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Automated crystal characterization with a fast Neigh-
borhood Graph Analysis method

Wesley F. Reinharta and Athanassios Z. Panagiotopoulos∗,a

We present a significantly improved, very fast implementation of the Neighborhood Graph Anal-
ysis technique for template-free characterization of crystal structures [W.F. Reinhart et al., Soft
Matter, 2017, 13, 4733]. By comparing local neighborhoods in terms of their relative graphlet fre-
quencies, we reduce the computational cost by four orders of magnitude compared to the original
stochastic method. Furthermore, we present protocols for the detection of topologically important
structures and assignment of visually informative colors, providing a fully automated procedure
for characterization of crystal structures from particle tracking data. We demonstrate the flexibil-
ity of our method on a wide range of crystal structures which have proven difficult to classify by
previously available techniques.

1 Introduction
Colloidal crystals continue to draw attention for their applications
in photonics,1,2 energy conversion,3,4 and biosensing5,6 as well
as for their usefulness in elucidating questions in fundamental5

physics7,8 and materials science.9,10 This wide range of applica-
tions is made possible by their equally wide range of possible self-
assembled structures, which may be amorphous or crystalline,
close-packed or open, and may include a variety of defects with
tunable morphology and concentration.11 Furthermore, by intro-10

ducing even a small number of distinct particle types with asym-
metrical interactions, particles can be “programmed” to sponta-
neously assemble into hierarchically ordered structures.12

At the same time, rational or “inverse” design strategies have
become increasingly viable due to advances in both simulation15

and optimization methods.13,14 Given such a myriad of possible
target structures with varying coordination number and symme-
try, it can be tedious to obtain an objective, quantitative metric for
tracking the evolution of order in a system. Indeed, even very re-
cent work has relied upon heuristics programmed by hand.15–17

20

By far the most common metrics used in such heuristics are the
Steinhardt local bond order parameters.18,19 These characterize
the symmetry of a particle’s neighbor shell using the spherical
harmonic basis functions, yielding a measure of the neighborhood
shape.25

Because the local bond order parameters are continuous, they
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are useful for quantifying generic order-disorder transitions.20

However, thermal fluctuations can disrupt local structure, smear-
ing the local bond order into broad distributions which are dif-
ficult to separate into distinct classes when the structures of 30

interest are topologically similar. This is actually quite com-
mon since the close-packed face-centered cubic (FCC), hexago-
nal close-packed (HCP), and body-centered cubic (BCC) lattices
can coexist in many metals. For instance, in ref. 15, the au-
thors defined BCC particles as those with 0.016 < q̄4 < 0.056 and 35

0.49< q̄6 < 0.53, compared to FCC which had 0.16< q̄4 < 0.22 and
0.554 < q̄6 < 0.594. Such carefully tuned parameters sometimes
even require manual calibration at many different state points
when temperature and density vary significantly.17

The recently developed Polyhedral Template Matching 40

(PTM)21 seeks to address this problem by combining both geo-
metrical and topological measures from each particle’s neighbor
shell. By considering the shape of each particle’s Voronoi poly-
hedron when determining particle adjacency, the calculation be-
comes more resilient against thermal noise. Unlike the Steinhardt 45

parameters, PTM provides a discrete classification by comparing
the encompassing polyhedral net to a set of templates, accepting
only perfect matches. A compromise is struck between topologi-
cal and geometrical information by then quantifying the deviation
of the particles in real space from their positions in the ideal tem- 50

plate. While this approach provides a robust classification of ther-
malized metals, it requires the user to supply a list of templates
a priori, which limits its usefulness in cases where the structures
are unknown or irregular – cases which are increasingly likely as
the complexity of available building blocks continues to rise. 55

We have recently introduced a new technique for the identifi-
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cation of crystal structures called Neighborhood Graph Analysis
(NGA).22 Similar to PTM, we use the neighborhood graph topol-
ogy as a signature since its discrete nature makes it less suscepti-
ble to thermal noise than geometric descriptors. We then employ
the diffusion maps dimensionality reduction technique to infer re-5

lationships between all observed structures in a continuous space
as in the local bond order approach. In this way, NGA combines
the advantages of both fuzzy and discrete methods and discovers
relevant structures directly from the data. Our “template-free”
approach therefore stands to provide a more discriminating clas-10

sification while eliminating the need for hand-crafted heuristics.

However, the algorithm published in ref. 22 relied on an expen-
sive combinatorial procedure to evaluate the difference between
graphs. This made it impractical for “on-the-fly” determination
of crystal structures, since the analysis of a configuration of just15

2000 particles required roughly 50 core-hours of computing time.
We now present an implementation based on the relative graphlet
frequency of the neighborhood graph, which speeds up the calcu-
lation by more than 10000× compared to the original approach.
Our new “fast NGA” (fNGA) is thus viable for real-time, desktop20

computing instead of being restricted to high performance com-
puting infrastructure.

2 Method

2.1 Neighborhood construction

In our prior work,22,23 we used the adjacency criterion from25

adaptive Common Neighbor Analysis24 to define the local neigh-
borhood graph of each particle. This approach defines a cutoff
radius based on the distance to each particle’s nearest six neigh-
bors, with a geometric prefactor chosen to distinguish the first-
and second-nearest neighbors in close-packed lattices. We noted30

in ref. 22 that the use of a geometric prefactor based on the HCP
lattice interfered with the classification of the BCC lattice, whose
coordination shell has a slightly different geometry. Furthermore,
this approach assumes that the neighborhood should be isotropic,
which is not necessarily the case for low-density “open” lattices35

derived from anisotropic particles.

To overcome these limitations, we now employ a Delaunay tri-
angulation to obtain topologically adjacent particles, similar to
the method used in PTM. This accommodates spatially inhomo-
geneous systems and lattices with anisotropic primitive cells. It40

is also more consistent with our philosophy of evaluating crystal
structure based on neighborhood topology rather than geometry.
Unlike in our original approach, we now also include the cen-
tral particle in the neighborhood graph, which provides greater
connectivity between neighbors and therefore greater distinction45

between structures.

Unfortunately, we found that in some cases the Delaunay tri-
angulation gave spurious results. For instance, at smooth crystal
surfaces (such as the solid-vapor interfaces in Section 3.1), the
Delaunay triangulation may connect far-away particles in order50

to provide a convex hull in three dimensions. PTM, which also de-
fines a local neighbor shell based on the Delaunay triangulation,
filters such spurious neighbors based on the area of the Voronoi
faces. This approach only works in the bulk, and provides no use-

ful information in the cases such as at crystal surfaces where it is 55

most necessary.
To address this issue, we applied agglomerative hierarchical

clustering to differentiate the neighbor shell from these spurious
topological neighbors. Clusters were split when the distance be-
tween centroids exceeded 25% of the first nearest neighbor dis- 60

tance, although the particular value was relatively unimportant.
Ideally, a future implementation of our algorithm would be able
to filter outliers based on a topological measure rather than a ge-
ometrical one. Such a modification would be necessary to capture
strongly anisotropic structures. The NGA algorithm itself operates 65

only on graphs, and as such can be used in conjunction with any
adjacency criteria.

2.2 Fast graph comparisons using graphlets

In our previous implementations of NGA,22,23 computing differ-
ences between graphs was by far the most expensive part of the 70

algorithm, requiring roughly one minute per thread per evalua-
tion on a 2.66GHz Intel Xeon X5650 processor. Such long compu-
tation times were inevitable because the definition of our metric
relied upon finding the optimal permutation of node labels be-
tween two graphs of up to 16 nodes each. In addition to being 75

costly, the stochastic nature of the algorithm led to strong exe-
cution divergence when running in parallel (which was virtually
required due to the huge computational burden). We went to
great lengths to approximate these distances using an artificial
neural network, but the final calculation presented in ref. 22 still 80

required over 24 hours running on 100 cores of a computing clus-
ter, and suffered from some uncertainty as a result of the approx-
imations.

We now propose an alternate distance metric based on the
graphlet decomposition of our neighborhood graphs. Graphlets 85

are small induced subgraphs of a network, typically with k ≤ 5
nodes, which can be used to evaluate subgraph isomorphism
without invoking combinatorial approaches such as our original
permutation-based technique. The relative graphlet frequency
has been used extensively to perform quantitative comparisons 90

between biological networks.25,26

To evaluate a neighborhood graph, we first computed the fre-
quency of each orbit (a specific realization of each graphlet)
formed by its constituent nodes using the ORCA library.27 Be-
cause the occurrence of large graphlets is correlated to that 95

of smaller ones, we reweighted each frequency according to a
weight w = 1− o/73, where o is the number of other graphlets
each affects.28 While it is standard practice in network anal-
ysis to use a logarithmic measure of the graphlet frequency,
we found that such a transformation reduced our ability to re- 100

solve similar structures such as crystal polymorphs. We summed
the reweighted frequencies from all nodes in the neighborhood
graph to produce a total graphlet frequency for the neighborhood,
~ftot = ∑i∈nodes ~fi. This was normalized to give the relative graphlet
frequency, ~f = ~ftot/∑~ftot. 105

The distance between two graphs is then defined as the L2-
norm between the two relative graphlet frequency vectors, di, j =∥∥∥~fi−~f j

∥∥∥. Because each vector is bounded on [0,1], the distance
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is also bounded on this interval. Computing the graphlet decom-
position for graphs in our test cases took an average of 10−4 s,
and evaluating the norm of the difference of two small vectors
is practically free. The calculations are also deterministic and so
do not suffer from execution divergence, making them easier to5

parallelize efficiently. Overall, the graphlet-based distance metric
makes fNGA roughly 10000× faster than the original algorithm of
ref. 22, while maintaining nearly identical manifold topology.

2.3 Dimensionality reduction

We use the diffusion maps dimensionality reduction tech-10

nique29–31 to produce a low-dimensional manifold describing the
complete graph space. From this description, we can easily infer
relationships between particle neighborhoods. Our application of
the technique to crystal lattices was inspired by its success in de-
scribing colloidal aggregates.32–34 Since a detailed description of15

the algorithm and its role in NGA is available in ref. 22, here we
will summarize only the most pertinent details. In most cases, we
use Nyström extension35,36 to build the diffusion map from a sub-
set of “landmark” points rather than computing the full distance
matrix between all pairs from the sample set. It has been demon-20

strated that this approach can greatly reduce the cost of the calcu-
lation while introducing negligible error.37 Neighborhood graphs
were chosen as landmarks if they formed at least one contiguous
cluster of size 3 or greater.

We found that the density of points in the manifold was highly25

non-uniform, with high density around crystal lattices and low
density in liquid regions (this was also observed in ref. 22). This
problem can be mitigated by scaling the distances di j by an expo-
nent 0 < α < 1 such that small distances are magnified compared
to large ones.38 While more rigorous methods for determining30

a suitable α exist, in our case choosing α = 0.5 worked well as
a generic solution. Likewise, we found that the topology of the
manifold was insensitive to our choice of neighborhood radius ε,
and that taking ε = median(D2) gave useful results for all of our
test cases.35

In our previous work, spectral analysis suggested a manifold
dimensionality of 2 < d < 3.22 Here we assume d ≈ 3 and define
the collective variables to be used in the crystal characterization
as the first three nontrivial eigenvectors of the diffusion map. This
allows us to easily map the collective variables {ψi} to RGB color40

space for automated visualization of the snapshots. We found
that applying a rank transform to each ψi to create a uniform
distribution over [0,1] improved the quality of the visualization
by increasing contrast in dense regions (e.g., between stacking
polymorphs) and reducing contrast in sparse regions (e.g., for45

liquids). This also allowed us to easily cast (ψ2,ψ3,ψ4) to RGB
color space, which each eigenvector acting as a color channel.

3 Results and discussion

3.1 Crystals with exposed surfaces

We first applied our new fNGA algorithm to snapshots from a sim-50

ulation of evaporation-induced crystallization, which we had pre-
viously evaluated with the original NGA method.22 This system is
difficult to classify by traditional structural analysis methods for

Fig. 1 Projection of the first two collective variables obtained from the
diffusion map of evaporation-induced crystallization snapshots. The
manifold contains 30444 unique neighborhood graphs (colored points)
and 58 landmark graphs used for Nyström embedding (circles/crosses).
Circle size is proportional to observation frequency, while cross size is
proportional to maximum cluster size. Representative particle
configurations are indicated with arrows; particle colors correspond to
their position in the manifold. These snapshots and all others presented
in this article were rendered with the Tachyon renderer included in
VMD. 39,40

two reasons: i) the sharp interface with a vapor phase creates
a region of the crystal which has reduced coordination number 55

but retains its symmetry and ii) weak interactions between the
particles lead to large thermal fluctuations which can interfere
with shape-based metrics. Our test case consisted of 50 snapshots
with 2052 particles each, from which fNGA found 30444 unique
graphs. Of these, 58 were chosen as landmarks for Nyström em- 60

bedding based on the criterion in Section 2.3. The analysis took
203 seconds running on one core of a 2.66GHz Intel Xeon X5650
processor in a Mac Pro workstation.

A projection of the graphs based on the first two collective vari-
ables is shown in Fig. 1 along with representative real-space par- 65

ticle configurations from the simulation snapshots. As discussed
in our prior work, the collective variables provided by the diffu-
sion map do not necessarily correspond to any physically intuitive
quantities. Here the dominant eigenvector ψ2 appears to corre-
spond to coordination number, with crystal structures on the left 70

and surface structures on the right. The next-strongest eigenvec-
tor ψ3 could be related to hexagonal symmetry, with a progres-
sion from liquid and square (100) surface to FCC and then to
HCP. While such rationalizations can be useful in interpreting the
results for familiar systems, in general it is better to think of these 75

coordinates as more abstract descriptions of the graph space. We
note that the banded structure appearing in Fig. 1 is likely related
to the discrete size of the graphs.

We show the coloring scheme from Fig. 1 as applied to the real
space snapshots in Fig. 2, alongside the same snapshots classi- 80

fied using PTM (as implemented in Ovito41). These snapshots
highlight several key advantages of the template-free approach.
Automatic detection of important structures provides a charac-
terization for all particles, as opposed to only those with close
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Fig. 2 Characterization of three snapshots from molecular simulation of
evaporation-induced crystallization by fNGA (top) and PTM (bottom).
For fNGA, the colors correspond to the diffusion map in Fig. 1. For PTM,
colors are indicated underneath the snapshots. The maximum RMSD
for a particle to be considered crystalline in PTM was 0.15.

resemblance to at least one template. This can provide additional
information when the crystal is noisy or defective, as illustrated
by the large region of light green particles in the leftmost frame
corresponding to somewhat disordered rHCP. Perhaps more im-
portantly, fNGA also identifies new structures and characterizes5

them according to their relationships in graph space, as shown by
the various classes of surface structures which evolve in conjunc-
tion with the bulk morphology. Incidentally, the template-free
approach also reduces the rate of false positives when the set of
supplied templates would not match the observed structures. For10

instance, several particles are classified as BCC by PTM, but fNGA
suggests that they are actually rHCP.

We note that even with the vastly improved performance of
fNGA compared to its original implementation, PTM still offers
a substantial performance advantage; classification by PTM took15

only 9s on the same machine described above. This roughly 20×
speedup, coupled with significantly lower memory requirements
due to the use of only a few templates, makes PTM better suited
for use on very large systems with only a few possible crystal
structures. However, Fig. 2 clearly demonstrates the advantage20

of fNGA when more nuanced information is desirable.

3.2 Thermalized crystal slabs
Next we evaluated a set of seven crystal lattices observed in col-
loidal self-assembly: BCC, FCC, HCP, simple cubic (SC), per-
ovskite, and the cubic and hexagonal stacking polymorphs of25

tetrastack (CT and HT). The broad range of densities and sym-
metries among these structures, effected by only small changes to
the particle interactions, was actually the original motivation for
the development of NGA. Synthetic configurations were prepared
by tethering purely repulsive WCA particles to lattice points by30

harmonic springs and thermalizing them with a Langevin ther-
mostat at T ∗ = 1. The transition from crystal to melt was imitated
by reducing the spring constant from 1000ε/σ2 in the center of
the simulation box (z = 0) to zero at the edges (z = ±Lz/2). We

Fig. 3 Projection of the first two collective variables obtained from the
diffusion map of thermalized crystal slabs with first-degree
neighborhoods. Colored points indicate unique neighborhood graphs,
circles/crosses indicate landmark graphs, and symbol size corresponds
to observation frequency and largest cluster size, respectively.
Real-space configurations are shown in a ball-and-stick representation
to illustrate differences between crystal lattices.

also included a completely liquid configuration, where no springs 35

were used, to populate the diffusion map with disordered struc-
tures. Snapshots of all eight configurations are available in the
ESI.†

From the sample set, fNGA found 4809 unique graphs from
15216 particles, 121 of which were selected as landmarks. The 40

analysis took 46s on one core of our workstation. A projection
into the first two collective variables from the diffusion map is
shown in Fig. 3 along with representative real-space particle con-
figurations from the snapshots. There is a strong separation in the
diffusion map between structures with low coordination numbers 45

(SC, perovskite, CT/HT; top left) and high coordination numbers
(BCC,FCC,HCP; bottom right). Because the highly coordinated
lattices are much more similar to each other than to those with
low coordination number, they appear as a tight cluster of three
different crystal signatures. 50

On the other hand, the tetrastack polymorphs are combined
into a single signature because their first-degree neighborhoods
are topologically identical. In order to differentiate them, the
neighborhoods must be expanded to include third-degree neigh-
bors. Repeating the calculation with these larger neighborhoods 55

results in a qualitatively different diffusion map, shown in Fig. 4.
This was constructed from 12543 unique graphs with the full pair-
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Fig. 4 Projection of the first two collective variables obtained from the
diffusion map of thermalized crystal slabs with third-degree
neighborhoods. Colored points indicate unique neighborhood graphs,
circles/crosses indicate landmark graphs, and symbol size corresponds
to observation frequency and largest cluster size, respectively.
Real-space configurations are shown in a ball-and-stick representation
to illustrate differences between crystal lattices.

wise distance matrix since our usual definition provided too few
landmarks to use Nyström embedding. The result was a much
slower calculation at 392s on our machine.

There are several downsides to the use of these large neighbor-
hoods. First, the relative position (and resulting color) of nearby5

structures become compressed even when they are topologically
distinct because large neighborhoods become increasingly delo-
calized from the central particle. For example, BCC, FCC, and
HCP are nearly indistinguishable in Fig. 4, even though their dif-
ference vectors are computed from a substantially large sample of10

graphlets than in Fig. 3. The problem is that the relative differ-
ence between topologically dissimilar structures (e.g., FCC versus
CT) becomes stronger as the graph expands, and the diffusion
map adapts to capture these increasingly dominant trends. In
this case, the tetrastacks develop into their own branch of the15

manifold, terminating in two distinct graphs which occupy nearly
identical positions. Thus the inclusion of sufficient detail to distin-
guish these very similar structures actually makes the distinction
between them insignificant compared to their differences with
topologically dissimilar structures.20

Simultaneously, each additional neighbor included in the graph
increases the likelihood of exposing the neighborhood to defects,
fragmenting the lattice into a large number distinct signatures
which may differ by only a few missing edges. While this does
not necessarily present any problems in building a diffusion map25

with appropriate topology (since the differences between them
will still be small relative to differences with other structures),
it does make it more difficult to detect lattices by simple metrics
like frequency or cluster size. Of course, the increased size of the
graphs and the increased number of unique graphs also makes the30

analysis more computationally demanding. In expanding from
one to three neighbor shells, we more than doubled the number

Fig. 5 fNGA collective variables compared to three of the local bond
order parameters. Points correspond to particles, where position is
determined by local bond order and color corresponds to the diffusion
map shown in Fig. 4.

of unique graphs from 4809 to 12543 – meaning that more than
80% of particles in the sample had unique graphs. These larger
graphs also demanded more time and memory for the graphlet 35

decomposition and comparisons. All together, these factors led to
nearly 10× slower analysis compared to only first-degree neigh-
borhoods.

While there are no standard techniques for classifying all of
the structures shown in Figs. 3 and 4, we did evaluate the snap- 40

shots using the local bond order parameters since they measure
symmetry quite generally and can in principle be applied to any
structure. However, they tend to yield disperse clouds of signa-
tures which can make it difficult to distinguish polymorphs. We
show the (q̄4, q̄6, w̄4) bond order parameters for each particle in 45

our eight snapshots in Fig. 5. The colors of these points corre-
spond to those assigned to the same particles from Fig. 4, al-
lowing us to make a direct comparison between (q̄4, q̄6, w̄4) and
(ψ2,ψ3,ψ4). fNGA basically collects clouds of points with similar
shape into single signatures, making crystal lattices stand apart 50

from each other and from disordered regions. This is especially
useful for picking out tetrastacks from Fig. 5, where at low q̄6

themalized particles may have a deformed shape but retain the
topology of the lattice and at high q̄6 some liquid particles may
attain a high degree of symmetry among their nearest neighbors 55

but lack the long-range ordering of the lattice. The full snapshots
in ESI† show that fNGA clearly differentiates the crystal lattice
from the surrounding liquid.

3.3 Open crystals
Finally, we evaluated a set of open structures which have been 60

observed to self-assemble from patchy particles with tetrahedral
symmetry.42–44 The low coordination number of these structures
makes them difficult to classify by conventional techniques, al-
though some hand-coded heuristics have been successfully em-
ployed for similar structures observed in water crystallization.45

65

As in the case of the tetrastack polymorphs, the first-degree neigh-
borhoods of these lattices are identical because they are all made
up of tetrahedrally coordinated particles. Therefore we expanded
the neighborhood graphs to include third-degree neighbors for
this system as we did in Section 3.2. We also found that the voids 70

of the clathrate structures were sometimes occupied by liquid par-
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Fig. 6 Projection of the first two collective variables obtained from the
diffusion map of open structures assembled from tetrahedral particles.
Colored points indicate unique neighborhood graphs, circles/crosses
indicate landmark graphs, and symbol size corresponds to observation
frequency and largest cluster size, respectively.

ticles whose anomalously high connectivity made them topolog-
ically distinct from all other observed structures, distorting the
diffusion map to accommodate these outliers. Since these topolo-
gies are inconsistent with the tetrahedral symmetry of the parti-
cles, we assigned an empty neighborhood to particles with more5

than 6 neighbors. This way they do not participate in the neigh-
borhood graphs of nearby crystalline particles, and instead are
classified as a distinct structure (i.e., interstitial defects).

The collective variables shown in Fig. 6 appear to primarily
distinguish clathrate structures (blue) and ice structures (pink),10

with continuous transitions to a liquid state (yellow/green). In-
terestingly, there are several different clathrate structures identi-
fied by the algorithm, including cages composed of five- and six-
membered rings. On the other side of the manifold we observe
distinct signatures for cubic and hexagonal ice. In each of these15

cases, the distance between polymorphs is very small relative to
the distance to the opposite branches or to the liquid. As in our
other examples, detection of these differences is virtually impos-
sible by visual inspection and instead relies on the detection of
large clusters with identical topology.20

We again compared the local bond order parameters to the col-
lective variables obtained from our diffusion map. Much the same
as in Fig. 5, the point cloud in Fig. 7 shows that topologically sim-
ilar structures become smeared out into clouds in the bond order
space. This is especially true for the clathrates, which become25

indistinguishable from liquids because of their weak cubic and
hexagonal symmetry. fNGA is able to distinguish between the
hexagonal and cubic ice, which fall into clusters on either side of
the w̄4 space, but the colors are nearly identical since these struc-
tures fall so close together in the diffusion map. Thus in cases30

where multiple large clusters are detected very near to each other
in the diffusion map, bond order analysis can offer additional in-
sight into how the real space structures may differ despite having
very similar topology.

Fig. 7 fNGA collective variables compared to the local bond order
parameters. Points correspond to particles, where position is
determined by local bond order and color corresponds to the diffusion
map shown in Fig. 6.

3.4 Implementation 35

We have released an open-source implementation of the fNGA
algorithm as a Python module at https://github.com/

wfreinhart/crayon. Our software package relies upon a stan-
dalone code for computing the diffusion map which is available
online.46

40

4 Conclusions

We have introduced a significantly faster implementation of the
Neighborhood Graph Analysis method for the template-free char-
acterization of crystal structures from particle tracking data. By
using the difference between relative graphlet frequencies as the 45

difference metric instead of computing the optimal permutation
of nodes between two graphs, we obtained a 10000× speedup for
our “fast NGA” (fNGA) compared to the original NGA method. We
have also developed an automated procedure to assign visually
distinct colors to each neighbor topology, providing a completely 50

autonomous workflow for characterizing crystal structures.

We demonstrated our improved method on three different test
systems, each of which pose problems to conventional crystal clas-
sification techniques. In the case of evaporation-induced crystal-
lization, we showed how fNGA could be used to characterize par- 55

ticles on the developing crystal surface – an important feature of
heterogeneous nucleation and growth processes – while the state-
of-the-art Polyhedral Template Matching technique could not. We
applied the analysis to seven crystal structures with a wide range
of coordination symmetries, most of which have no existing tem- 60

plates in the PTM framework, where fNGA both detected and
characterized all seven lattices. fNGA was also able to character-
ize clathrate and ice structures in assemblies of tetrahedral par-
ticles, a task which has previously required hand-crafted heuris-
tics for specific structures of interest. In all cases, fNGA can of- 65

fer valuable insight into assembly mechanisms which previously
could not be characterized or required expert intuition to assess
effectively.
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