ChemComm

Laser-induced oxygen vacancies in FeCo2O4 nanoparticles for boosting oxygen evolution and reduction

Journal:	ChemComm
Manuscript ID	CC-COM-06-2019-004283.R1
Article Type:	Communication

ChemComm

COMMUNICATION

Laser-induced oxygen vacancies in FeCo₂O₄ nanoparticles for boosting oxygen evolution and reduction

Received 00th January 20xx, Accepted 00th January 20xx Kang-Wen Qiu,^a Cong Xi,^a Yan Zhang,^{a,b} Rui Zhang,^a Zhe Li,^a Gu-Rong Sheng,^a Hui Liu, *^a Cun-Ku Dong,^a Yong-Jun Chen*^c and Xi-Wen Du*^a

DOI: 10.1039/x0xx00000x

www.rsc.org/

 $FeCo_2O_4$ nanoparticles with abundant oxygen vacancies were produced by laser fragmentation. The oxygen vacancies can lower the thermodynamic energy barriers as well as accelerate the electron transfer, eventually promote oxygen evolution and reduction reactions simultaneously.

Rechargeable zinc-air battery (ZAB), a green and efficient energy storage system, displays considerably high energy densities due to the utilization of oxygen in atmosphere rather than heavy reactant. The practical application of ZAB depends on the development of efficient bifunctional electrocatalysts that can efficiently drive both the oxygen evolution reaction(OER) and oxygen reduction reaction (ORR).¹⁻³ Although Pt-, Ru, or Ir- based materials have been widely reported as active catalysts for OER or ORR, the high price and scarcity greatly limit their widespread application.⁴ MCo₂O₄ (M=Ni, Mn, Fe, Zn, and so on) materials with a spinel structure have been conceived as promising alternatives because of their low cost and abundant resource.⁵⁻⁹ However, the poor electrical conductivity and low catalytic activity prevent MCo₂O₄ from being applied in ZABs. Recently, great progress has been made on improving the electrical conductivity of MCo_2O_4 by compositing them with carbon materials, ^{10,11} which inspires the passion on expliciting more efficient strategies to boost their conductivity.

Introducing oxygen vacancies in oxides has been accepted as a promising way to improve the catalytic activity for both OER and ORR.^{12,13} Commonly, the oxygen vacancies were generated by annealing in hydrogen, which is unsafe and energy hungry.¹⁴ In a previous work, we reported top-down synthesis of Co_3O_4 nanoparticles (NPs) by laser fragmentation, and found that this technique exhibis a quick heating-queching feature which favors the formation of oxygen vacancies.¹⁵ However, the catalytic activity of Co_3O_4 NPs, especially for ORR, is not high enough to meet the needs of ZABs. Meanwhile, the universality of the laser technique on generating defects has not been investigated carfully. Therefore, it is

^aInstitute of New-Energy Materials, School of Materials Science and Engineering, Tianjin Unviersity, Tianjin 300072, P.R. China. E-mail: liu_hui@tju.edu.cn, xwdu@tju.edu.cn,

^bStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

^cState Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China. Email:yongchen@hainu.edu.cn,

This journal is © The Royal Society of Chemistry 20xx

fascinating to find out potential bifunctional (OER and ORR) catalysts whose activities could be promoted by laser fragmentation.

Herein, we show that $FeCo_2O_4$, a typical MCo_2O_4 spinel, is suitable for generating oxygen vacancies by laser fragmetation. We employ an intensive pulsed laser to break $FeCo_2O_4$ microsphere (M-FeCo_2O_4) into a large amount of ultrafine $FeCo_2O_4$ NPs rich in oxygen vacancies (R-FeCo_2O_4). The ultrasmall size and abundant oxygen vacancies jointly improve the electron transfer and catalytic activity for OER and ORR. As the air cathode of ZAB, R-FeCo_2O_4 achieves high power density and long lifetime, even outperforming noble metal Pt/C+RuO_2 couple.

The synthesis process is schematically shown in Fig. S1, where M-FeCo₂O₄ was partially vaporized and broken via trival fragmentation under laser irradiation.^{15, 16} giving rise to numerous tiny R-FeCo₂O₄ nanoparticles (see Fig. S2). The morphology and structure of asprepared R-FeCo₂O₄ NPs were examined by transmission electron

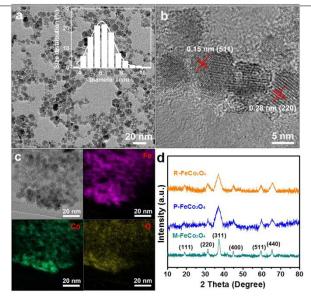


Fig. 1. Morphology and structure of R-FeCo₂O₄. (a), (b) Low and high magnification TEM images of R-FeCo₂O₄, respectively; (c) STEM elemental mapping of R-FeCo₂O₄; (d) XRD patterns of R-FeCo₂O₄, P-FeCo₂O₄ and M-FeCo₂O₄.

a

í,

(a.

С

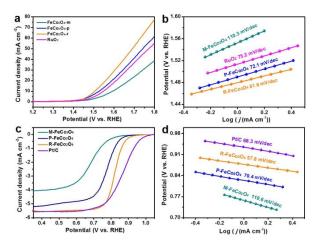
Co 2p 3/2

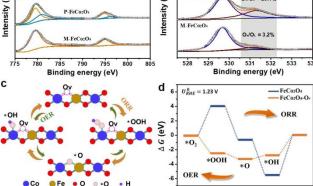
Co 2p.

R-FeCo2O

P-FeCorO.

COMMUNICATION




Fig. 2. Electrochemical performance of OER and ORR. (a) LSV curves and (b) Tafel plots for the catalytic OER process of R-FeCo2O4, P-FeCo2O4, M- $FeCo_2O_4$, and RuO_2 ; (c) LSV curves and (d) Tafel plots for the catalytic ORR process of R-FeCo₂O₄, P-FeCo₂O₄, M- FeCo₂O₄, and Pt/C.

microscope (TEM) and X-ray diffraction (XRD). As shown in Fig. 1a, R-FeCo₂O₄ NPs are well dispersed with an average size of 6.5 nm. In high resolution TEM image of Fig. 1b, some lattices are observed with spacings of 0.28 and 0.15 nm, corresponding to (220) and (511) planes of FeCo₂O₄, respectively.¹⁷ The scanning transmission electron microscopy (STEM) elemental mapping analysis clearly shows uniform distribution of iron, cobalt and oxygen elements in R-FeCo₂O₄ NPs (Fig. 1c). For comparison, we also prepared FeCo₂O₄ NPs poor in oxygen vacancies (P-FeCo₂O₄) under the same laser fragmentation conditions expcept for in oxygen atmosphere. P-FeCo₂O₄ NPs display similar uniformity and size distribution with R-FeCo₂O₄ NPs (Fig. S3). In addition, the X-ray diffraction (XRD) patterns of R-FeCo₂O₄, P-FeCo₂O₄ and M-FeCo₂O₄ shown in Fig. 1d are indexed to cubic spinel phase FeCo₂O₄.¹⁸

We then tested the OER properties of R-FeCo₂O₄, with P-FeCo₂O₄, M-FeCo₂O₄ and RuO₂ as the references. Linear-sweep voltammogram (LSV) curves in Fig. 2a indicate that R-FeCo₂O₄ delivers an overpotential of 276 mV at the current density of 10 mA cm⁻², this value is much lower than those of P-FeCo₂O₄ (297 mV), M-FeCo₂O₄ (363 mV) and RuO₂ (319 mV). The tafel slopes also confirmed the superior OER activity of R-FeCo₂O₄. As shown in Fig. 2b, R-FeCo₂O₄ affords a low Tafel slope of 61.6 mV dec⁻¹ compared with P-FeCo₂O₄ (72.1 mV dec⁻¹), M-FeCo₂O₄ (115.2 mV dec⁻¹) and RuO₂ (75.2 mV dec⁻¹). In addition, R-FeCo₂O₄ displays high stablity, the current density merely decreases by 4 % after testing for 20 h (Fig. S4). These results are superior to those of nonprecious metal-based oxide catalysts reported in literature (Table S1).

ORR plays a critical role during the discharge process of ZAB. Fig. 2c show LSV curves of the above four catalysts on rotating disk electrode (RDE) in O2-saturated 0.1 M KOH at a scan rate of 5 mV·s⁻¹ and 1600 rpm. The onset potential and the half-wave potential of R-FeCo₂O₄ are 0.95 and 0.82 V, respectively, much higher than these of M-FeCo₂O₄ (0.86 and 0.68 V). Meanwhile, as shown in Fig. 2d, R-FeCo₂O₄ shows smaller Tafel slope (57.8 mV dec⁻¹) relative to P-FeCo₂O₄ (70.4 mV dec⁻¹), M-FeCo₂O₄ (110.6 mV dec⁻¹) and even Pt/C (68.3 mV dec⁻¹). LSVs at different rotating rates were shown in Figs. S5a-S5d, the electron transfer numbers (n) during the ORR process

b Ov/OL = 46.7% R-FeCo2O4 ('n P-FeCo2O4 a. Ov/OL = 29.1%

Reaction Pathway

Fig. 3. Characterizations on oxygen vacancies and their influence on catalytic activities of R-FeCo₂O₄. (a) Fitted Co 2p spectra for R-FeCo₂O₄, P-FeCo₂O₄ and M-FeCo₂O₄; (b) Fitted O 1s spectra for R-FeCo₂O₄, P-FeCo₂O₄ and M- FeCo2O4; (c) The OER/ORR mechanism of R-FeCo2O4 with oxygen vacancy (O_v); (d) DFT diagram of perfect FeCo₂O₄ and R-FeCo₂O₄.

can be evaluated by the fitted Koutecky-Levich (K-L) plots (Figs. S5e and S5f). R-FeCo₂O₄ exhibits a high electron transfer number of 3.87 which is close to that of Pt/C (3.9), indicating a dominant fourelectron process. Rotating ring-disk electrode (RRDE) measurements were carried out to monitor the hydrogen peroxide yield (% H₂O₂), as shown in Fig.S6. The H₂O₂ yield of R-FeCo₂O₄ ranges from 5% to 7% and the calculated electron-transfer number is above 3.84, which is similar to the results obtained from the K-L plots. Moreover, the long term durability is tested at 0.5 V for 20 h, as shown in Fig. S7, R-FeCo₂O₄ exhibits the best catalytic stability. Although the onset potential of R-FeCo₂O₄ is still worse than Pt/C (1.04 V), the Tafel slope and limited current density of R-FeCo₂O₄ is comparable to Pt/C and among the top values achieved by transition-metal-based oxide catalysts (Table S2).

To understand the performance improvement of R-FeCo₂O₄, we performed XPS measurements on the three FeCo₂O₄ samples. In Fig.3a, O1s spectra can be fitted with two peaks at 529.7 and 531.3 eV, respectively. The peak at 529.7 eV arise from lattice oxygen (O_L), whereas the peak at 531.3 eV is attributed to adsorbed oxygen on oxygen vacancy (O_V) .¹³⁻¹⁵ Obviously, the O_V/O_L ratio of R-FeCo₂O₄ (46.7%) is much higher than those of P-FeCo₂O₄ (29.1%) and M- $FeCo_2O_4$ (3.2%), suggesting more oxygen vacancies were generated in R-FeCo₂O₄ by laser fragmentation. According to the fine-scanned Co 2p XPS spectra given in Fig. 3b, the majority of cobalt cations in FeCo₂O₄ samples are present in Co³⁺ form. As compared with the other two samples, R-FeCo₂O₄ shows higher peak related to Co²⁺ ions which have been proved as the catalytic active sites for ORR.¹⁹ In combination with the results in Figs. 3a and 3b, introducing oxygen vacancies benefits the formation of Co2+ cations in FeCo2O4. Moreover, electron paramagnetic resonance (EPR) was employed to detect the oxygen vacancies. As shown in Fig. S8, R-FeCo₂O₄ displays an intensive EPR signal at g-value of 2.002 related to the unpaired electrons trapped by oxygen vacancies. ²⁰ This signal is greater than those of M-FeCo₂O₄ and P-FeCo₂O₄, confirming that R-FeCo₂O₄ possesses more oxygen vacancies than M-FeCo₂O₄ and P-FeCo₂O₄.

Next, we carried out density functional transformation (DFT) calculation to analyse the influence of oxygen vacancies on the

Journal Name

COMMUNICATION

Journal Name

catalytic process. Both OER and ORR involve four elementary reaction steps (Fig. 3c and S9). In the ORR process, O₂ molecules were adsorbed on the surface of catalysts and reduced into *OOH, followed by further reduction to *O, *OH and H₂O in sequence; while OER proceeds in the reverse direction. The free energy diagrams were obtained by the DFT calculation and shown in Fig. 3d, where a large thermodynamic barrier (Δ G) can be found for the formation of *OOH on the perfect FeCo₂O₄ surface without oxygen vacancies. After introducing oxygen vacancies into R-FeCo₂O₄, this Δ G value is significant reduced of Δ G value of *O reduction to *OOH, and *OOH reduction to O₂, means the higher efficient for four-electron dominant process, which is conformed to the results from K-L plots. Therefore, DFT results certify the critical role of oxygen vacancies on improving ORR and OER catalytic activities of FeCo₂O₄.

To understand the superior performance of R-FeCo₂O₄, electrochemically active surface area (ECSA) and electrochemical impedance spectrum (EIS) were further conducted. As shown in Fig. S10, ECSA of R- FeCo₂O₄ is 62.5 cm², which is higher than that of P- $FeCo_2O_4$ (40.1 cm²) and M-FeCo_2O_4 (10.8 cm²). Because the similar size distribution of R-FeCo₂O₄ and P-FeCo₂O₄, the higher ECSA of R-FeCo₂O₄ should arise from the improved catalytic activity by introdcing oxygen vacancies. In addtion to the intrinsic activity, the electrical conductivity is also crucial on the catatytic performance. Hence, we employed electrochemical impedance spectrum (EIS) to investigate the electron transfer. EIS of the R- FeCo₂O₄, P-FeCo₂O₄ and M-FeCo₂O₄ were measured at a potential of 1.6 V with an AC perturbation of 5 mV in the frequency range from 0.01 Hz to 100 KHz. Fig. S11 presents the Nyquist plots which were fitted with an equivalent circuit as shown in inset. The Rs mainly results from the solution resistance. The charge transfer resistance (Rct=R1+R2), which can be interpreted as the Faradaic process and oxygen-species adsorption, respectively. The Rct value of R-FeCo₂O₄ is smallest, R-FeCo₂O₄ displays the smallest Rct value among the three samples, implying that oxygen vacancies can lower the charge transfer resistance at the interface between catalyst and electrolyte. Besides, more sample with different amount of oxygen vacancies were synthesized and tested the catalytic performance, the results indicated the catalytic activity could improve with the oxygen vacancies increased (Fig. S12).

Finally, we constructed a ZAB with R-FeCo₂O₄ as the air cathode, zinc plate as the anode and 6.0 M KOH as the electrolyte (Fig. 4a). For comparison, coupled commercial Pt/C+RuO₂ catalyst was also tested as the air cathode. The R-FeCo₂O₄ battery worked stably with a high open-circuit voltage of 1.44 V (Fig. S9a) which is very close to that of Pt/C+RuO₂ (1.46 V). The charging and discharging curves of ZABs are shown in Fig. 4b, R-FeCo₂O₄ presents similar cell voltages at the low current density with Pt/C+RuO₂. As the current exceeds 70 mA cm⁻², the charging and discharging voltages of the R-FeCo₂O₄ cathode is more active than the Pt/C+RuO₂ couple. Fig. 4c shows typical discharging polarization curves and the corresponding power density plots of the ZABs. R-FeCo₂O₄ based ZAB exhibits a significant superior performance in terms of current density and power density (140 mW cm⁻² at a current density of 210 mA cm⁻²). Moreover, the R-

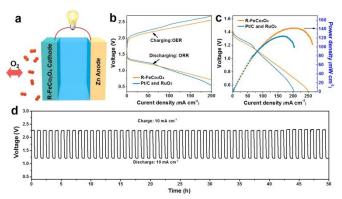


Fig. 4. Electrochemical performance of ZABs. (a) Schematic of the primary Znair battery; (b) Charge and discharge polarization curves of R-FeCo₂O₄ and Pt/C+RuO₂ batteries; (c) Polarization curves and corresponding powerdensity plots of R-FeCo₂O₄ and Pt/C+RuO₂ batteries; (d) Cycling performance of the R-FeCo₂O₄ battery.

FeCo₂O₄ ZAB was cycled for 50 h at a charge and discharge current density of 10 mA cm⁻² to test long-term durability of ZABs. As shown in Figure 4d, after 50 cycles, there is no visible increase in the voltage gap, indicating excellent durability of the R-FeCo₂O₄ ZAB. The superior discharge rate performance (Fig. 13b) demonstrated the R-FeCo₂O₄ ZAB can be operated at a wide range of current densities. Moreover, the R-FeCo₂O₄ ZAB can discharge more than 200 h with a discharge voltage of 1.15 V, and the capacity reaches 589 mA h g⁻¹ at 20 mA cm⁻² (Figs. S13c, S13d).

In conclusion, the ultrafine $FeCo_2O_4$ nanoparticles with abundant oxygen vacancies were successfully fabricated by laser fragmentation. The catalytic activity for both OER and ORR were remarkably improved by the abundant oxygen vacancies. The catalyst was used as the air cathode for zinc-air battery, exhibiting the high power density and long cycling performance. This work provides a new strategy towards highly active bifunctional catalysts based on defect engineering.

This work was supported by the Natural Science Foundation of China (Nos. 51871160, 51671141, and 51471115)

Conflicts of interest

The authors declare no conflict interests.

Notes and references

- X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, Angewandte Chemie International Edition, 2015, 54, 9654-9658.
- J. Fu, X. P. Song, H. Zarrin, X. F. Tian, J. L. Qiao, L. Rasen and Z. W. Chen, *Energy & Environmental Science*, 2016, 9, 663-670.
 - D. S. He, D. He, J. Wang, Y. Lin, P. Yin, X. Hong, Y. Wu and Y. Li, *Journal of the American Chemical Society*, 2016, **138**, 1494-1497.
 - C. Y. Su, H. Cheng, W. Li, Z. Q. Liu, N. Li, Z. F. Hou, F. Q. Bai, H. X. Zhang and T. Y. Ma, *Advanced Energy Materials*, 2017, **7**, 1602420.
 - X. Liu, M. Park, M. G. Kim, S. Gupta, X. J. Wang, G. Wu and

3.

4.

5.

COMMUNICATION

- 6. C. Z. Yuan, H. B. Wu, Y. Xie and X. W. Lou, Angewandte Chemie International Edition, 2014, **53**, 1488-1504.
- 7. T. F. Hung, S. G. Mohamed , C. C. Shen, Y. Q. Tsai, W. S. Chang and R. S. Liu, *Nanoscale*, 2013, **5**, 12115-12119.
- Q. Wang, L. Shang, R. Shi, X. Zhang, Y. F. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung and T. R. Zhang, *Advanced Energy Materials*, 2017, 7, 1700467.
- 9. Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma and Y. Z. Su, *Advanced Materials*, 2016, **28**, 3777-3784.
- 10. S. Gadipelli, T. T. Zhao, S. A. Shevlin, Z. X. Guo, *Energy & Environmental Science*, 2016, **9**,1661-1667.
- 11. T. T. Zhao, S. Gadipelli, G. J. He, M. J. Ward, D. Do, P. Zhang, Z. X. Guo, *CHEMSUSCHEM*, 2018, **11**, 1295-1304.
- J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan and Y. Xie, *Angewandte Chemie International Edition*, 2015, **127**, 7507-7512.
- J. Guo, S. Gadipelli, Y. C. Yang, Z. N. Li, Y. Lu, D. J. L. Brett, Z. X. Guo, *Journal of Materials Chemistry A*, 2019, **8**, 3544-3551.
- 14. T. Zhai, S. L. Xie, M. H. Yu, P. P. Fang, C. L. Liang, X. H. Lu and Y. X. Tong, *Nano Energy*, 2014, **8**, 255-263.
- 15. Y. Zhou, C. K. Dong, L. L. Han, J. Yang and X. W. Du, ACS *Catalysis*, 2016, **6**, 6699-6703.
- 16. J. Yang, T. Ling, W. T. Wu, H, Liu, M. R. Gao, C.Ling, L. Li and X. W. Du, *Nature Communication*, 2013, **4**, 1695.
- 17. S. G. Mohamed, C. J. Chen, C. K. Chen, S. F. Hu and R. S. Liu, ACS Applied Materials Interfaces, 2014, **6**, 22701-22708.
- 18. B. G. Zhu, S. C. Tang, S. Vongher, H. Xie and X. K. Meng, ACS Applied Materials Interfaces, 2016, **8**, 4762-4770.
- 19. Y. Y. Liang, H. L. Wang, J. G. Zhou, Y. G. Li, J. Wang, T. Regier and H. J. Dai, *Journal of the American Chemical Society*, 2012, **134**, 3517-3523.
- 20. Y. T. Wang, J. M. Cai, M. Q. Wu, J. H. Chen, W. Y. Zhao, Y. Tian, T. Ding, J. Zhang, Z. Jiang and X. G. Li, *Applied Catalysis B: Environmental*, 2018, **239**, 398-407.

J. Cho, Nano Energy, 2016, 20, 315-325.