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tronic Effects in the Au9(PPh3)3+

8 Nanocluster†

Anthony Cirri, Hanna Morales Hernández, and Christopher J. Johnson∗

Recent experimental and computational results have
suggested that a hydride bound to the Au9(PPh3)3+

8 gold
nanocluster donates its electrons to the metal core, forming
an 8-electron cluster. We present electronic absorption
spectra of precisely mass-selected Au9(PPh3)3+

8 clusters
featuring a surface hydride, chloride, or bromide. Compar-
ison of these spectra shows that H−, Cl−, or Br− perturb
the electronic structure of the Au9(PPh3)3+

8 core in similar
ways. This suggests that hydride and halides play similar
roles electronically in this cluster, and thus are either both
metallic or both ligand-like.

Atomically-precise metal nanoclusters bearing metal-hydride
bonds are studied as homogeneous hydrogenation catalysts, as
well as intermediates in the controlled growth of gold nan-
oclusters (AuNCs) or their alloys.1–6 The reactivity of cluster-
hydrides could be expected to parallel organometallic hydride
complexes,1,7 in that the relative metal-hydride bond strength of
clusters will largely determine the reaction mechanism. Classi-
fication schemes must thus be sought to predict reactivity, sub-
strate scope, and develop analogous designer catalysts. However,
the specific nature of the hydride ligand in AuNCs is ambiguous.
Experimental and computational work provide competing expla-
nations over the hydride’s function in Au9(PPh3)8H2+ – an adduct
which exhibits remarkable flexibility as a synthetic intermediate
in the formation of alloy clusters.2 Recent synthetic work indi-
cates that the metal-hydride bond functions as an acidic metal-
hydride whereby the nucleophilic metal cage is capable of con-
trolled cluster growth.2–4 In contrast, computational results sug-
gest that the hydride participates in the gold core as a delocalizing
metal center, mimicking the role of a metal dopant in forming a
closed-shell “superatom.”2,8 Photoelectron spectra of ligand-free
gold clusters containing hydride show strikingly similar spectra
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for AunH− and Au−
n+1.9

Classifying hydride as a ligand or metal becomes a question
over its impact on the Au9(PPh3)3+

8 electronic structure. As
such, comparison of electronic spectra of hydride- and halide-
containing Au9(PPh3)3+

8 clusters could evince the role of the hy-
dride. We hypothesized that the electronic spectrum of a metal-
lic hydride would show qualitative differences from that of a
more typical halide-containing cluster. However, purification of
Au9(PPh3)3+

8 clusters with unambiguous hydrides or halides has
not yet been achieved. We employed a gas-phase spectroscopy
approach that interfaces mass spectrometry with UV/Vis spec-
troscopy, yielding highly-resolved spectra of atomically-precisely
mass-selected clusters from solution-synthesized mixtures.10 This
basic approach has shown the ability to successfully isolate a va-
riety of hydride-containing species, and thus we harness it as an
alternate purification method that provides unambiguous specia-
tion of a solution-phase mixture.2,5,6,11–14

The triphenylphosphine-protected AuNCs, Au9(PPh3)3+
8 and

structurally-related Au8(PPh3)2+
7 , were prepared by reduction

of chloro(triphenylphosphine)gold(I) with sodium borohydride.
Au9(PPh3)8H2+ was readily prepared by mixing the raw reaction
product containing Au9(PPh3)3+

8 with borane tert-butylamine, in
a similar procedure to that already reported, and electrospraying
the resulting mixture.2 The resulting mass spectra, tabulated in
the SI, match those presented by Tsukuda and co-workers.2 The
Au9(PPh3)8Cl2+ and Au9(PPh3)8Br2+ clusters were prepared by
the same approach but with the organic salts tetraphenylphospho-
nium chloride or tetrabutylamonium bromide, respectively, in-
stead of borane tert-butylamine (see SI for synthetic details). All
products were introduced into the mass spectrometer by electro-
spray ionization with no purification, an approach commonly em-
ployed in gas-phase chemistry of triphenylphosphine-protected
AuNCs.11,15 The resulting clusters were mass selected such that
UV/Vis absorption spectra could be obtained of only the cluster
of interest, as outlined in the SI.

Figure 1 compares the published UV/Vis spectra of both
Au9(PPh3)3+

8 and Au9(PPh3)8H2+ in solution to those recorded
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for the same clusters in the gas phase. Notable similarities be-
tween the gas- and solution-phase spectra of each cluster are ap-
parent, particularly in the position and width of the broad peaks
found in Au9(PPh3)8H2+ and the position of the intense, sharp
feature near 430 nm in Au9(PPh3)3+

8 . This similarity provides
strong evidence that the solution-phase species is faithfully trans-
mitted to the gas phase via electrospray. Figure S3 similarly com-
pares the solution phase UV/Vis spectra of the samples used in
these experiments to the same spectra reported in the literature,
again finding a close match.

Fig. 1 Comparison of previously-reported solution-phase UV/Vis spec-
tra for Au9(PPh3)3+

8 and Au9(PPh3)8H2+ to those recorded in this study. 2

Both spectra of Au9(PPh3)3+
8 feature a strong, narrow absorbance near

430 nm and additional features near 370 and 500 nm that are less well-
resolved in the solution phase. For Au9(PPh3)8H2+, a broad, bimodal
feature spanning 400-500 nm is found in both spectra. The close corre-
spondence between the solution- and gas-phase spectra indicates that
the electronic structure of these clusters is preserved upon introduction
to the mass spectrometer. Adapted with permission from Reference [2].
Copyright 2018 American Chemical Society.

Figure 2 presents the mass-selective UV/Vis spectra of all five
ligand-protected AuNCs measured at 3.8 K. The Au8(PPh3)2+

7
(purple) and Au9(PPh3)3+

8 (red) spectra highlight the the fact that
changing the overall cluster composition need not qualitatively
change the electronic spectrum of this cluster. Previous crystallo-
graphic characterization of Au9(PPh3)3+

8 and Au8(PPh3)2+
7 sug-

gests that the two clusters are geometrically-related (D2h and
Cs, respectively), each sharing an analogous mirror plane, with
Au8(PPh3)2+

7 bearing a lower symmetry structure via “loss" of
a closed-shell [Au(I)PPh3]+ fragment.16,17 We have previously
shown that there is essentially a one-to-one correspondence be-
tween the peaks in these spectra, suggesting that the electronic
structure of the two clusters are very similar.10

Addition of the hydride ion to the Au9(PPh3)3+
8 cluster yields

a dramatic, qualitative change to the spectrum, as the blue trace
in Figure 2 shows no apparent preservation of the parent clus-

Fig. 2 Response of the electronic absorption spectrum of Au9(PPh3)3+
8

(red) to compositional modulation. Au8(PPh3)2+
7 (purple) shows several

electronic transitions are preserved between clusters. Au9(PPh3)8H2+

(blue), Au9(PPh3)8Cl2+ (green), and Au9(PPh3)8Br2+ (orange) are pre-
sented below.

ter’s electronic structure. Subtle features across the spectrum in-
dicate the presence of several unresolved, overlapping transitions
with both broader and narrower bands. The dramatic change
in the UV/Vis spectrum suggests that addition of a hydride lig-
and is more perturbative to the electronic structure than loss of
a [Au(I)PPh3]+ fragment, where both the MLCT and intracore
transitions notably respond to hydride addition. Comparison to
the Au9(PPh3)8Cl2+ and Au9(PPh3)8Br2+ spectra (green and or-
ange traces, respectively) shows that the spectra closely resemble
the Au9(PPh3)8H2+ spectrum. Surprisingly, the spectral profile
spanning 2.25 – 3.40 eV remains essentially intact (highlighted in
gray), despite the substantial electronic differences between these
two halides.

We can consider the following interpretations:
1. The hydride ion participates in the metal core as a delocaliz-

ing dopant, overall increasing the electron count of the clus-
ter core. If this is true, then it follows that both chloride and
bromide also participate in the clusters as metal dopants.

2. Ligating the Au9(PPh3)3+
8 with H−, Cl−, or Br− similarly iso-

merize the core geometric structure, thus making structure
the strongest factor governing the electronic structure.

3. H−, Cl−, or Br− interface with the cluster as X-type ligands
with electrons relatively localized on the ligand.

We have previously reported the gas-phase electronic absorp-
tion spectrum of Au9(P(p-OCH3-Ph)3)3+

8 , which features a sim-
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ilar core geometry as that predicted by density functional the-
ory calculations for Au9(PPh3)8H2+.2,10,18 There is no obvious
correspondence between the two spectra (Fig. S1); indeed
the Au9(P(p-OCH3-Ph)3)3+

8 spectrum bears more resemblance to
those of Au9(PPh3)3+

8 and Au8(PPh3)2+
7 . Thus, it is unlikely that

the core reorganization alone drives this spectral change, casting
doubt on interpretation 2. Further, recent experimental evidence
suggests that the Au9(PPh3)3+

8 core may take on a more anal-
ogous core structure to Au9(P(p-OCH3-Ph)3)3+

8 than previously
shown.19 The new features between 2.50 and 3.40 eV arise in a
region of the spectrum previously predicted (for Au9(PPh3)3+

8 ) to
show metal-to-ligand charge transfer (MLCT) character by time-
dependent density functional theory calculations,20 suggesting
that they may involve final states with substantial contribution
from the hydride or halide. Given dissimilar electronic struc-
tures amongst these ions, it is unlikely that their MLCT transi-
tions would coincidentally overlap – arguing against interpreta-
tion 3. We then converge on the realization that there is no spec-
troscopic evidence that is inconsistent with interpretation 1; in
this case, the new features could be ascribed to particularly in-
tense transitions between well-separated superatomic P and D or-
bitals in the case of a formally 8-electron core. Recent theoretical
work has suggested that 8-electron gold nanoclusters with dif-
fering metal dopants and hydride numbers show similar frontier
orbitals,8 which would likely lead to similarities in their spectra.

This analysis suggests that, if hydride behaves as a metal center,
then chloride and bromide should also be investigated for metallic
character. If chloride and bromide are to be considered as X-type
ligands, then it follows that hydride likely behaves as an X-type
ligand as well. Lacking a clear framework by which to interpret
these complex spectra, we are limited to such qualitative argu-
ments. Detailed comparisons of the reactivity of chloride- and
bromide-containing clusters to hydride-containing clusters will
likely be clarifying. Quantum chemical support will be required
to draw a definitive conclusion, and the relatively high resolu-
tion, atomic precision, and minimal environmental broadening of
these spectra make them ideal benchmarks for such efforts.
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Hydride and halide ligands in gold nanoclusters 

exhibit an unexpected similar electronic relationship, 

suggesting an underlying chemical linkage between 

them.   
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