple systems 
absent perturbations encountered in condensed phases.34-36 A 
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particularly functional approach is solution electrospray 
ionization mass spectrometry (ESI-MS) which, coupled to a 
quadrupole ion trap mass analyser (QIT/MS), can be used to 
study ion fragmentation.37 Various types of gas-phase 
complexes and clusters with generic anion-binding interactions 
of the type [E−Hδ+…X−] (E = N, C, O; X = F, Cl, Br, I) have 
previously been studied.38-45

In the present work, condensed phase experiments 
revealed the intrinsic halide (X−) affinity of protonated 
H3TriNOx, [L(H)]+, to efficiently yield crystalline compounds 
with the formulae L(HX). Experimental and density functional 
theory (DFT) studies of gas-phase anionic [L(X)]– and [L(HX2)]− 
complexes were performed to elucidate the underlying basis 
for anion recognition by L. Altogether the combined gas and 
condensed phase studies of L(HX) complexes reveal 
hydroxylamine as an interesting motif for selective anion 
binding.

Results and Discussion
ESI Mass Spectrometry.

During an ESI-MS study of binding affinity of L for actinides and 
rare-earth elements,46 our attention was drawn by abundant 
anion complexes with compositions [L(HX2)]−. Although ESI-MS 
does not necessarily explicitly reveal solution species, the gas-
phase species may indirectly reflect solution affinities. The 
observed [L(HX2)]− ions were independently and rationally 
formed from solutions of L and acids HX(aq) with X = Cl, Br, I. 
Formation of these di-halide adducts motivated the 
preparation of gas-phase species such as [L(HXaXb)]− with two 
halides, Xa and Xb. Indeed, collision induced dissociation (CID) 
of such mixed halide complexes can reveal preferred 
elimination pathways, that in turn reflect structures and 
energetics that can be directly assessed by computations. The 
utility of ESI-MS and CID for assessing structures and bonding 
of halide complexes has been described.47-48 

For Xa= Cl and Xb = Br (Figure 1a), the dominant observed 
gas-phase complexes from ESI were [L(Cl)]−, [L(Br)]−, 
[L(HClBr)]−, [L(HCl2)]−, and [L(HBr2)]−. This nomenclature is not 
intended to suggest structural or bonding insights, but rather 
only net compositions. The most abundant complexes in 
Figure 1a, [L(HClBr)]− and [L(HBr2)]−, contain one or two Br, 
possibly suggesting a higher affinity of L for Br− versus Cl−. The 
gas-phase species [L(HBr2)]− may also be present in solution, 
either as a monomer, or in oligomers that fragment during ESI. 
This possibility was assessed by the condensed phase 
experiments discussed below. Although small abundances of 
[L(Cl)]− and [L(Br)]− were apparent, ESI resulted in preferential 
formation of the complexes with two halide anions. 

Figure 1. Negative-ion mode ESI mass spectra of solutions of L and equal 
concentrations in ethanol of two halide acids, HXa and HXb: (a) HCl and HBr; (b) 
HCl and HI; (c) HBr and HI. The L:HXa:HXb ratios are all 1:5:5. The ligand 
fragmentation patterns are indicated in the structural inset.

The ESI results for solutions containing I− and either Cl− or Br− 
(Figure 1b–c), suggest a higher affinity of L for I− as compared 
with both Cl− and Br−, at least under these particular ion 
production conditions (vide infra). It should also be 
emphasized that ESI yields do not necessarily reveal solution 
affinity. For example, ESI may be more sensitive to larger 
halides such as iodide due to its less effective solvation. It is 
nonetheless notable that the overwhelmingly dominant ESI 
products contain only iodide — i.e. [L(HI2)]− and [(L−177)(HI2)]− 

— with only minor yields of [L(HClI)]− and [L(HBrI)]−. A 
distinctive result is the appearance of substantial 
[(L−177)(HI2)]−, where (L−177) indicates an H3TriNOx that has 
lost a fragment having a mass of 177 Da. This same 
fragmentation is observed in CID of protonated [L(H)]+ (Figure 
S1) and corresponds to C–N bond cleavage and elimination of 
one of the three H3TriNOx “arms” with concomitant back-
transfer of an H atom, as indicated by the purple line in Figure 
1. Although the origins of the characteristic L−177 species are 
unknown, it suggests a distinctive interaction of I− with L. It is 
re-emphasized that such gas-phase species do not necessarily 
reflect solution speciation.
The ESI results demonstrate the formation of gas-phase 
[L(HXaXb)]− anions and suggest the preferential association of 
heavier halides. In order to interrogate this trend we turned to 
CID experiments on these ions.

Collision Induced Dissociation.

CID performed on the [L(HXaXb)]− anions are presented in 
Figure 2 and show exclusively one CID fragmentation pathway 
for each of the studied complexes, as given by reactions (1a)–
(3a):

[L(HClBr)]−  [L(Br)]− + HCl (1a)
[L(HClI)]−  [L(I)]− + HCl (2a)
[L(HBrI)]−  [L(I)]− + HBr (3a)
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Figure 2. CID mass spectra of [L(HXaXb)]− anions (X = Cl−, Br−, I−). (a) [L(HClBr)]− / 
CID amplitude = 0.30 V; (b) [L(HClI)]− / CID = 0.30 V; (c) [L(HBrI)]− / CID = 0.35 V.

Alternative CID pathways, namely reactions (1b)–(3b), 
described as the loss of HBr(g) as an alternative to reaction (1a) 
and loss of HI(g) as an alternative to reactions (2a) and (3a), 
were not observed.
Lighter CID anion products such as bare Cl−, Br−, and I− would 
not have been detected due to m/z detection limits. In Figures 
2a and 2b, the m/z of unobserved [L(35Cl)]− is indicated in red. 
Endothermic CID process is governed by two attributes:  (i) 
lower-energy processes are generally favored; and (ii) kinetic 
barriers may instead favor higher-energy processes. 
Elimination of neutral HXa from [L(HXaXb)]− presumably 
proceeds by low-barrier association of H+ with Xa

− to produce 
[L(Xb)]−. This hypothesis is supported by computational results 
which indicate that observed CID pathways are energetically 
favored and the kinetic barrier is not a determining factor. 
In addition to relative stabilities of the parent and CID-
generated anion complexes, the overall energetics of the 
observed CID processes, generic reaction (4), incorporate the 
formation energy of produced neutral HXb, which is assessed 
from reaction (5):
[L(HXaXb)]−    [L(Xb)]− + HXa (4)
H + Xa    HXa (5)

The energy (kcal mol−1) for reaction (5) is −103 for HCl, −87 
for HBr, and −71 for HI.49-50 Neutral HX formation energies 
from atomic H and X thus favor CID fragmentation to yield HCl 
over HBr over HI, in 16 kcal mol−1 increments. Comparatively, 
formation energies of HX from molecular H2 and X2 are −22.0, 
−12.4 and −1.2 kcal mol−1 for HCl, HBr and HI, respectively; the 
same stability trend is obtained though with smaller 
incremental energy differences. Although the CID results given 
by reactions (1a), (2a), and (3a) would appear to suggest a 
higher affinity of L for I− over Br− over Cl−, the observed 
pathways could be partially, or perhaps mostly, a 
manifestation of the higher stability of gas-phase HCl over HBr 
over HI. An alternative conceptualization of reaction (4) is from 
the perspective of Cooks’ kinetic method,51 whereby halide Xa

− 
or Xb

− with the higher proton affinity (PA) preferentially retains 
the proton. Because the order of PAs is Cl− (333 kcal mol−1) > 
Br− (323) > I− (314),49 this alternative assessment presents the 

same conclusion as reaction (5), though the incremental 
difference in PAs is ca. 10 rather than 16 kcal mol−1. As 
discussed below, the observed fragmentation pathways may 
also be partly a manifestation of structures that favor a 
particular proton-halide recombination.   
In view of the neutral HX energetics, the CID results do not 
necessarily reveal an intrinsically higher gas-phase affinity of 
H3TriNOx for I− over Br− over Cl−. The computational results 
below for reactions (1)–(3) yield an assessment of the 
energetics, as well as possible influence of anion complex 
structures on favored fragmentation pathways.

Computations: Structures Optimization.

To gain insights into the apparently higher affinity of L for 
heavier halides, we turned to DFT (B3LYP-D3BJ/6-311G**) 
calculations. Different possible conformers of [L(HX2)]−, the 
mixed halide complexes [L(HXaXb)]−, and [L(X)]−  (X = Cl, Br, I) 
were sampled and optimized (Tables S1–S3).  
The lowest energy conformer for all three [L(HX2)]− complexes 
(isomers 1X in Figure 3A and Table S1) presents a “Janus head” 
conformation. Namely, a halide atom is coordinated by the 
protonated ammonium and a hydroxylamine moiety on one 
side of the receptor, while the second halide is coordinated by 
two hydroxylamine groups on the opposite side of the ligand.

Figure 3. DFT-optimized conformers of [L(HCl2)]: “Janus head” form (A) and 
“Tripodal” form (B). Most significant H-bonding interactions (d < 3 Å) are 
displayed as pink dotted lines; other hydrogen atoms were omitted for clarity.

A second set of conformers (isomers 2X in Figure 3B and 
Table S1), higher in energy (+5.4 to 5.6 kcal mol−1), shows a C3- 
symmetric “tripodal” conformation where the three 
hydroxylamine moieties interact with a first halide. On the 
other side, the second halide is stabilized by weak but 
abundant CH---X interactions. Such short contacts have been 
observed, experimentally and computationally, to contribute 
significantly or exclusively to halide binding and recognition.23, 

52-56 Notably the lower energy conformers 1X and 2X for gas-
phase DFT-optimized [L(HX2)]− units were reminiscent to the 
geometries revealed by solid-state crystallography as 
discussed below. 
For the mixed halide compounds [L(HXaXb)]−, the “Janus head” 
conformers are also energetically favored over the “tripodal” 
forms (Table S3). In this case, the site selectivity can be 
interrogated by DFT, the results are depicted in Table S3 and in 
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Figure 4 for the specific case of [L(HClBr)]−. In the most stable 
isomers (1a), the heavier halide anions (Xb) are observed to 
interact with the ammonium and one hydroxylamine arm, 
while the lighter halide (Xa) forms H-bonds with the remaining 
two hydroxylamine groups in the other side of the receptor. 
However, swapping the two halides in 1a to yield isomer 1b 
requires only +0.6–1.3 kcal mol−1, with the lowest swapping 
energy for Cl−/Br− and the highest for Cl−/I− (Table S2). 

Figure 4. Calculated DFT profiles for the CID process (1), DFT-optimized of the 
different structures are depicted, the most significant H-bonding interactions are 
displayed as pink dotted lines. * Interconversion barriers and pathways were not 
computed.

In order to assess the stability of the products [L(X)]− in 
reactions (1)–(3), different [L(X)]− were also optimized (Figure 
4 and Table S3). Again, isomers 11X possessing tripodal 
geometries are located higher in energy (0.5 to 5.0 kcal mol−1) 
than isomers 10X presenting the Janus head conformation. As 
depicted in Figure 4, the conformers 10X are binding the 
remaining halide with 2 hydroxylamine arms and some CH---X 
contacts, while the third NOH group interacts with the, now 
neutral, bridgehead nitrogen atom. Notably, the lowest energy 
conformer for [L(I)]− is 13I, found slightly below 10I (1.4 
kcal mol−1). In this conformer, L adopts a tripodal conformation 
with an internal, intramolecular, H-bonding network—typical 
of the free ligand25—while the iodide anion is stabilized by 
multiple CH---I interactions with the benzylic protons (Table 
S3). The increasing relative stability of 13X versus 10X for [L(X)]− 
isomers from X = Cl to Br to I  seems correlated with the 
decreasing X---H(O/C) interactions as observed in the 
literature.57-58 
With these sets of optimized conformers in hand, the different 
CID pathways can now be modelled as discussed below.

Computed CID Energetics.

According to the generic reaction (4), dissociations and 
reverse associations ([L(Xa)]− + HXb  [L(HXaXb)]−) were 
evaluated for Xa = Xb and Xa ≠ Xb. All the association reactions 
are exothermic, by −34.6 to −45.2 kcal mol−1 (Table S4) in 
accord with the low yields of [L(X)]− anions over [L(HX2)]− 
observed by ESI (Figure 1). For a given [L(Xa)]−, preferential 
affinity for heavier halides was consistently observed. For 

example in the reaction [L(I)]− + HXb  [L(HIXb)]−, the binding 
energy of [L(I)]− to HXb increases from 34.6 to 37.9 to 40.6 
kcal mol−1 as Xb becomes heavier from Cl to Br to I. The 
increase in binding energy from Cl to Br to I seems to be in 
accord with the dominance of the heavier halide complexes 
from ESI (Figure 1), but inference of solution speciation from 
these spectra must be qualified, as discussed below. 
The reverse of the above complexation reactions for Xa  Xb 
corresponds to CID fragmentation of the mixed halides 
[L(HXaXb)]−. The calculated fragmentation reaction energies in 
Table 1 and S5 show that for a given [L(HXaXb)]−, loss of the 
lighter HXa requires less energy by 4.410.6 kcal mol−1. This is 
illustrated in Figure 4 for the specific case of L(HClBr)]− where 
loss of HCl(g) (reaction 1a) over HBr(g) (reaction 1b) is favored 
by 4.4 kcal mol−1 in accord with the CID results in Figure 2. 
Besides reproducing accurately the energetics for the net 
equations (1a), (2a), and (3a); these results also indicate that 
kinetic barriers do not play a significant role in controlling the 
final products. From the structures of isomers 1a and 1b of 
[L(HClBr)]− (Figure 4), it is evident that loss of HBr, which is 
computed at higher energy than loss of HCl, can only readily 
proceed from the lowest energy conformer 1a via direct 
recombination of the ammonium proton and the proximate 
bromide anion. The lower-energy elimination of HCl is not as 
directly accessible from this structure. In summary, the 
calculation results indicate that for [L(HXaXb)]− loss of HXa is 
favored thermodynamically but not kinetically for Xa lighter 
than Xb.

Table 1. Dissociation energies for [L(HXaXb)]− (kcal mol−1). Bolded values represent the 
lowest energy pathway.

Halides DFT[a] “Intrinsic” [b]

[L(HXaXb)]− 
[L(Xa)]−  + 

HXb

[L(Xb)]−  + 
HXa

[L(Xa)]−  + 
H + Xb

[L(Xb)]−  + H + 
Xa

Xa = Cl, Xb = Br 41.5 37.1 118 130
Xa = Cl, Xb = I 45.2 34.6 104 129
Xa = Br, Xb = I 44.0 37.9 103 115

[a] DFT-calculated energies for the CID pathways. [b] Hypothetical dissociation 
equation using tabulated energies for HX.49-50

Nature of the Experimental CID.

As indicated, the computed fragmentation energies (Figure 4 
and Table 1) demonstrate that fragmentation of [L(HXaXb)]− to 
[L(Xb)]− and HXa, where Xa is the lighter halide, is favored by 
4.4–10.6 kcal mol−1. Notably, these energy differences are 
significantly less than the 16–32 kcal mol−1 differences for 
reaction (5) that favor formation of the lighter HXa from the 
association of H and Xa, as discussed above.49-50 Accordingly, 
the differences in energetics for the dissociation reactions in 
Table 1 do not appear to reflect an inherently greater stability 
of [L(Xa)]− versus [L(Xb)]−, as for example [L(I)]− versus [L(Cl)]−. 
Instead, the computed energetics evidently reflects the trend 
in increasing stability of the produced HX:  HI < HBr < HCl. If 
adjustment is made for the relative H + Xa association energies, 
reaction (5), the derived fragmentation energies in Table 1 for 
reaction (6) actually suggest that the intrinsic stabilities 
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increase in the order [L(I)]− < [L(Br)]− < [L(Cl)]−, which is the 
opposite of what might be casually inferred from the CID 
results in Figure 2. 

[L(HXaXb)]−  [LXb]−  + H + Xa (6)
The CID results appear to be a manifestation of the higher 
stabilities of the produced HXa rather than the intrinsic 
stabilities of the [LXb]−.

Synthesis and Structural Characterization.

In order to provide a condensed-phase basis for comparison 
with the gas-phase results presented above, we targeted the 
synthesis of the series of L(HX) (X = F, Cl, Br, and I) compounds.  
Addition of an excess of the HX(aq) acid to an ethanol solution 
of L followed by precipitation in water afforded the salts L(HX) 
in moderate to good yields (Scheme 2). 

Scheme 2. Synthesis of L(HX) (X = F, Cl, Br, I)..

The isolated salts L(HX) revealed identical ESI products as the 
results presented in Figure 1 (Figures S6–S7). Compounds 
L(HX) were characterized by 1H and 13C{1H} NMR, infrared (IR) 
spectroscopy, solution electrochemistry, and elemental 
analysis, confirming protonation of L to yield the different 
ammonium salts. Going from L(HCl) to L(HI), electrochemical 
measurement revealed a shift to lower potential for the 
oxidation of the hydroxylamine moieties to their nitroxide 
(Figure S26). IR spectra of L(HX) revealed a gradual shift to 
lower frequencies for the NOH stretches going from X = I to F 
(Figure S27). This trend and the overall spectra were well-
reproduced in the predicted IR spectra of DFT-optimized 
isomers 1X of [L(HX2)]− (Figure S28). This suggests large 
structural similarities between the lowest-energy calculated 
conformers of [L(HX2)]− and solid-state L(HX) as confirmed by 

solid-state crystallography (vide infra). 1H NMR studies in 
CD2Cl2 demonstrated C3v symmetric species on the NMR 
timescale at 300 K. Variable temperature NMR studies 
revealed broadening of most resonances caused by the 
crystallization of the salts at lower temperature (Figure S29). 
Particularly interesting was comparison of the 1H NMR spectra 
of L(HX), which demonstrates a gradual increase in the 
shielding of the hydroxylamine protons from L(HF) to L(HI), in 
agreement with the decreasing electronegativity of the 
respective halides from F− to I− (Figure S30).59 Taken together, 
the spectroscopic data were in accord with the protonation of 
L at the bridgehead nitrogen atom and association of the 
halide anions through H-bond interactions with the 
hydroxylamine moieties. The chloride, bromide, and iodide 
salts were recrystallized in ethanol and provided suitable 
crystals for X-ray diffraction (XRD) studies. L(HCl)EtOH and 
L(HBr)EtOH were isostructural and crystallized as a 1D-H-
bonded coordination polymer (Figure 4A for L(HCl)EtOH and 
S37 for L(HBr)EtOH). In these structures, the [L(H)]+ cations 
lack any C3 symmetry and present a “Janus head” 
conformation noted in the gas-phase DFT-optimized 
structures: on one side of [L(H)]+, a hydroxylamine group and 
the ammonium proton interact with a halide anion; on the 
other side, an ethanol molecule and the remaining two 
hydroxylamine moieties are involved in a H-bonding network 
with the anion. The repetition of this motif generates the 
observed supramolecular polymer (Figure 4A). The solid-state 
structure of L(HI)½EtOH was slightly different and consisted of 
two independent [L(H)]+ units. The first one presents a similar 
“Janus head” arrangement as observed in L(HCl)EtOH and 
L(HBr)EtOH, while the second [L(H)]+ acts as a discrete anion 
receptor with the “tripodal” configuration (Figure 4B). In this 
case, the supramolecular chain was permitted by multiple CH--
-I(1) interactions from the benzylic protons of [L(H)]+ (H(1b’), 
H(12b’), H(23b’) on Figure 4B). Importantly, this motif of 
interaction was only noticed for L(HI) and is reminiscent to the 
geometry of the most stable isomer of [L(I)]− (13I) obtained 
during the gas-phase DFT optimizations. 
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Figure 4. Solid-state structures of different salts; heteroatoms are depicted by their thermal ellipsoids, relevant hydrogen atoms are depicted in black, ethanol molecules in light 
pink. A) H-bonded polymer of L(HCl)EtOH along the a axis. B) Asymmetric unit of L(HI)½EtOH. C) Asymmetric unit of L(HBr)2(CHCl3).

In the previous solid-state structures, an ethanol molecule was 
present and directly participated in the H-bond network, 
raising the question if its presence influences the crystal 
packing of L(HX). Compounds L(HCl) and L(HBr), recrystallized 
from benzene resulted in displacement of the ethanol 
molecule while preserving the 1D-H-bonded polymer, 
revealing that ethanol was not requisite for the observed 
crystal arrangement (Figure 5 and S38). 

Figure 5. Solid-state structure of polymeric L(HBr) along the b axis as determined 
by X-ray crystallography. The proposed structures associated with the main ESI 
species (positive and negative mode) are depicted in red.

Despite multiple attempts, crystals of L(HF) suitable for XRD 
characterization were not obtained. In total, L(HX) are easily 
synthesized and form, in the solid-state, H-bonded polymers 

that reveal geometries closely related to the DFT-optimized 
structures.

Solution Speciation.

Although adducts L(HX) were characterized by NMR 
spectroscopy and crystallized as supramolecular polymers, we 
were interested in studying more in depth their solution-state 
speciation to relate with the ESI results. The existence of a 
soluble, extended polymeric structure is unlikely. When in 
solution, compounds L(HX) are expected to be present as 
monomer or small oligomer prior to their crystallization as an 
extended structure. Chlorinated solvents such as chloroform 
and dichloromethane were observed to efficiently solubilize 
(for extended periods of time) L(HCl), L(HBr), and L(HI). 1H 
DOSY NMR studies performed on CD2Cl2 solutions of L and 
L(HBr) revealed similar diffusion coefficients suggesting similar 
hydrodynamic radii in solution. More importantly, cooling a 
solution of L(HBr) in CHCl3 to −20 °C for a week resulted in the 
formation of single crystals suitable for X-ray diffraction 
studies (Figure 4C). The corresponding solid-state structure 
demonstrated a nearly C3-symmetric [L(H)]+ receptor binding 
to the bromide anion through the hydroxylamine moieties. 
Two chloroform molecules now supplement the coordination 
sphere of the bromide anion. From these observations, we 
propose that chloroform or dichloromethane solutions of 
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L(HX) consist of monomeric [L(HX)]·n(solv) (n ~ 2–3) with 
[L(H)]+ in the “tripodal” form. 

Halide Binding in Solution.

Having a clearer picture of the speciation of L(HX) in solution, 
we were interested in assessing the ability to bind a 
supplementary halide as suggested by the solid-state 
polymeric structures and the gas-phase experiments. Addition 
of [NnBu4]X to a solution of the respective L(HX) salts (X = Cl, 
Br, I; L(HF) was not sufficiently soluble) resulted in important 
modifications in the resulting 1H NMR spectra. In particular, 
NOH moieties and one aromatic proton experienced large 
deshielding (Figures S31–S36). Job’s plots were in accord with 
a 1:1 binding model but the limited applicability of this method 
prompted us to evaluate alternative models.60 The binding 
isotherms resulting from 1H NMR titrations at 298 K were 
fitted to several stoichiometries, but were consistently in best 
agreement with a 1:1 model.61 This was attributed to the 
formation of di-halide adducts [L(HX2)]NnBu4 (Scheme 3). The 
binding constants KX increased from 245 M−1 for I− to 872 M−1 
for Cl (Scheme 3) as observed in related systems.55 Besides 
repeated attempts, single crystals of [L(HX2)]NnBu4 could not 
be grown but it is proposed that these species adopt a “Janus 
head” conformation and to resemble isomers 1X of [L(HX2)]− 
obtained by DFT methods (Table S1). 

N

N
O

tBu
H

H X

N
O

tBu
H

N
O
H

tBu

X

H H H

N N
O

N
O

N
O

tBu

tBu

tBu

H

H
H

H

X

+ NnBu4X

– NnBu4X

NnBu4

[L(HX2)NnBu4]
KX =

[L(HX)][NnBu4X]

KCl = 872 M-1

KBr = 479 M-1

KI = 245 M-1

N N
O

N
O

N
O

tBu

tBu

tBu
H

H
H

X
NnBu4

N N
O

N
O

N
O

tBu

tBu

tBu
H

H
H

+ NnBu4X

Scheme 3. Halide binding equilibria for L(HX), and free L.

To further confirm the stoichiometry of the binding model, we 
performed 1H DOSY NMR studies which demonstrated a 
similar diffusion coefficient for L(HBr) and [L(HBr2)]NnBu4, this 
suggests that, at the NMR timescale, no larger oligomer is 
formed, which allows us to further rule out a potential 2:1 
binding model. Interestingly, titration experiments between L 
and [NnBu4]X did not reveal any noticeable binding (Scheme 3).
Although there is about a 4-fold difference between KCl and KI 
(which is small compared to other systems),16, 62 this only 
corresponds to an energy difference, ΔΔG = RTln[KCl/KI], of 
~0.8 kcal mol−1, which is small relative to differences in gas-
phase energetics discussed above. These binding equilibria 
were also evaluated by DFT methods that are generally 
consistent with the experimental trend (Table S8). The affinity 
of neutral L for halide anions was also assessed by DFT 
calculations, demonstrating a similar trend as that of L(HX) but 
with much weaker association energies (Table S10). Overall, 

the titration results clearly demonstrate that L(HX) has a 
strong affinity for binding a second halide, as was also 
determined by the gas-phase experimental and theoretical 
results. This affinity contrasts with that of neutral L, suggesting 
that protonation pre-organizes a secondary anion receptor.

Gas Phase Oligomerization.

Referring to the structure of polymeric L(HBr) shown in Figure 
5, it is evident that the dominant gas-phase species obtained 
during ESI, [L(HBr2)]− and [L(H)]+, directly corresponds to the 
indicated units in the 1D-H-bonded polymer. This 
correspondence between gas and solution prompted us to 
revisit the ESI mass spectra in search of larger oligomeric 
species. Indeed, substantial abundance of the dimeric species 
[(L)2(H2X)]+ and [(L)2(H2X3)]− were observed (Figures S6 and S7), 
which can be represented as [(LH)(Br)(LH)]+ and 
[(X)(LH)(X)(LH)(X)]− in direct correspondence to the solid-state 
structure in Figure 5. Although these oligomers were produced 
by ESI, there is no direct evidence that it is present in the 
precursor solution, as discussed above. CID of [(L)2(H2Br3)]− 
(Figure S9) resulted in elimination of neutral L(HBr) to yield 
[L(HBr2)]−. These gas-phase CID results are fully consistent with 
gas-phase species possessing structures and bonding very 
closely related to the solid-state data in Figure 5. Finally, ESI of 
solution of [L(HBr2]NnBu4 were similar to the isolated or in-situ 
prepared L(HBr) confirming that this complex is an adequate 
condensed-phase model for the gas-phase [L(HBr2]− adduct 
(Figure S8).

Condensed Phase Crystallization Process.

In summary, the combination of condensed, gas-phase and in-
silico methods allows to draw a clear picture of the speciation 
of the tripodal receptor L when contacted with halides or HX 
acids. Neutral L has very limited affinity for halides in the gas-
phase and therefore no noticeable binding was observed in 
solution, where intraligand H-bonding interaction are believe 
to be predominant.25, 27 Protonation of the central nitrogen 
disturbs this well-organized network, and in an appropriate 
solvent (CH2Cl2, CHCl3), lead to discrete tripodal anion receptor 
as crystallized for L(HBr)2(CHCl3) (Figure 4C). However 
protonation of L to [L(H)]+ creates a situation where the 
approximate C3-symmetric tripodal conformer is competed by 
a “Janus head” form as highlighted by the computational 
results. This effect is illustrated by multiple lines of evidence, 
such as the propensity of L(HX) to bind a second halide in 
solution, the high ESI yield of [L(HX2)]−, the CID results or the 
exothermic second halide binding as determined by DFT. From 
there, aggregation of multiple units can start as corroborated 
by the observation of [(L)2(H2X3)]− and [(L)2(H2X)]+ by ESI. 
Moreover, the crystallization of L(HI)½EtOH is a remarkable 
example of an arrested aggregation step with both the 
“tripodal” and “Janus head” forms of [L(H)]+ present (Figure 
4B). The processes can then be repeated indefinitely to yield 
the 1D-H-bonded polymers crystallized for L(HCl) and L(HBr). 
Overall, the complementary findings between multiple 
techniques allow us to identify and monitor in detail the key 
molecular steps underlying the specific 
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precipitation/crystallization of [L(H)]+ (Scheme 4) but may be 
generalized to a large array of molecules.
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From Solution to Gas by ESI

Given that ESI resulted in gas-phase complexes that bear 
compositional correspondence to condensed phase species, 
we briefly address the nature of ESI vis-à-vis solution 
speciation. ESI is often considered a “soft” ionization method, 
largely due to its ability to transfer intact covalently bonded 
macromolecules from solution to gas, as pioneered by Fenn.63 
However, transferring a charged species from solution to gas 
necessarily involves drastic changes in the transition from 
bulk- to micro- to nano- to molecular-“solution” environments, 
with concomitant opportunities for changes in chemistry, 
including in speciation.64 Potential pitfalls in inferring solution 
speciation from ESI-MS have been emphasized in recent 
years.65-68 There are examples of judicious and effective 
application of ESI-MS to assess condensed phase structures 
and reactivity of non-covalently bound systems such as 
supramolecular containers.69 Highly charged solution metal 
ions, M4+, were transferred from solution to gas, but only 
when stabilized against hydrolysis and charge-reduction by 
multidentate coordinating ligands.70-72

Among the dynamic effects during ESI are drastic changes in 
ion concentrations, including pH.73 Because solution species 
that are precursors of the solid 1D-H-bonded coordination 
polymer are acid adducts of L, L(HX), it is expected that pH 
changes during ESI, as well halide concentration changes, 
could affect compositions of gas-phase species. For example, a 
decrease in pH should generally result in an increase in 
concentration of the associated weaker acid HI, which could 
increase the concentration of neutral L(HI) and anionic 
[L(HI2)]−. Results such as in Figure 1 may thus reflect aspects of 
solution speciation, but cannot be taken to directly reveal it. It 
cannot be concluded from ESI that L is selective for heavier 
halides in solution, but rather that such selectivity is exhibited 
in ESI.
CID does demonstrate propensity for particular fragmentation 
pathways. However, preferred elimination of a particular 
halide needs to be interpreted in the proper context, such as 
by comparing energetics for reactions (4) and (6). The overall 
assessment here is that CID does not necessarily indicate 
inherently preferential binding of heavier halides, but rather 
higher stability of lighter hydrogen halides.

Conclusions

Affinity of protonated tripodal hydroxylamine ligand [L(H)]+ for 
halides X− was suggested in ESI by abundant gas-phase 
complexes [L(HX2)]−. Relative yields from solutions containing 
more than one halide indicated a preferential affinity for I− 
over Br− over Cl−. CID of mixed halide complexes [L(HXaXb)]− 
also revealed preferential retention of the heavier halide in 
[L(Xb)]− via elimination of HXa. Computed DFT energies are in 
accord with the observed gas-phase speciation and CID 
fragmentation pathways. Energetics reveal that preferential 
retention of the heavier halide Xb by [L(H)]+ does not reflect 
intrinsically higher affinity but rather higher stability of the 
lighter HXa product.

Halide affinity of L(HX) was confirmed by binding equilibria 
constants in solution. The solution results indicated the highest 
affinity for Cl−, a lower affinity for Br−, and the lowest affinity 
for I−, which is the opposite of what is observed in gas phase 
but is in accord with gas-phase affinities obtained after 
accounting for stabilities of gas-phase HCl, HBr and HI. The 1D 
polymeric structures of solid L(HX) exhibit a remarkable 
correspondence to the compositions of gas-phase complexes 
produced by ESI. The solid structures also bear a close 
resemblance to computed gas-phase structures. The results 
suggest hydroxylamines and related substrates as potentially 
promising for anion reception and recognition. 
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The binding of halide anions with a tripodal hydroxylamine 
ligand studied in gas (mass spectrometry and DFT methods) 
and condensed phases revealed notable agreement.
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