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Curvature-dependent tension and tangential flows at
the interface of motility-induced phases

Adam Patch,∗a Daniel M. Sussman,a David Yllanes,a,b,c and M. Cristina Marchettia,c

Purely repulsive active particles spontaneously undergo motility-induced phase separation (MIPS)
into condensed and dilute phases. Remarkably, the mechanical tension measured along the in-
terface between these phases is negative. In equilibrium this would imply an unstable interface
that wants to expand, but these out-of-equilibrium systems display long-time stability and have
intrinsically stiff boundaries. Here, we study this phenomenon in detail using active Brownian
particle simulations and a novel frame of reference. By shifting from the global (or laboratory)
frame to a local frame that follows the dynamics of the phase boundary, we observe correlations
between the local curvature of the interface and the measured value of the tension. Importantly,
our analysis reveals that curvature drives sustained local tangential motion of particles within a
surface layer in both the gas and the dense regions. The combined tangential current in the gas
and local "self-shearing" of the surface of the dense phase suggest a stiffening interface that redi-
rects particles along itself to heal local fluctuations. These currents restore the otherwise wildly
fluctuating interface through an out-of-equilibrium Marangoni effect. We discuss the implications
of our observations on phenomenological models of interfacial dynamics.

1 Introduction
Pierre-Gilles de Gennes wrote1 that “the interfaces between two
forms of bulk matter are responsible for some of the most unex-
pected actions... the overlap region is mobile, diffuse, and active.”
This description is particularly apt as applied to the emergent be-
havior of dense collections of active Brownian particles (ABPs), in
which purely repulsive particles are driven out of equilibrium via
self-propulsive forces in an overdamped environment2. Even in
the absence of attractive interactions, such systems can spectac-
ularly phase separate into a dense liquid phase coexisting with a
dilute gaseous phase2–5. This motility-induced phase separation
(MIPS) is heuristically understood by considering the persistent
dynamics of an individual particle, and it occurs when the time
for a particle to re-orient after a collision becomes long relative to
the typical mean free time between those collisions. The occur-
rence of MIPS has also been described through an approximate
mapping onto an effective equilibrium system undergoing con-
ventional vapor-liquid phase separation.5–13 It has been demon-
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strated in numerical simulations in two and three dimensions for
various minimal models and repulsive potentials.2,14–17 Experi-
ments in active colloids and bacterial suspension, however, gener-
ally observe the formation of finite-size clusters rather than bulk
phases, suggesting that non-generic phenomena may be at play
and arrest the phase separation.18–23

A typical snapshot of such an out-of-equilibrium phase separa-
tion is shown in Fig. 1, where the enormous fluctuations charac-
teristic of MIPS are readily seen. Large fluctuations occur both
at the interface and in the bulk of the dense phase, where bub-
bles of the dilute phase spontaneously nucleate and travel to the
phase boundary, breaking at the surface (see SI for a video). De-
spite the wildly fluctuating nature of the interfaces, connections
with interfacial properties of equilibrium phases have been iden-
tified.12,13,24–28 For example, as we describe in more detail be-
low, the scaling of the interfacial stiffness with system size is
found to be consistent with equilibrium arguments. There is,
however, a major caveat: the measured interfacial tension γ is
negative,13,24,26 and the equilibrium arguments connecting it to
the interface stiffness require one to take |γ| as the relevant quan-
tity.25

How can we reconcile a stable, equilibrium-like interface with
negative values of surface tension, especially in a system driven
by far-from-equilibrium dynamics? In this work we rely on ex-
tensive simulations to study the structure of the MIPS interface.
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Fig. 1 Top: A snapshot of a system composed of roughly 2×105 active
Brownian particles of radius r0 undergoing spontaneous separation into
dense and dilute phases. The persistence length of the particles (defined
in the text) is `p = 100r0; the area fraction is φ = 0.5 and phase separa-
tion into a strip geometry is attained by choosing the aspect ratio of the
simulation box to be Lx/Ly = 2, with periodic boundary conditions (here
Lx = 1600r0). Bottom left: A demonstration of two methods for identify-
ing the interface, with black scale bar of length `p = 100r0. The pixelated
red curve results from a contour-finding algorithm that captures all over-
hangs and allows for local curvature measurements, while the smoother
blue curve considers only the outermost particles at each value of y and
can be used to obtain the spectrum of the interface height fluctuations
(see Appendix A for details). Bottom right: A schematic of the the local
frame we use to measure dynamical quantities near the interface (see
Appendix B for details).

We show that for such strongly fluctuating interfaces – where the
instantaneous deviation of the interfacial height from its average
value is decidedly not small – a transformation to the local co-
ordinate frame along the interface (illustrated in Fig. 1) reveals
surprising additional structure. An important finding is a strong
correlation between the local curvature and the magnitude of the
surface tension. By examining in detail the local dynamics near
the fluctuating interface, we demonstrate the existence of surface
layers with large local tangential particle motion in both the di-
lute and the dense regions. While such tangential currents in the
interfacial region within the gas have been highlighted before,
the local "self-shearing" of the surface layer in the dense phase
is a new result. This observation suggests a new mechanism for
the stabilization of active interfaces where the interface directs
particles along itself to heal fluctuations.

Below, we first describe our simulation model and study the
properties of the interface in a global reference frame, in line with
other studies.13,24–26 In addition to expanding on previous results
for the scaling of the interfacial width with simulation size, we
directly study the spectral density of the interface fluctuations.
Despite the non-equilibrium character of the system, this spec-
trum is surprisingly equilibrium-like. In this global frame we also
study the (mechanically defined) value of the interfacial tension

over a wide range of parameters, varying the persistence length
of the particles. We confirm the unusual result that the interfacial
width scales with a stiffness proportional to the absolute value of
a negative γ.

We then shed new light on the mechanism of interfacial stabil-
ity by shifting to a local frame defined along the interface, utilizing
an algorithmically traced interface contour with single particle
resolution. In this frame, it is straightforward to define normal
and transverse particle fluxes and forces. Using this technique
we quantify the strong correlations between the local curvature
of the interface and the value of the surface tension: although
we find that the tension is always negative, it is closest to zero
in regions of large positive curvature (inward “valleys”) and most
strongly negative in regions of large negative curvature (outward
“mountains”).

We close by presenting a heuristic picture of the emergent
collective behavior of self-propelled particles near the interface,
highlighting how their dynamics produces a negative interfacial
“tension”, resulting in an effectively “extensile” interface that
tends to grow longer, while maintaining its integrity. This is in
sharp contrast with familiar equilibrium interfaces that are “con-
tractile” in the sense that the positive tension always tends to
shorten the interface. These interfaces have been phenomenolog-
ically interpreted in terms of Edwards-Wilkinson-like growth pro-
cesses,26,29 but the dependence of the surface tension on local
curvature naturally leads to simple KPZ-like equations.30 We at-
tempt different scaling collapses of our data for interfacial rough-
ening in an effort to discriminate between these scenarios.

2 Model and Methods
We simulate a system of active Brownian particles (ABPs) in a
regime in which they are known to undergo motility-induced
phase separation (MIPS). We choose a strip geometry for ease
of identification of the interface. We identify the dense phase as
all members of the largest set of touching particles, while the gas
phase is composed of those remaining particles.

2.1 Active Brownian Particle Model

A minimal model of monodisperse, purely repulsive ABPs2 con-
sists of N self-propelled particles with interaction radius r0. We
place these in a rectangular simulation domain of sides Lx and Ly

with periodic boundary conditions, setting Lx/Ly = 2 so that the
bulk phases yield a quasi-1D interface (see Fig. 1). Each particle is
identified by its position ri and director ei = (cosθi,sinθi) that de-
fines the direction of the propulsive force Fs

i = (v0/µ)ei, where v0

is the propulsion speed and µ the mobility (inverse friction). The
particles are governed by the overdamped Langevin equations

ṙi = µ
(
Fs

i +∑
j 6=i

Fi j
)
, (1)

θ̇i =

√
2
τr

ηi(t) , (2)

where ηi(t) is a Gaussian random torque with zero mean and
variance 〈ηi(t)η j(t ′)〉 = δi jδ (t− t ′). The variance of this fluctuat-
ing torque is set by the persistence time τr = 1/Dr, where Dr is
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rotational diffusion. The pair forces between particles i and j,
Fi j, are obtained from a repulsive Weeks-Chandler-Anderson po-

tential, Fi j =− ∂VWCA
∂ ri j

= 12ε

rc

[( rc
ri j

)13−
( rc

ri j

)7]r̂i j for r < rc = 2r0 and
|Fi j|= 0 otherwise, where ri j = ri− r j is the interparticle separa-
tion and r̂i j = ri j/|ri j|.

We neglect noise in the translational dynamics, which is less
important than the orientational noise in both synthetic active
colloids and swimming bacteria.23,31 The non-equilibrium nature
of this active model is provided by the propulsive force Fs

i of each
particle. After integrating out the angular dynamics, Fs

i represents
a non-Markovian stochastic force correlated over the persistence
time τr. The key property of active particles is that the finite corre-
lation time of this noisy propulsive force is not matched by similar
correlations in the (constant) mobility µ. This, together with the
lack of a Gaussian distribution of speeds, breaks the fluctuation-
dissipation theorem embodied by the Stokes-Einstein relation.

The persistence time τr controls the crossover from ballistic to
diffusive single particle dynamics: at short times the dynamics
of non-interacting ABPs is ballistic, and for t � τr it is diffusive
with diffusion coefficient Ds = v2

0τr/2. The single-particle dynam-
ics can be characterized by the persistence length `p = v0τr, which,
together with the area fraction φ , controls the phase behavior of
this interacting non-equilibrium system.4,31

2.2 Capillary waves and interface width

Taking a mesoscopic view of the interface, one can characterize
the fluctuations in terms of the deviations of the instantaneous lo-
cation of the surface along the x direction from its mean value,32

δh(y, t) = h(y, t)− h̄(t), with h̄(t) = 1
Ly

∫ Ly
0 dy h(y, t). The mean inter-

facial width can then be written as,

w2 =
1
Ly

∫ Ly

0
dy 〈|δh(y)|2〉= ∑

q
〈|δh(q)|2〉 , (3)

where

δh(q) =
1
Ly

∫ Ly

0
dy δh(y)e−iqy. (4)

In thermal equilibrium, interfaces carry an excess free energy
Es = γ` determined by the constant interfacial tension, γ, and the
length ` of the interface, with

`=
∫ Ly

0
dy
√

1+ |∇yh(y)|2 ≈ Ly

[
1+

1
2 ∑

q
q2|δh(q)|2

]
. (5)

The interfacial height mode amplitudes are then determined by
the equipartition theorem as

〈|δh(q)|2〉= 2
Ly

kT
γq2 . (6)

Substituting Eq. (6) into Eq. (3), we can immediately calculate
the interface width as

w2 = w2
0 + ∑

q>0
〈|δh(q)|2〉= w2

0 +
Ly

12σ
, (7)

where w2
0 describes the fluctuations of the q = 0 mode and σ =

γ/kT is the interfacial stiffness that measures the cost of deforma-
tions along the entire length Ly.

Note that the preceding analysis is carried out under the as-
sumption that δh� 1. Even though the interfaces in MIPS sys-
tems are characterized by extremely large fluctuations, we will
find that the scaling of the width the system size and the Fourier
spectrum of the interfacial modes are surprisingly well-described
by these equilibrium, small-fluctuation expressions.

2.3 Interfacial tension

A mechanical definition of the interfacial tension γ can be ob-
tained by examining the work δW = γδ` needed to change the
length of the interface by an amount δ`. Here we follow the stan-
dard quasi-thermodynamic treatment of Ref.32, where in equilib-
rium it is shown that this mechanical definition yields the same
value as that obtained from the interfacial fluctuations. As we
will see, this is not, however, the case for ABPs24,26.

Working in two dimensions, we consider a one-component sys-
tem confined to a box of area A = `2 and separated into two bulk
phases, with a vertical interface at some position 0 < x0 < `. If the
area of the system is changed isotropically by an amount δA, the
associated work is controlled by the pressure, with δW = −pδA.
To define the tension we imagine isothermally and reversibly de-
forming the sides of the confining box so that the interface in-
creases in length by an amount δ`, while maintaining fixed area.
This requires an anisotropic deformation of the box, but the sym-
metry of the interface ensures that the pressure tensor can only
have non-zero components pxx and pyy. The tangential work done
to the system in increasing the length of the interface is then

δWt =−δ`
∫ `

0
dxpyy(x) (8)

and the normal work done in keeping the area fixed is

δWn = `δ`pxx. (9)

In writing the above expression we have assumed mechanical sta-
bility of the interface, ∇ ·p = 0. This, together with the symmetry
of the system ensures that pxx is not itself a function of x or y. The
total work done is then

δW = δWn +δWt = δ`
∫ `

0
dx
(

pxx− pyy(x)
)
. (10)

Comparing this expression with δW = γδ` we recover the
Kirkwook-Buff expression33,

γ =
∫ dilute

dense
dx
[
pn− pt(x)

]
, (11)

where we have more generally replaced Cartesian components of
the tensor with normal and tangential components, and assumed
that the two phases we are considering are a dense and dilute
phase.

Equation 11 quantifies the surface tension as the total
anisotropy in pressure across the interface. It assumes of course
that the local pressure tensor has a mechanical definition. In the
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next section we outline how we measure the local pressure tensor
for our active system and compute Eq. 11.

2.4 Pressure in Active Matter
The pressure p of a system of overdamped torque-free active par-
ticles involves two contributions: a contribution due to direct
particle interactions, pd, and a “swim” contribution that repre-
sents the flux of propulsive forces across a unit area, ps, with
p = pd + ps. The components of the interaction pressure tensor
pαβ

d , where α, β denote Cartesian indices, are given by a virial
expression in terms of particle pair interactions,

pαβ

d =
1

dA ∑
i, j

Fα
i j rβ

i j . (12)

The swim pressure can also be calculated via a virial-like expres-
sion.16,31,34 A numerically more useful expression for the local
swim pressure is given in terms of the flux of “active impulse”, as

pαβ
s =

1
dA ∑

i
Jα

i vβ

i , (13)

where vi is the velocity of particle i and Ji[θi(t)] = Fs
i (t)τr is the

active impulse introduced in Ref.35, where it was shown that the
expression given in Eq. (13) for the swim pressure is equivalent to
the virial one proposed in previous work.16,36 The form in terms
of active impulse is more convenient for numerical studies be-
cause it avoids the strong finite size effects that arise in calcula-
tions of the virial expression for the swim pressure.34

Since there are many quantities considered in this work, we
summarize them in table ??.

name symbol normal tangential
pressure p∼ e ·v pn ∼ envn pt ∼ etvt

current density I = φv In It
swim current density Is = φv0e Is

n Is
t

Table 1 A summary of the various quantities used in the text and figures.

2.5 Simulations
Simulations of large phase-separating systems of ABPs require to-
tal running times t� τr and integration timesteps ∆t� τr.34 This,
in addition to the wildly fluctuating nature of the interfaces and
the need to sweep different `p values, means that considerable
computational effort must be made to gather an adequate statis-
tical sample. Most of our simulations have been carried out on
GPUs using the HOOMD-blue37,38 simulation package, comple-
menting with CPUs for the smaller system sizes.

To suppress transients, we nucleate the phase-separated strip
by initially placing particles in a triangular lattice with interpar-
ticle distance ri j = 2r0. We performed parameters sweep by us-
ing persistence lengths `p = {60,80,100,120,140,200} and system
sizes Lx = {200,400,600,800,1600}. The area fraction was fixed
at φ = 0.5, with µ = 1 and v0 = 100. We have simulated for
t ≥ 1× 103τr, with a number of independent runs Nruns = 100
for our smallest systems, down to Nruns = 8 for Lx = 800. Un-
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Fig. 2 Top: density profiles in the interface frame, for varying persis-
tence. [Inset] Scaling of w2 as a function of Ly/`p, for comparison to
Eq. 7. Bottom: Interface height fluctuation spectrum for systems with
Ly = 400, collapse for several values of `p. The equilibrium expectation
〈|δh(q)|2〉 ∼ q−2 is shown as a solid black line. The collapse of `p|δh(q)|2,
signifies the clear dependence of interfacial fluctuations on persistence.
[Inset] Best fit exponent characterizing the initial decay of the interface
modes as a function of `p.

less stated otherwise, the results in this paper refer to Lx = 800
systems. In order to study the interface growth, we have also run
shorter simulations (t = 100τr) that do not reach the steady state,
for system sizes ranging from Lx = 400 (Nruns = 400) to Lx = 2400
(Nruns = 28).

We note that previous studies have found strong finite-size ef-
fects when studying the pressure of phase-separated systems with
`p ∼ L, even at low density.34 Measuring the swim pressure with
the active impulse flux, Eq. (13), rather than with a virial expres-
sion, mitigates this effect. Nevertheless, we have kept the values
of `p smaller than Lx in our work.

3 Measurements in the global frame
The MIPS interface is characterized by wild fluctuations (as seen
in Fig. 1). Upon time-averaging, however, the interface appears
deceptively well-behaved and equilibrium-like. In this section we
show this by characterizing the average density profile, determin-
ing the stiffness of the interface from the scaling of the interfacial
width, and investigating the spectrum of interface fluctuations.
We will often refer to the system as divided into two sets of parti-
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Fig. 3 The main figure correlates the interfacial tension (defined via Eq.
11) and the stiffness (defined via Eq. 7), showing that the tension be-
comes more negative with increasing stiffness. This suggests that the
same dynamics that produces a positive stiffness yields a negative in-
terfacial tension. The black points correspond to measurements in the
global frame (described in Sec. 3), while the blue points correspond to
measurements in the local frame of the interface (described in Sec. 4).
The solid lines are linear fits to γ(σ) = A + Bσ . The inset shows the
difference between normal and tangential pressure that determines the
integrand in Eq. 11, broken down into cluster and gas contributions, high-
lighting the significant net-negative contributions from both cluster and
gas particles. The dotted line marks the location of the mean interface
determined using Eq. 14.

cles: those belonging to the largest connected cluster (dense) and
those in the gas (dilute).

3.1 Interface width and stiffness
Working in the global frame, we first consider the average area
fraction projected onto the x-axis, φ(x) = 1

Ly

∫ Ly
0 dy φ(x,y). The

resulting profile is well described by

φ(x) =
φ++φ−

2
+

φ+−φ−
2

tanh
(

x− x0

2w

)
, (14)

where φ± denotes the area fraction for the dense and dilute
phases, x0 is the mean position of the interface, and w is a measure
of the interfacial width. In broad agreement with previous ob-
servations,5 we find that with increasing `p the interfacial width
decreases and the difference in density between the coexisting
phases increases, as we show in the upper panel of Fig. 2. The
inset to the upper panel of Fig. 2 also shows that w2 ∼ Ly for a
variety of `p.

We note that the finite intercept at Ly = 0 provides an estimate
of the minimum system size needed to observe MIPS in these sys-
tems. In the following, γ is calculated from its mechanical defi-
nition (Eq. (11)), while σ is extracted from Eq. (7) by fitting the
scaling behavior of the interface width with system size Ly (i.e., it
is obtained from the slope of the linear curves in the inset of the
top frame of Fig. 2.)

3.2 Interface fluctuations
Although the MIPS interface is extremely rough and is character-
ized by frequent overhangs, to quantify the structure of the inter-

facial fluctuations we approximate the interface by constructing a
height map h(y) as described in Appendix A. We then examine the
Fourier spectrum of δh(y) = h(y)− h̄, where h̄ is the instantaneous
value of the mean position of the height map, and average the
resulting mode spectrum 〈|δh(q)|2〉 over time in the steady state.
The spectrum of interfacial fluctuations shown in Fig. 2 is well de-
scribed by 〈|δh(q)|2〉 ∼ `−1

p q−β , in keeping with our finding that
the interfacial width itself scales with `p. We do observe small
deviations from the strictly equilibrium expected scaling of β = 2
(see inset of lower panel of Fig. 2).

Interfacial fluctuations have recently been measured in a mix-
ture of active and passive disks with attractive interactions.39 In
that case the attractions stabilizes the interface and activity en-
hances the stiffness that grows linearly with `p.

3.3 Mechanical surface tension

As discussed in Section 2.3, a straightforward mechanical mea-
surement of the surface tension involves integrating differences in
the local pressure tensor across the interface,24 via γ =

∫
dx
(

pn−
pt
)

(Eq. 11). In the global frame one simply has pn = pxx and
pt = pyy. At an equilibrium liquid-gas interface the positive sur-
face tension arises from the lowering of tangential pressure associ-
ated with the weaker binding of liquid surface molecules as com-
pared to bulk liquid molecules. In our active system, in contrast,
we find a large increase of tangential pressure at the interface, as
shown in the inset of Fig. 3 (see also Fig. 8 for further details).
This large tangential pressure is responsible for the negative value
of the interfacial tension. It arises not only from the swim pres-
sure of the gas (Fig. 8), as shown in previous work,13,24,26 but
also from continuous tangential self-shearing motions of particles
at the surface of the dense phase. In other words, particles mov-
ing tangentially in the interfacial region both inside and outside
the dense phase contribute the negative sign of the tension, as
explicitly demonstrated below.

Interestingly, we also find that the magnitude of the surface ten-
sion increases with persistence length, meaning that in these sys-
tems stiffer, sharper interfaces correspond to more negative val-
ues of tension. Classically, a negative interfacial tension would in-
dicate an interface that prefers to grow; here the opposite occurs.
Refs.24,25 conjectured a “housekeeping work” whk that accounts
for the work done by the particle as opposed to the work done to
the particle wex, resulting in a relationship between tension and
stiffness of the form γ = −σFs`p. Earlier we found that σ is lin-
ear in `p, implying a quadratic dependence of γ on `p (or on σ).
However, the fact that σ(`p) has a non-zero axis intercept (Fig. 2)
makes it very difficult to verify this relation quantitatively. In-
deed, while our results show qualitative agreement with the idea
that Fs`p sets an energy scale relevant to determining interfacial
stability, with our error bars γ seems to be adequately represented
by a linear dependence on σ (Fig. 3).

4 Measurements in the local frame
It is well known that even in an ideal gas of ABPs the geometry
of any confining wall has a strong influence on both the structure
and dynamics of the system.40,41 In MIPS the gas particles inter-
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act with an emergent, self-generated boundary that continuously
absorbs and releases particles, with zero net flux at steady state,
but substantial local tangential currents. It is therefore illuminat-
ing to probe the interfacial structure and dynamics with respect
to a local frame at each point of the interface. As described in
more detail in Appendix A, we use a contour-finding algorithm to
move beyond the height-map representation h(y) to the position
of the interface with respect to the contour length along the in-
terface itself, h(s). To do so, we define a local frame whose origin
is set at points along the contour and whose orientation is set by
the local normal n (which is also calculated using this contour by
fitting a region around a given point to a quadratic function and
evaluating its curvature). We then compute the average value of
the pressure tensor in slices of fixed width at each point along the
interface. Although our results are quantitatively sensitive to the
choice of slice width and curvature coarse-graining scale, we have
confirmed that our qualitative results are robust to any sensible
choice of these parameters.

4.1 Dynamics along the interface

We first illustrate our findings by looking at the structure and dy-
namics of the particles in this local frame of measurement. The
stability of MIPS interfaces has often been heuristically explained
by particles pointing “inward” at the outer edge of the dense clus-
ter, with a rotational re-orientation time for these particles that is
longer than the typical time for a gas particle to arrive at the in-
terface.5 The condition of net zero flux then suggests large trans-
verse currents in the gas phase outside the dense cluster.39

In Fig. 4 we can see this dynamics at play in the local frame of
the interface. The square points show the average anisotropy of
the swim current density, (Is

n)
2−(Is

t )
2, and show that indeed parti-

cles in the dense cluster but near the interface preferentially point
inwards, while particles in the gas phase preferentially point tan-
gent to the local interface. An examination of the current density
field itself, I2

n − I2
t , reveals, however, an unexpected behavior. In

the gas phase the current and the swim current point in the same
direction since interactions are negligible, but these two quanti-
ties are distinctly different for particles at the interface within the
dense phase. One clearly sees that there is a local transverse cur-
rent even in the dense phase, as the projection of the swim force
in the tangential direction causes the clustered particles to slide
along the very boundary they are defining.

The transverse swim current is also enhanced by persistence,
which we have shown corresponds to stiffer interfaces. Additional
details are given in Section 4.3 where we examine the behavior
in the interfacial layers both within the dense and the gas phases.
One observes tangential particle motions in both regions and an
associated local stiffening of the interface, with the fluctuating
boundary providing a local guiding effect on active gas particles
similar to that observed for curved solid walls.41.

4.2 Interfacial curvature and local surface tension

The findings above, showing correlated flows in both the dense
and dilute phases on either side of the interface, qualitatively sug-
gest a Marangoni-like local mass transport that stabilizes the in-
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Fig. 4 We use the local frame to illuminate the complex dynamics near
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tially. The bottom figure shows the square tangential current density

[
It
]2

of gas and cluster particles, as well as their sum. Tangential currents are
largest in the dense phase. Results shown for `p = 100.

terface. Inspired by this, we explicitly investigate the connection
between the curvature of h(s) and the local mechanical measure-
ment of surface tension.

In the local frame, we still find on average a negative value for
the surface tension. In this frame, though, we find that the spa-
tial profiles of pn− pt are much sharper, and individual slices can
be binned according to the local value of curvature. These mea-
surements have enormous fluctuations (with a variance at least
an order of magnitude larger than the mean), but careful aver-
aging allows us to distinguish a clear correlation between local
curvature and local tension, which we show in Fig. 5 (restricting
ourselves to values of the local curvature within one standard de-
viation of the mean to ensure sufficient statistics). Although the
mean surface tension is negative for all values of curvature, we
find that the outward mountains of the interface (i.e., regions of
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(where higher values of `p have a more peaked distribution of curvature).

negative curvature) are quantitatively more unstable than the in-
ward valleys. This gradient of stability provides a mechanism for
the interface to dynamically stabilize itself as transverse currents
from the mountains on average fill in the gaps in the valleys.

4.3 Dynamics near the interface

Previous work has focused on measuring the direction of the par-
ticles’ propulsive force (polarization), identifying the excess of
particles with inward polarization just inside the dense cluster
as the main stabilizing mechanism. In this paper, we have closely
examined the local dynamics in the interfacial region both within
the dense and the gas phases. While we do observe an excess
of particles with inward-pointing polarization at the surface of
the dense phase (see Fig. 6), the most intriguing observation is of
sustained local tangential motion of particles in both regions. This
dynamics is displayed in more detail in Fig.6, where we show that
the anisotropy of current extends into each phase within a surface
layer. Additionally, while the thickness of the region of inward-
pointing swim current in the dense phase decreases slightly with
increasing persistence (see inset of Fig. 6), the thickness of the
layers with finite current increases with persistence in both the
gas and the dense phases. In these regions we observe both nor-
mal currents that balance each other and tangential currents that
average to zero (Fig. 6), but greatly exceed in magnitude the nor-
mal currents (Fig. 4). This suggests that the stiffening of the inter-
face results from the combined effect of inward polarization ex-
cess at the cluster’s surface, local tangential flows in the gas, and
the self-shearing of the interface in the dense cluster that heals
fluctuations and enhances stability. This observation may provide
additional intuition in constructing simple models of MIPS sys-
tems, such as the Active Matter Model B+28.

5 Discussion

In a model of purely repulsive active Brownian particles undergo-
ing motility-induced phase separation, we have explored the sur-
prising dichotomy of an interface that on one hand exhibits some
equilibrium-like properties (a well-behaved time-averaged den-
sity profile and a nearly q−2 spectrum of interfacial fluctuations),
but on the other is governed by strong fluctuations driven by non-
equilibrium physics, resulting in negative interfacial tension. It is
tempting to try to write down a phenomenological model of the
interface. Some authors have in fact proposed mapping the MIPS
interface to an Edwards-Wilkinson (EW) growth model.26 On the
other hand, our finding that the surface tension is itself a function
of the local curvature naturally leads to additional terms, such as
those in the Kardar-Parisi-Zhang (KPZ) description.30

Although it is clear that in the presence of a negative surface
tension additional terms would be needed to stabilized the KPZ
equation, we have tried to discriminate between different uni-
versality classes for the MIPS interface by measuring the critical
exponents characterizing interfacial growth and steady state fluc-
tuations. For 1d interfaces both the EW and KPZ models are char-
acterized by the same roughening exponent, α = 1/2, character-
izing the growth of the steady-state interface width with system
size Ly. They differ, however, in the exponent β that controls the
interface growth at short times, w(t) ∝ tβ , with βKPZ = 1/3 and
βEW = 1/4. Discriminating between the two scenarios is numer-
ically challenging for two reasons. First, the values of β differ
only slightly in the two models. Second, as previously pointed
out, there is a smallest system size necessary to observe MIPS, so
achieving even a single decade in linear system size Ly requires
very large computational effort. Nevertheless, we have run many
short simulations, starting from a flat interface, to try to charac-
terize the growth process. Surprisingly, we find that the EW dy-
namical exponent seem to better collapse the data than the (from
a symmetry standpoint) more natural KPZ model. In particular,
fits to w(t) = Atβ for our largest systems suggest β = 0.23(3).

The key features of the MIPS interface seem to be a nega-
tive value of surface tension coupled with a scale-free, nearly
equilibrium-like spectrum of interfacial fluctuations. The nega-
tive value of γ suggests that either additional terms in ∂th or the
coupling of h to another field is required. Natural candidates,
such as ∇4h terms or the coupling of the interfacial dynamics to
a scalar field describing the flux of particles in and out of the two
phases, select either a length scale or a time scale, and neither
is seen in our system (we have confirmed that in our data the
power spectrum of the interface S(q,ω) does not have any appar-
ent time scale). The slight deviations from the equilibrium scaling
of 〈|δh(q)|2〉 may indicate that either a fundamentally nonlinear
phenomenological model is required, or that simulations of much
larger systems would reveal a long characteristic length scale in
the problem. We view such simulations as a natural object of
future study to resolve this issue.
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Fig. 6 The left frame shows the normal swim current density Is
n measured in the local frame and averaged along the interface. The solid (open) symbols

correspond to particles in the dense (gas) phase. The data show that there is an excess of inwardly polarized particles in a surface layer of thickness
ξ s

d in the dense phase, but not in the gas. The length ξ s
d has been extracted with an exponential fit to the decay of Is

n and is shown in the inset as a
function of `p. It is found to decay slightly with increasing persistence. The net tangential component of swim current density Is

t (not shown) remains
zero at the interface because particles travel without preference in either direction tangent to the interface. Right shows the normal current density In
measured in the local frame and averaged along the interface. Again, solid (open) symbols correspond to particles in the dense (gas) phase. The
positive, outward-moving average current just inside the dense phase is balanced by the negative inward-moving current just inside the gas phase.
Within each phase, the normal average current is finite within a surface layer of thickness ξd (dense) and ξg (gas) and decays exponentially. The solid
lines are fits to the exponential decay. The top right inset shows ξd,g extracted from those fits as functions of `p. The solid lines are fits that show the
linear growth of ξd,g with persistence. The bottom left inset shows that the signed tangential current density It is zero at the interface because particles
travel without preference in either direction tangent to the interface. Here we see the fluctuations in the tangential current are much larger inside the
cluster where tangential are most dominante (compare to Fig. 4).

Appendices

A Locating the interface
We have utilized two techniques to locate the interface and quan-
tify its properties. The first uses a global frame of reference with
axes normal and tangential to the mean (temporally and spatially
averaged) interface (x and y) and yields a height map projected
onto the y-axis, h(y). The second traces an outline of the bound-
ary of the strip yielding a parameterized curve h(s) that captures
fluctuations and overhangs. In both cases, for a given snapshot
we quantify the configuration and position of left and right inter-
face, denoted by hL,R.

A.1 Height map h(y)

To calculate the height map we follow a straightforward proce-
dure:

1. Distribute the cluster particles in nbin bins according to their
y-position.

2. Sort particles in each bin according to their x-distance from
the cluster center.

3. Average this x-distance of the left-most or right-most navg

particles. The resulting quantity is identified with hL/R(y).
In general we use navg = 3.

The width dy = Ly/nbins of the bins is chosen as dy = 2r0. We have
also verified that slightly larger bins do not significantly change
our measurements.

A.2 Interface contour h̃(s)
We have also quantified the interface not as a height map but
as a curve parameterized by its arc length. To do so, we have
implemented a classic contour-finding algorithm42 with square
pixel resolution l at the size of particles, l = 2r0. Schematically,
the algorithm proceeds as follows:

1. Discretize the system into square pixels of size l.

2. Mark all pixels containing cluster particles, call this set G.

3. Dilate G by creating a new set D such that G ⊂ D where all
pixels adjacent to members of G are marked in D.

4. Determine set of contour pixels C = D−G.

5. Connect contours using a depth-first-search algorithm, col-
lating adjacent points into subsets c such that c ∈C.

The result can be seen in Fig. 1. Once the sets c are available,
we locate the longest contours that cross the periodic boundaries
an odd number of times. These are then sorted in left and right
according to their x-distance from the strip center of mass xCM.
The height h̃(s) is then defined as the distance of these points
from xCM. Note that h̃(s) is a multiple-valued function on scales
just wider than a single pixel.

A.3 Smoothing
While the above measure of the interface is generally useful for
determining the interface length, including the more fractal in-
lets that exist down to the single-particle level, the noise on our
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Fig. 7 The growth of the interfacial width w(t) starting from a flat con-
figuration for several `p and system sizes is shown. We present a scal-
ing collapse according to the Edwards-Wilkinson (top) and Kardar-Parisi-
Zhang (bottom) critical exponents. Here α = 1/2, z = α/β , βKPZ = 1/3,
βEW = 1/4.

measurements of local curvature is significantly reduced when we
smooth the interface contours h̃(s) to h(s). To do this, we calcu-
late the shortest path along h̃(s) using the Dijkstra algorithm43 on
this relatively sparse, but connected set. More specifically we

1. Choose any pixel p ∈ c with only two neighbor pixels
p−, p+ ∈ c.

2. Run Dijkstra on reduced contour (c− p), starting at p+ and
ending at p−.

3. Add p back to the Dijkstra path to connect the set h(s).

The resulting h(s) is now a smooth connected path that winds the
periodic box in the y-direction.

A.4 Determination of local normal to the interface
Using either the basic contour h̃(s) or the smoothed h(s), we cal-
culate a local normal n̂ using the local tangent vectors, as defined
by each pixel and two nearest neighbors. We coarse-grain these
vectors by averaging the normal vectors of the ncg nearest neigh-
bors contour pixels. We test the result by eye and find that a

coarse-graining of n≈ 10 neighboring pixels works well at several
`p. The result is a set of normal vectors n(s) along the interface.
For consistency, we use the same number of normals for the un-
smoothed and smoothed interfaces, although this number could
be reduced in the smoothed case.

B Local frame

The local frame is defined using h(s) or h̃(s) and the set of normal
vectors n(s), where s is the set of connected points defining the
contour. Contours h̃(s) are multiple-valued functions, so when
using this contour we ignore those points that don’t have enough
neighbors to properly define a normal. In the case of h(s), this
problem is avoided by definition.

Using h(s) and n(s), we define a set of bins contained in a box
of width wc length Lc, oriented along n(s) and centered at h(s).
The bin width dnc = 4r0 sets the spatial resolution of our local
frame data. A schematic of this frame is shown in Fig. 1. With
this binning technique, we collect information for all particles that
fall inside the box. Given the local normal, it is straightforward to
properly transform the various scalar, vector and tensor physical
quantities measured in this work from the global (x-y) frame to
the local frame.

C Correlation between curvature and tan-
gential currents in the local frame

Strong correlations between the local curvature and spatially-
resolved tangential currents are implied by the curvature-
dependent interfacial tension shown in Fig. 5. Due to the wild
fluctuations at the interface, however, it is difficult to directly vi-
sualize these curvature-dependent flow profiles (as was done in
the case of active particles near a hard boundary44).

To obtain sufficient statistics, we instead compare the pressures
and currents in our local frame slices (see bottom right frame of
Fig. 1 for a pictorial definition of the slices) associated with parts
of the interface beyond or within the average height of the inter-
face. On average, if h̄ is the average position of the interface, then
slices associated with δh(s) = h(s)− h̄ > 0 correspond to regions
of negative curvature (“mountains”) and slices associated with
δh(s) < 0 on average correspond to regions of positive curvature
(“valleys”), with s is the position of the slice along the interface.
Although indirect, this simple criterion allows for easy collection
and processing of the large amounts of data needed to get a rea-
sonable signal-to-noise ratio.

For ease of notation, in this section we introduce a local ten-
sion γ̃(s) calculated from its mechanical definition (Eq. 11) at the
position s of each slice and denote the corresponding integrand
by π(r,s),

γ̃(s) =
∫ dilute

dense
dr
[
pn(r,s)− pt(r,s)

]
≡
∫ dilute

dense
dr π(r,s), (15)

where r is the coordinate along the direction of the slice at s. The
mean interfacial tension γ is then obtained by averaging over s. In
Fig. 9-top we first show the slice average of the difference in this
quantity beyond and within the average position of the interface:
∆π(r) = 〈πδh<0(r,s)−πδh>0(r,s)〉s, where 〈...〉s denotes an average
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Eq. (11).

over s. In agreement with the correlation between curvature and
tension itself (Fig. 5), we see that the tension integrand is less
negative for δh < 0 than for δh > 0. Furthermore, we find that
the primary contribution to ∆π(r) arises within the dense cluster,
with a peak in approximately the same location as the transverse
current shown in Fig. 4-bottom.

We also examine the difference between the tangential current
density of cluster particles and we find that there is indeed a

greater transverse current in the “mountains” than in the “val-
leys” (Fig. -bottom). Although indirect, these two observations
suggest a clear connection between gradients in surface tension
and local tangential mass transfer. A natural target of future study
would be a direct investigation of the curvature - tangential cur-
rent correlations.
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