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Characterising knotting properties of polymers in
nanochannels†

N R Beaton,∗a J W Eng,b K Ishihara,c K Shimokawa,d and C E Soterosb

Using a lattice model of polymers in a tube, we define one way to characterise different configura-
tions of a given knot as either “local” or “non-local”, based on a standard approach for measuring
the “size” of a knot within a knotted polymer chain. The method involves associating knot-types to
subarcs of the chain, and then identifying a knotted subarc with minimal arclength; this arclength
is then the knot-size. If the resulting knot-size is small relative to the whole length of the chain,
then the knot is considered to be localised or “local”; otherwise, it is “non-local”. Using this def-
inition, we establish that all but exponentially few sufficiently long self-avoiding polygons (closed
chains) in a tubular sublattice of the simple cubic lattice are “non-locally” knotted. This is shown
to also hold for the case when the same polygons are subject to an external tensile force, as
well as in the extreme case when they are as compact as possible (no empty lattice sites). We
also provide numerical evidence for small tube sizes that at equilibrium non-local knotting is more
likely than local knotting, regardless of the strength of the stretching or compressing force. The
relevance of these results to other models and recent experiments involving DNA knots is also
discussed.

1 Introduction
Motivated in part by experimental studies of DNA packing in viral
capsids1,2 and DNA translocation through nanopores3–6, there
has been much recent interest in understanding and characteris-
ing the entanglement complexity of confined polymers, and de-
termining any dependencies on the extent or the mechanism of
confinement. For knots in polymers, one measure of interest has
been the average “size” of the knotted part of the polymer. With
such a measurement, one can then characterise the knotting as
“local” when the size of the knotted part is small compared to the
whole length of the polymer, or otherwise as “non-local”. Based
on polymer scaling theory and supporting numerical evidence, it
is generally accepted that local knotting is dominant for uncon-
fined polymers, as polymer length grows, while computer simula-
tion studies of knotting in collapsed or spherically confined poly-
mers suggest that non-local knotting dominates7. Recent simu-
lation and experimental studies3,5,6,8 of an intermediate regime
of confinement, where the polymer is confined to a channel, tube
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or pore, such that polymer growth or motion is tightly restricted
in two spatial dimensions but unrestricted in the third, has indi-
cated that local knotting dominates, unlike when all three spatial
dimensions are restricted. Some differences between the entan-
glement complexity of open versus closed chains were also ob-
served.

In this paper we explore this latter type of confinement further
using lattice models of both closed (self-avoiding polygons) and
open (self-avoiding walk) chains in tubular subsets of the simple
cubic lattice. One major advantage of the lattice model approach
is that we are able to prove results related to knot localisation for
arbitrary tube dimensions and, for the case of small tube sizes, we
are able to perform exact calculations related to this. We study an
equilibrium model of polymers in a tube subject to a tensile force
f and prove results about the limiting free energy and the likeli-
hood of occurrence of different knotted patterns as a function of
polymer length.

Our conclusions are presented as a series of eight Results.
Specifically, we provide both theoretical and numerical evidence
that for a knotted ring polymer at equilibrium in a nanochannel or
nanopore, a knot configuration such as that shown in Figure 1(a)
is more likely than that shown in Figure 1(b), regardless of the
strength of the force f and whether or not it is a compressing
( f < 0) or a stretching ( f > 0) force (see Results 1–2). Further-
more, knot configurations such as that in Figure 1(a) are on aver-
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age tighter than those in Figure 1(b) and hence may be expected
to translocate through a nanopore faster (Result 3). We also es-
tablish for the lattice model that, as observed experimentally, the
situation is quite different for open chains, with knot configu-
rations like that of Figure 1(e) being rare (in fact exponentially
rare) compared to that shown in Figure 1(f), because of the sig-
nificant entropic disadvantage associated with the formation of a
long bend (Result 8).

To obtain and explain these results, it is necessary to first char-
acterise the differences between the different knotted configura-
tions in Figure 1. We do this here by using two different mea-
sures of knot size. For example, when one measures the size of
the knotted part according to the size of the region in which the
crossings are concentrated, then the configurations shown in both
Figures 1(a) and 1(b) correspond to examples of “tight” knotting
and this is consistent, for example, with a measure of how long
it would take the knotted part to translocate through a nanopore.
However, using another standard measure for determining knot-
size, namely using the length of a smallest knotted subarc, leads
to characterising Figure 1(a) as “non-local” knotting (a knotted
subarc is drawn with a solid line in Figure 1(c)); while that in Fig-
ure 1(b) is “local” (a knotted subarc is drawn with a solid line in
Figure 1(d)). Using this latter measure, our results indicate that
non-local knotting is more likely than local knotting in a tube.
This suggests that the likelihood of non-local knotting in other re-
stricted spaces, like spheres, will be dependent on the definition
chosen for knot-size.

We note that an existing model of DNA in a nanochannel
(Micheletti and Orlandini 3) considers DNA in a salt solution; a
corresponding lattice model would include long-range interac-
tions to take into account screened Coulomb interactions such as
in Tesi et al. 9 . Including such long range interactions increases
the complexity of the model and makes it less tractable to both
theoretical and numerical analysis. Hence, as a first step, we ex-
plore here a model where we can study a range of more tractable
scenarios which include the good solvent regime as well as the
fully compressed regime. Because of this, we do not make a di-
rect connection to DNA experiments. However, we do argue that
the tube sizes for which we have numerical results correspond to
tube dimensions within the 10–40 nm range and where the poly-
mers are well below the de Gennes scaling region identified in
Micheletti and Orlandini 3 .

The remainder of this paper is organised as follows. In Sec-
tion 2 we present definitions of the models under consideration.
In Section 3, definitions for two measures of knot size and our
classification scheme for knotted patterns are given. After that,
we present exact and numerical results about the models. Then
we present our theoretical results (outlines of proofs are given
in the Electronic Supplementary Information) and the methods
used. In Section 6 we briefly discuss some other models of con-
fined DNA and contrast and compare with the models studied
here.

2 The models
We will use a general model for polygons in lattice tubes subject to
an external force which has been studied previously; the notation

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1 Illustrations of (a) a non-local trefoil and (b) a local trefoil, with
knotted subarcs drawn with solid lines in (c) and (d); open chains with (e)
a non-local trefoil component and (f) a local trefoil component.

and definitions used here (unless stated otherwise) are as in10.
For non-negative integers L,M, let TL,M ≡ T ⊂ Z3 be the semi-

infinite L×M tube on the cubic lattice defined by

T= {(x,y,z) ∈ Z3 : x≥ 0,0≤ y≤ L,0≤ z≤M}.

Define PT to be the set of self-avoiding polygons in T which oc-
cupy at least one vertex in the plane x = 0, and let PT,n be the
subset of PT comprising polygons with n edges (n even). Then
let pT,n = |PT,n|.

We define the span s(π) of a polygon π ∈PT to be the maxi-
mal x-coordinate reached by any of its vertices and we use |π| to
denote the number of edges in π. See Figure 2(a) for a polygon π

that fits in a 2×1 tube with s(π) = 6 and |π|= 36. To model a force
acting parallel to the x-axis, we associate a fugacity (Boltzmann
weight) e f s(π) with each polygon π. Let pT,n(s) be the number
of polygons in PT,n with span s. Then the “fixed-edge” model
partition function is given by

ZT,n( f ) = ∑
|π|=n

e f s(π) = ∑
s

pT,n(s)e
f s.

Thus f � 0 corresponds to the “compressed” regime while f � 0
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corresponds to the “stretched” regime. For this model, the proba-
bility of a polygon π ∈PT,n is given by

P(ed, f )
n (π) =

e f s(π)

ZT,n( f )
.

(a)

(b)

(c)

Fig. 2 (a) A 36-edge polygon π that fits inside TL,M with L≥ 2 and M ≥ 1;
the tube extends without bound to the right and the span s(π) = 6. Blue
vertices and edges denote a hinge of π, and green edges denote a sec-
tion of π. (b) The locations of the two pairs of vertical red lines indicate
the locations of the two 2-sections in this polygon; in this example, the
polygon can be decomposed into a start unknot pattern, a proper trefoil
knot pattern, and an end unknot pattern. The proper knot pattern is clas-
sified as non-local in this case. (c) A local proper knot pattern in the same
tube with span 7.

The (limiting) free energy per edge of polygons in T is defined
as

FT( f ) = lim
n→∞

1
n

logZT,n( f ).

This is known11 to exist for all f .
For f = 0, it has been proved that12,13

FT(0) = lim
n→∞

n−1 log pT,n

< lim
n→∞

n−1 logcT,n

< lim
n→∞

n−1 log pn = lim
n→∞

n−1 logcn ≡ κ ≡ log µ, (1)

where cn is the number of n-step self-avoiding walks (SAWs) in
Z3 starting at the origin and κ is their connective constant, and
cT,n is the number of these confined to T.

A subset of self-avoiding polygons in T are Hamiltonian poly-
gons: those which occupy every vertex in a s× L×M subtube
of T. These serve as an idealised model of tightly packed ring
polymers, in addition to being a useful lower bound for general
polygons in the f < 0 compressed regime. We define the number

of Hamiltonian polygons, pH
T,n, to be the number of n-edge poly-

gons in PT,n which have span s and occupy every vertex in an
s×L×M subtube of T. We define W = (L+ 1)(M + 1) (the num-
ber of vertices in an integer plane x = i ≥ 0 of the tube) and will
assume without loss of generality that L ≥M; note that pH

T,n = 0
if n is not a multiple of W . The following limit has been proved to
exist by Beaton et al. 10 (see also Eng 14):

κ
H
T ≡ lim

s→∞

1
(s+1)W

log pH
T,(s+1)W .

Furthermore, using this, FT( f ), the free energy per edge, is
bounded as follows:

max{ f/2,( f/W )+κ
H
T } ≤FT( f )≤max{ f/W , f/2}+FT(0), (2)

with FT( f ) asymptotic to the lower bound for f → ∞ for any T,
and for f →−∞ for small tube sizes (this is conjectured to be true
for any T), see Beaton et al. 10 .

Here, we will also be interested in the dual model, called the
“fixed-span” model, with partition function given by

QT,s(g) = ∑
n

pT,n(s)e
gn.

For this partition function, when g� 0 densely packed (in terms
of number of edges per span) polygons dominate the partition
function, while when g� 0 polygons with very few edges per
span dominate. For this model, the probability associated with a
span s polygon π is given by

P(sp,g)
s (π) =

eg|π|

QT,s(g)

and the associated (limiting) free energy per span exists10 (see
also15):

GT(g) = lim
s→∞

1
s

logQT,s(g).

Both models correspond to special cases of the grand canonical
partition function

GT( f ,g) = ∑
s

∑
n

pT,n(s)e
gn+ f s

and can be studied using transfer matrix methods15.
Hamiltonian polygons can also be studied using transfer ma-

trices10,14 and we will also be interested in the fixed-span model
where polygons are restricted to being Hamiltonian and the prob-
ability associated with a span s Hamiltonian polygon π is given by

P(H)
s (π) =

1
pH
T,(s+1)W

.

3 Characterising local knotting and classi-
fying knotted patterns

Given a polygon of prime knot-type K, one standard approach for
measuring the “size” of the knotted part in the polygon is to find
a minimal length sub-walk of the polygon which has knot type K,
and then define the size of the knot to be the length of this sub-
walk. This of course requires a method for assigning a knot-type
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to an open chain; there are various ways to do so (see7,16 for
reviews). If K is composite, then one can use a similar approach
for each of the components. We refer to this measurement of
knot-size as arclength knot-size.

Motivated by the arclength knot-size definition, in this section
we introduce an approach for classifying the knotted parts of
polygons in T as either “local” or “non-local”. We will also intro-
duce another measure for knot-size which is particularly suited to
polygons in narrow tubes. References will be made to Figure 2
for illustration.

Let π be a polygon in T with span s. Thus π is embedded in T
between the planes x= 0 and x= s. For half-integers k∈Z+ 1

2 with
0 < k < s, we say that π has a 2-section at x = k if the plane x = k
intersects π at exactly two points. (Equivalently, π has exactly
two edges in the x-direction between x = k− 1

2 and x = k+ 1
2 .) See

Figure 2(b) where k = 1/2 or k = 11/2. If π has m 2-sections, let
t(π) = (t1, . . . , tm) be the (ordered) set of x-values at which they
occur. Clearly m≤ s; if m = 0 then t(π) is empty.

The 2-sections of a polygon π in T naturally partition it into
a sequence of “segments”. Moreover, if π has prime knot-type,
then typically the segment of π which contains the “knotted part"
will lie between two successive 2-sections. See for examples Fig-
ures 2(b) and 2(c) for polygons with trefoil knot-type. It is this
idea which will allow us to locate, measure and classify knot com-
ponents within polygons in T.

Take π in T with m≥ 2. The 2-sections of π partition it into a se-
quence of segments that we call connect-sum patterns (cs-patterns
for short). Then for any 1≤ i < m, the segment of π between x = ti
and x= ti+1 is called a proper cs-pattern of π. If m≥ 1 then the seg-
ment of π between x = 0 and x = t1 is called the start cs-pattern of
π; likewise, the segment of π between x = tm and x = s(π) is called
the end cs-pattern of π. See Figures 2(b) and 2(c) for examples
with m = 2. Note that proper, start and end cs-patterns are ex-
amples of, respectively, proper, left-most and right-most patterns
as defined in10. Here we define the span of a (resp. start, end)
cs-pattern to be ti+1− ti +1 (resp. t1 + 1

2 , s(π)− tm + 1
2 ).

Any proper cs-pattern σ (between x = ti and x = ti+1, for some
i ≥ 1) is the union of two “strands” (self-avoiding walks) σ1 and
σ2, each extending from the left end of the pattern to the right.
On the left side of the plane x = ti, joining the two left ends of
σ1 and σ2 to each other and then, on the right side of the plane
x = ti+1, joining their two right ends to each other, yields what we
call the denominator closure of the cs-pattern. See Figure 3(a).
Note here that if the overall polygon has knot-type K and one of
its proper cs-patterns has denominator closure of knot-type K′, then
K′ must be part of the knot-decomposition of K. Let DC(σ) be
the knot-type of the denominator closure of σ . If DC(σ) 6= 01

(the unknot), then we say that σ is a knot pattern with knot-type
DC(σ).

Alternatively, the two endpoints of σ1 (resp. σ2) can be recon-
nected to each other (outside of T) to form a (possibly separable)
link. We call this the numerator closure of σ . See Figure 3(b).
Here we are not interested in the overall link-type of the numer-
ator closure; we instead only care about the knot-types of its two
components. Let NC1(σ) (resp. NC2(σ)) be the knot-type of the
closure of σ1 (resp. σ2).

We are now prepared to give our definitions of local and non-
local knot patterns. Let σ be a cs-pattern of a polygon. If σ is
a proper pattern with DC(σ) = K 6= 01 but such that NC1(σ) 6=
K#K′ and NC2(σ) 6= K#K′′ for any K′ or K′′ (i.e. K is not in the
knot decomposition of either NC1(σ) or NC2(σ)), then the knot
K cannot be discovered by examining only one of the strands of
σ . In this case both strands are needed to detect K and hence
since the two strands of σ could potentially be far apart along the
contour of the entire polygon, we define σ to be a non-local knot
pattern. For example, the denominator closure in Figure 3(a)
is a 51 knot while the components of the numerator closure in
Figure 3(b) are a trefoil and an unknot; the corresponding proper
cs-pattern is therefore a non-local knot pattern. For all other cases
we classify σ as a local knot pattern. Note that there are examples
of cs-patterns which we classify here as “local” which might be
more appropriately classified as “non-local” (see Figure 4 and the
related discussion below), however, for small tube sizes such cs-
patterns have a relatively low probability of occurrence.

The decomposition of polygons into cs-patterns leads to a sec-
ond measure for knot-size in a polygon as follows. A polygon with
prime knot-type K has at most one knot pattern (either local or
non-local). If it has a knot pattern, then we define its connect-sum
knot-size to be the number of edges in the knot pattern. If there
is no knot pattern in the polygon, then the length of the whole
polygon is used. A similar approach can be used for a composite
knot K, where we use the number of edges in each (if any) knot
pattern to determine a total connect-sum knot-size.

In this section we have defined a classification scheme for lo-
cal knot patterns that is relatively simple to implement for poly-
gons in tubes, however, this classification is not necessarily con-
sistent with the topological definition of local knot. In particular,
a topologically precise approach to defining a local knot pattern
is as follows. For a given knot pattern, if we can find a 2-sphere
that intersects the pattern in exactly two points and such that it
surrounds a knotted arc, then the knot pattern contains a local
knot. The right side of Figure 4 shows an example of a knot pat-
tern with such a 2-sphere. However, by our classification scheme,
the left side of Figure 4 shows an example of a knot pattern σ

which we are currently classifying as a local knot pattern even
though there is no 2-sphere satisfying the property just described.
In particular, DC(σ) = NC1(σ) = NC2(σ) = 31, however, there is
no 2-sphere that isolates (by surrounding it at the exclusion of
anything else) either of these trefoils and intersects the pattern in
only two points.

Because the number of edges needed to create patterns such
as that shown in Figure 4 (left) is large, such patterns are not
very likely to occur and we do not believe that their existence will
affect our conclusions.

In the next section we explore numerically the occurrence prob-
abilities associated with local and non-local cs-patterns for small
tube sizes and specific knot-types and we provide evidence that
non-local knot patterns are more probable than local ones. How-
ever, even though a polygon π with knot-type K 6= 01 contains a
knot pattern of a given type (local or non-local), this does not
necessarily guarantee that the polygon is locally or non-locally
knotted (using the standard arclength classification); this aspect
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(a)

(b)

(c) (d)

Fig. 3 (a) An illustration of the denominator closure of a proper cs-
pattern σ . The blue strand corresponds to σ1 and the red to σ2 and
their union is proper cs-pattern σ . The denominator closure is obtained
by adding the black arcs and yields a closed curve with knot-type 51,
i.e. DC(σ) = 51. (b) The numerator closure of the same pattern. The
numerator closure gives a link with one component a 31 (6= 51) knot and
the other an unknot (01 6= 51); hence this is a non-local knot pattern. Here
NC1(σ) = 01 and NC2(σ) = 31. (c) A local trefoil knot pattern that can
occur in a Hamiltonian polygon. (d) A non-local trefoil knot pattern that
can occur in a Hamiltonian polygon.

Fig. 4 Two examples of local knot patterns. The right one has a red
2-sphere intersecting the pattern in two points and surrounding a local
knot.

is explored more thoroughly and theoretically in Section 5.

4 Exact and Simulation Results
Exact generation was used to determine all smallest-span non-
local and local trefoil knot patterns in the 2× 1 and 3× 1 tubes.

Table 1 Numbers of trefoil patterns of smallest spans in the 2× 1 and
3×1 tubes, for all and Hamiltonian (Ham.) polygons

Tube Ham. Ham.
Size Span Non-local Local Non-local Local

2×1 6 116 0 32 0
7 5,584 304 668 80
8 141,292 14,932 8,020 1,388

3×1 4 1,964 0 232 0
5 762,984 29,272 17,568 1,448

(See Figure 2 for examples of such patterns in the 2×1 tube and
Figure 3 in the 3× 1 tube.) Counts are shown in Table 1. In
all cases the number of non-local knot patterns greatly exceeds
the number of local knot patterns, suggesting that non-local tre-
foil knot patterns may be more likely to occur than local ones.
To explore whether this conclusion depends on the model used
(fixed-edge or fixed-span), limiting probabilities of occurrence of
each type of pattern were determined under each of the distribu-
tions P(ed, f )

n (−∞ < f < ∞, n→∞) and P(sp,g)
s (−∞ < g < ∞, s→∞).

These limiting probabilities can be determined (see for example
Eng 14) from the eigenvalues and eigenvectors of the transfer-
matrix. Figure 5 shows the results for the 3× 1 tube. In this fig-
ure, for the fixed-edge model (P(ed, f )

n ), Ped,L
31

( f ) denotes the lim-
iting (n→ ∞) probability of occurrence of a smallest local trefoil
knot pattern at a section of a polygon and Ped,NL

31
( f ) denotes the

corresponding probability for the non-local patterns. Similarly,
for the fixed-span model (P(sp,g)

s ), Psp,L
31

(g) denotes the limiting
(s→ ∞) probability of occurrence of a smallest local trefoil knot
pattern at a section of a polygon and Psp,NL

31
(g) denotes the corre-

sponding probability for the non-local patterns. Further note that
Figure 5 shows the results for the fixed-edge probabilities with
the horizontal axis corresponding to f while for the fixed-span
probabilities it corresponds to −g. The latter was done to make
an easier comparison between the models, since positive values of
f and negative values of g both have a stretching effect on poly-
gons. Although not shown here, the observed trends were similar
for the 2×1 tube. The results are summarised below.

Result 1. For T2,1 and T3,1, the limiting occurrence probability of
the smallest-span non-local trefoil knot patterns is greater than that
for the smallest-span local trefoil knot patterns, regardless of the
strength of the force f or the edge density weight g.

Determining the knot-type of a polygon or a knot pattern re-
quires the whole polygon or knot pattern. However, since the
numbers of polygons and knot patterns in a tube grow exponen-
tially with either span or the number of edges, we limited the ex-
act generation analysis to the case of the smallest trefoil patterns.
To explore further whether the trend observed for the smallest
trefoil patterns holds for other knots, a Monte Carlo approach
was developed to generate random polygons in the tube, based
on a method of Alm and Janson 17 . The Monte Carlo method is
also based on transfer-matrices and can be used to generate a set
of independent and identically distributed polygons from any of
the distributions {P(ed, f )

n ,P(sp,g)
s } provided that the transfer-matrix

associated with GT( f ,g) is known. Details of the approach will be
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published elsewhere.
Based on the exact results of Figure 5, we focused on the fixed-

span model at g = 0 where the probabilities of the smallest trefoil
patterns were greatest (compared to the other models). Similarly
we focus on the 3×1 tube, since knots are far more common than
in 2× 1 while the transfer matrices are small enough as to make
simulations and enumerations reasonably efficient.
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Ped,L
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( f )

Ped,NL
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Fig. 5 Log scale plot of the probabilities of the smallest local and non-
local trefoil patterns in the 3× 1 tube, as functions of f (blue) and −g
(red).

For the Monte Carlo results, we begin by investigating the prob-
abilities of some simple knots. In Figure 6 we plot the prob-
abilities of local and non-local trefoils in the fixed-span ensem-
ble, for both Hamiltonian and all polygons. Specifically we plot
Ps(KNL) and Ps(KL) which are respectively the observed propor-
tions of span s polygons which have knot-type K = 31 and con-
tain a non-local (NL) or local (L) knot pattern. We also plot the
corresponding observed proportions of span s Hamilonian poly-
gons: P(H)

s (KNL),P(H)
s (KL). The corresponding data for figure-

eight knots (K = 41) is illustrated in Figure 7. The relative fre-
quencies of non-local knots for trefoils (31), figure-eight knots
(41), 51 and 52 knots are illustrated in Figure 8. For example, the
relative frequency of non-local trefoil knots amongst span s tre-
foil polygons is Ps(3NL

1 |31) =Ps(3NL
1 )/Ps(31). Although not shown,

similar trends were observed for the 2×1 tube. Our observations
lead to the following conclusion.

Result 2. For T2,1 and T3,1, based on i.i.d. samples from the limit-

ing distribution of P(sp,0)
s over a range of spans s (10 million poly-

gons per span), we observe that the probability of occurrence of a
non-local 31, 41, 51 or 52 knot pattern is significantly greater than
that of the corresponding local knot pattern (e.g. Figures 6 (bottom)
and 7 (bottom)). The same holds for Hamiltonian polygons sampled
from the limiting distribution of P(H)

s (e.g Figures 6 (top) and 7
(top)). Furthermore, for sufficiently long polygons in T3,1, for each
of these knot-types the proportion of non-local patterns amongst all
observed knot patterns of that type is greater than 85% (see Figure
8).

Next, we consider the average span of knot patterns within

0
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Fig. 6 Plots of the probabilities of non-local (red) and local (blue) trefoil
knots, for Hamiltonian (above) and all (below) polygons in the 3×1 tube,
sampled uniformly from the fixed-span ensemble (g = 0). The horizontal
axis is span s. The (barely visible) error bars represent 95% confidence
intervals.

polygons. Recall that we define the span of a knot pattern to
include the two 2-sections which bound it on the left and right.
In Figure 9 we plot the average span of non-local and local trefoil
and figure-eight knot patterns, for both Hamiltonian and all poly-
gons sampled uniformly from the fixed-span ensemble. Although
not shown, similar trends were observed for the 2× 1 tube. Our
observations lead to the following conclusion.

Result 3. For T2,1 and T3,1, based on i.i.d. samples from the limit-

ing distribution of P(sp,0)
s over a range of spans s (10 million poly-

gons per span), we observe that the average spans of non-local 31,
41, 51, and 52 knot patterns are smaller than those of the corre-
sponding local knot patterns (e.g. Figure 9 (bottom)). The same
holds for Hamiltonian polygons sampled from the limiting distribu-
tion of P(H)

s (e.g. Figure 9 (top)).

The results of this section provide strong numerical evidence
that at least for small tube sizes, non-local knot patterns are more
likely and have on average shorter span than local knot patterns.
In the next section we discuss to what extent results related to
this can be proved.
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Fig. 7 Plots of the probabilities of non-local (red) and local (blue) figure-
eight knots, for Hamiltonian (above) and all (below) polygons in the 3×
1 tube, sampled uniformly from the fixed-span ensemble (g = 0). The
horizontal axis is span s. Error bars represent 95% confidence intervals.

5 Theoretical Results
In this section we state results that can be proved related to the
occurrence of non-local and local knot patterns in tubes. We fo-
cus on the statement of the results and leave most details of any
proofs to the Electronic Supplementary Information (ESI). First
we present results related to which knot patterns can occur in a
tube of a given size and what is known about the minimum span
of such knot patterns. Then we present results on the probability
of occurrence of knot patterns.

Because of the strict geometric confinement, not all knots are
embeddable in a given T; the dimensions of the tube determine
whether a particular knot is embeddable18. We present here a
general statement; a more precise (but technical) version is stated
and proved in the ESI.

Result 4. For any given knot type K, K admits a proper non-local
knot pattern in a tube TL,M for L,M sufficiently large, and admits
a proper local knot pattern in a tube TL′,M′ for L′,M′ sufficiently
large. Any tube T which accommodates a local knot pattern for K
also accommodates a non-local knot pattern.

Note that this result leaves open the possibility that for a given
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Fig. 8 Relative frequencies of non-local knots for trefoils (red), figure-
eight knots (blue), 51 knots (purple) and 52 knots (green), for Hamiltonian
(above) and all (below) polygons in the 3× 1 tube, sampled uniformly
from the fixed-span ensemble. Note that the lines joining the points in the
second plot have been added only to aid the reader, and do not indicate
any additional data.

knot K with a non-local knot pattern in TL,M there might not be
an associated local knot pattern in TL,M . For the case of a 2× 1
tube, however, we establish a more definitive result – namely, if
the knot is embeddable in the tube then there also exist both non-
local and local knot patterns for the knot in the tube. Figure 2(a)
shows a trefoil polygon in a 2×1 tube that yields a non-local knot
pattern (see Figure 2(b)). Figure 2(c) shows a local knot pattern
in the same tube; note that the span of this local knot pattern is
one greater than that shown in Figure 2(b). For the 2×1 tube, the
arguments used by Ishihara et al. 18 can also be extended to prove
that this difference in span holds for the smallest knot patterns of
knots with up to 5 crossings. In summary the following result can
be proved.

Result 5. Given a prime knot K 6= 01 that can occur in a 2× 1
tube, there exists at least one proper local knot pattern and at least
one proper non-local knot pattern. Furthermore, at least for K ∈
{31,41,51,52}, the span of a smallest proper local knot pattern of
K in T2,1 is greater than that of a smallest proper non-local knot
pattern of K in T2,1.
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Fig. 9 Average span of non-local trefoil (red), local trefoil (blue), non-
local figure-eight (purple) and local figure-eight (green) knot components
versus overall polygon span, for Hamiltonian (above) and all (below) poly-
gons in the 3×1 tube, sampled uniformly from the fixed-span ensemble.

For the 3×1 tube any knot that can occur in T2,1 will also have
non-local and local knot patterns; see Figure 3 for some examples.
We note that for the 3×1 tube, by an exhaustive search, we have
determined that the span of a smallest local knot pattern of 31

is also one greater than that of a smallest proper non-local knot
pattern of 31 (Figures 3(c) and 3(d) are examples of such smallest
knot patterns for Hamiltonian polygons in the 3×1 tube). We also
looked at the smallest prime knots which cannot occur in T2,1 but
can in T3,1: 85,810,815− 821. For all these knots, it is possible to
construct a local pattern.

The fact that the span of smallest non-local knot patterns is
smaller than that of local knot patterns provides a partial expla-
nation for Result 3, that the average span of a non-local knot
pattern is smaller than that of a corresponding local knot pattern
for small tube sizes. However, for a large enough tube size, the
span of smallest non-local and local knot patterns are expected
to be the same; see Figure 10 which shows, on the left, a short-
est trefoil arc which is part of a span-3 local trefoil knot pattern
within T3,3, and shows on the right a smallest non-local trefoil
knot pattern in T3,3 also having span 3. Note, however, for this
case the number of edges in the local knot pattern is greater than

Fig. 10 The shortest local (left) and non-local (right) knot patterns. Both
fit in T3,3.

that for the non-local pattern; this may lead to non-local trefoil
patterns being more likely to occur than local ones even in larger
tube sizes, i.e. that Result 2 could continue to hold.

We next discuss some results about the likelihood of each type
of pattern.

There are known “pattern theorems” available for both the
fixed-edge and fixed-span models studied here (see11,15), as
well as for Hamiltonian polygons (see14). The theorems focus
on proper polygon patterns (see10 for more precise definitions)
which include the proper knot patterns defined here. Given a
model and a proper pattern P which can occur in a polygon of
the model in T, a pattern theorem establishes that there exists an
εP > 0 such that, for n sufficiently large, all but exponentially few
n-edge polygons contain more than εPn copies of P. From such
theorems it is known that the knot-complexity of polygons grows
as polygon “size” grows (size could be measured in terms of edges
or span), so that a typical polygon will have a highly-composite
knot-type K = K1#K2# . . .#Kr

19. Different prime components of
the knot could occur as knot patterns in the polygon in a variety
of ways. Our interest here is to investigate how often they are
occurring as “local” knots versus non-locally.

To define “local” knotting requires the definition of a knot-size
measure (we have given two possible measures: arclength and
connect-sum knot-size) but also a comparison of knot-size to poly-
gon size. Here we consider that a polygon’s size m is growing
without bound and say that it is non-locally knotted with respect
to arclength knot-size if at least one of the knots Ki in its prime
knot decomposition has arclength knot-size aKi = O(m). In this
case we say Ki occurs non-locally in the polygon or is non-locally
knotted, and otherwise we say that Ki occurs locally or is locally
knotted. Thus a polygon can be both non-locally and locally knot-
ted (with respect to arclength knot-size) depending on the occur-
rence of each of its prime components. Corresponding definitions
can apply to the case of the connect-sum knot-size. However, to
distinguish this case, we say a polygon is “loosely” knotted (or
contains a loose knot) if at least one of the knots Ki in its prime
knot decomposition has connect-sum size bKi = O(m); otherwise,
we say Ki occurs as a tight knot or tightly. See Figure 11.

To explain these definitions more clearly, consider the non-local
trefoil pattern P of Figure 2(b). If this pattern occurs in a trefoil
polygon π, then π must be formed from a connect sum of unknot-
ted polygons with P. Suppose the size of π � the span of P. If
P occurs near the left end (or right end) of π, then the arclength
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Fig. 11 A schematic of the non-local trefoil pattern from Figure 10 in a
polygon. This knot is tight (because the connect-sum size C is small) but
non-local (because the arclength size A is large).

knot-size will be short compared to the size of π and even though
we have classified P as a non-local knot pattern, we will say that
P has occurred in a “local" way in π and that π is locally knotted.
If instead P occurs in the “middle" of π (i.e. half-way along the
span) then we will say that P has occurred in a “non-local" way
in π and that π is non-locally knotted (since the arclength size
of the knot is proportional to the size of π). In contrast, because
the connect-sum knot-size of P is small compared to the size of
π, no matter where it occurs in π we will say that 31 occurs as
a tight knot. On the other hand, for the local trefoil pattern of
Figure 2(c), no matter where it occurs in a very large sized trefoil
polygon π, it will always have a small arclength knot-size as well
as a small connect-sum knot-size and hence π will be considered
to be both locally and tightly knotted.

Since the pattern theorems hold for proper knot patterns, they
tell us that for each of the models in question, any proper knot
pattern which can occur in a polygon (or Hamiltonian polygon)
will occur with a positive density as polygon size grows (where,
depending on the model, size is measured by edges or by span).
In particular for any T, polygons which contain no knot patterns
are exponentially rare. Furthermore we have, by considering the
local trefoil knot pattern of Figure 2(c) (or an inflated version for
the Hamiltonian polygon cases), the following result.

Result 6. All but exponentially few sufficiently long polygons in T
with M ≥ L ≥ 2 or M ≥ 2,L = 1 for any of the three models (fixed-
length, fixed-span and Hamiltonian) are both locally and tightly
knotted.

Note that this does not preclude the same polygons from being
non-locally or loosely knotted – we only know that the knot-types
of the polygons are highly complex and that some of the knots
in the knot decomposition will be local trefoil knot patterns as in
Figure 2(c).

Applying the above argument to proper non-local knot patterns
also leads to the following.

Result 7. All but exponentially few sufficiently long polygons in T
with M ≥ L≥ 2 or M ≥ 2,L = 1 are non-locally knotted.

Meanwhile for self-avoiding walks in T, at least for f = 0, the
scenario depicted in Figure 1(e), in which a non-local knot pat-
tern occurs in a walk in a non-local way, is exponentially rare. To
see this, first note that any polygon can be turned into a walk by
removing one edge. Thus from (1) for f = 0, we know that poly-
gons are exponentially rare in the set of walks. Next consider the
subset of n-step walks in T which contain a non-local knot-type K
pattern at a location in the walk such that the arclength of K is

αn for some α > 0 (as in Figure 1(e)). Each such walk can be de-
composed into a polygon with at least αn edges (and having K in
its knot-decomposition) and a walk with length at most (1−αn).
Thus this subset of walks will have an exponential growth rate
which is strictly less than all walks in T. This gives the following
result.

Result 8. Self-avoiding walks which contain a non-local knot pat-
tern in a non-local way are exponentially rare in the set of all walks
in T.

(Note that this result does not contradict the pattern theorem
for walks in T proved by Soteros and Whittington 13 because the
proper knot patterns defined here are not examples of proper
walk patterns.)

6 Practical implications and DNA models
In this section we will briefly discuss the connections between this
work and other models of confined DNA. Before proceeding, we
again reiterate that for simplicity our model does not account for
any longer-range electrostatic interactions.

6.1 Tube dimensions
Self-avoiding polygons on Z3 have a natural ring structure, but
when confined to a tube of diameter much smaller than the poly-
gon length, they become essentially linear objects. It is thus natu-
ral to look at how correlations decay along the length of the tube;
and since our Monte Carlo sampling method constructs polygons
one cs-pattern at a time using a transfer matrix, it is also straight-
forward to study this.

For the fixed-span model, we have measured the number of
edges in a section as well as the centre of mass of those edges,
and looked at how these quantities correlate in two sections sep-
arated by distance s (within a long polygon). The centre of mass
has slightly stronger correlations, but still very weak: the cor-
relation between two adjacent sections is ρ ≈ −0.061, and this
decays exponentially for s > 1. By adapting a formula for the au-
tocorrelation time of a stationary Markov chain20, we obtain an
estimate for the “correlation span” along the length of the tube:
sc ≈ 1.12. For Hamiltonian polygons, a similar analysis leads to
sc ≈ 1.66. Now the average density of a polygon in the 3×1 tube
is about 2.05 edges per strand per unit span14, while for Hamil-
tonian polygons it is exactly 4. We thus get the rough “correlation
lengths” `c ≈ 2.31 and `c ≈ 6.63 respectively.

We take the “diameter” of the 3×1 tube to be D =
√

3 = 1.732.
Since double-stranded DNA has a persistence length of about 50
nm21, we arrive at the estimate that D roughly corresponds to the
range 10–40 nm, so that D/`c < 1. In Micheletti and Orlandini 3

evidence is provided that, at least for high salt solutions, there is
a crossover from the Odijk scaling region (where D/`c < 1) to the
de Gennes scaling regime at channel widths of about 85nm. Our
model results for small tube sizes are consistent with a scaling
regime that is well below the de Gennes scaling regime.

6.2 Other models
Micheletti and Orlandini 3 model DNA in a nanochannel using a
semi-flexible chain of cylinders (with parameters chosen to match
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those of double stranded DNA in concentrated solutions of mono-
valent salts) and confine the chain to cylindrical channels of var-
ious widths. They present numerical results on knotting proba-
bilities as a function of chain length and channel width. They
also explore the size of knots using an arclength measure; Fig-
ures 4 (c)-(f) in that paper show results for the average lengths
and the distribution of lengths of trefoil knots in linear and circu-
lar chains as functions of total chain length as well as the effective
nanochannel diameter. Considering Figure 4 (c) from that paper
and focussing on the smallest effective diameter, it can be seen
that for linear DNA the average trefoil arclength is relatively in-
dependent of total chain length for sufficiently large linear DNA;
this is consistent with trefoils occuring as local knots (as predicted
in our Result 8). In contrast, considering Figure 4 (d) from that
paper and again focussing on the smallest effective diameter, it
can be seen that for circular DNA the average trefoil arclength is
on the order of 1/4 total chain length; this is consistent with the
trefoil occuring as a small non-local knot pattern randomly dis-
tributed through the chain (consistent with our result that non-
local knot patterns are more likely than local knot patterns in
polygons). To make better comparisons between these two mod-
els, however, it would be necessary to include more DNA-like in-
teractions into our lattice model as well as to explore larger tube
sizes.

Our definitions of local and non-local knot patterns corre-
spond very closely with a recent numerical study by Suma and
Micheletti 6 . In that work, the translocation of knotted 10-kbp
DNA rings through a nanopore of diameter 10 nm was simu-
lated. The authors found two different modes of knot transloca-
tion, which they called single- and double-filament (see Figures
4(C) and (D)6). These correspond to our definitions of local and
non-local knot patterns respectively. For that (non-equilibrium)
model, the relative frequencies of these modes (measured as the
knot passes through the pore) depended on the length of the DNA
molecule and the initial conditions prior to translocation. How-
ever, it was observed that the translocation time for both single-
and double-filament knots was about the same, and thus this can-
not be used as a method for distinguishing the two modes. There
are many differences between the model presented here and that
in Suma and Micheletti 6 , and we do not attempt to make a quan-
titative comparison. We expect, however, that the mathematical
framework developed here for classifying these two types of knot
modes will prove useful for further analysis of these models.

6.3 DNA experiments

Our results are also connected to recent experimental work5,
which demonstrated that knots in DNA can be detected by pass-
ing the molecule through a nanopore and observing when and
for how long the pore is obstructed. While both local and non-
local knot patterns can be detected, as observed in6, it does not
seem possible to distinguish the two modes of knotting using this
method, as the obstruction events take about the same time to
occur. On the other hand, if it were possible to measure the ar-
clength of the knot as well as the translocation time, then our
results would suggest that those knots with an arclength which

is inconsistently long, in comparison to the translocation time,
could be classified as occurring in the double-filament mode (i.e.
occurring as a non-local knot pattern).

The biological relevance of these results is presently unclear.
The nature of a knot in a DNA molecule is biologically important,
as it can have an effect on DNA replication or the effectiveness
of enzymes like topoisomerase in untangling the knot. Whether
local or non-local knot patterns can be more easily untangled is
an open question, and one we intend to study further.

We also mention some experimental work on stretched DNA
knots22,23. In those cases the authors studied linear DNA, and
observed knots in stretched molecules by microscopy techniques.
It is unclear whether or not, or how, one could distinguish be-
tween the two knotting modes in any corresponding experiments
for circular DNA.

6.4 Linking in polymers

In this work we considered only a single polygon or walk con-
fined to a lattice tube, as a model of a single confined polymer.
The topological properties of multiple molecules, like linear or
circular DNA molecules or melts of rings, are also important in
biological and physical systems. Methods for detecting and quan-
tifying linking of long polymer chains have been developed, in
both free solutions24 and in confinement25.

The methods employed here for detecting and classifying knots
in tubes can be adapted to links in tubes in a straightforward way.
The “linked portion” of a pair of linked polygons can be found
by finding the 2-sections of the link and examining the portions
which lie between them; connecting up the loose ends in different
ways (similarly to Figure 3) is expected to enable the classification
of different types of links. However, more challenging is the case
where each polygon in a linked pair spans the same portion of the
tube (i.e. there are no 2-sections in the link). This latter model
has been studied theoretically in Atapour et al. 26 and is being
explored now by us numerically using transfer-matrix and Monte
Carlo methods to determine the linking distribution as well as to
explore the open question of classifying link patterns.

7 Conclusion
We have used self-avoiding polygons to model ring polymers con-
fined to narrow tubes. For this model we have used a standard
approach for measuring the size of a knot to define “local” and
“non-local” knotting.

We have then provided both theoretical and numerical evi-
dence that when ring polymers are confined to very narrow tubes,
at equilibrium and assuming all states are accessible, non-local
knotting is more likely than local knotting (Results 1-2). This
may be a consequence of the fact that non-local knot configura-
tions, at least for the simplest knots, are on average smaller than
their local counterparts (Result 3). In small tube sizes they are
smaller both in span and in edge count (Result 5).

These results can be compared and contrasted with recent nu-
merical models of DNA knots translocating through a nanopore6,
and related experimental techniques for detecting knots5. Such
techniques do not appear to be sensitive enough to distinguish
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between these two different modes of knotting. However, be-
ing aware that two different modes are possible and determin-
ing whether one is more probable or on average tighter than the
other, could lead to improved analysis of both model and experi-
mental results.

We also provided theoretical evidence that for linear chains,
non-local knotting is exponentially rare, due to the entropic dis-
advantage of a long bend (Result 8). This is comparable to what
has been observed experimentally5.
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Average span of non-local trefoil (red), local trefoil (blue), non-local figure-eight (purple) and local figure-
eight (green) knot components versus overall polygon span, for Hamiltonian polygons in the 3×1 tube, 

sampled uniformly from the fixed-span ensemble.  
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Average span of non-local trefoil (red), local trefoil (blue), non-local figure-eight (purple) and local figure-
eight (green) knot components versus overall polygon span, for all polygons in the 3×1 tube, sampled 

uniformly from the fixed-span ensemble.  
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Relative frequencies of non-local knots for trefoils (red), figure-eight knots (blue), 51 knots (purple) and 52 
knots (green), for Hamiltonian polygons in the 3×1 tube, sampled uniformly from the fixed-span ensemble. 
Note that the lines joining the points in the second plot have been added only to aid the reader, and do not 

indicate any additional data.  
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Relative frequencies of non-local knots for trefoils (red), figure-eight knots (blue), 51 knots (purple) and 52 
knots (green), for all polygons in the 3×1 tube, sampled uniformly from the fixed-span ensemble. Note that 
the lines joining the points in the second plot have been added only to aid the reader, and do not indicate 

any additional data.  
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Log scale plot of the probabilities of the smallest local and non-local trefoil patterns in the 3×1 tube, as 
functions of f (blue) and g (red).  
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Plots of the probabilities of non-local (red) and local (blue) figure-eight knots, for Hamiltonian polygons in 
the 3×1 tube, sampled uniformly from the fixed-span ensemble (g=0). The horizontal axis is span s. Error 

bars represent 95% confidence intervals.  
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Plots of the probabilities of non-local (red) and local (blue) figure-eight knots, for all polygons in the 3×1 
tube, sampled uniformly from the fixed-span ensemble (g=0). The horizontal axis is span s. Error bars 

represent 95% confidence intervals.  
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The shortest local (left) and non-local (right) knot patterns. Both fit in T3,3.  
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Illustration of a local trefoil, with knotted subarc drawn with solid line.  
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Open chain with a local trefoil component.  
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A local trefoil.  
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A local trefoil knot pattern that can occur in a  Hamiltonian polygon.  
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By pulling out a part, we can construct a local knot pattern.  
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A local 75 pattern obtained by opening ends of Conway's normal form.  
 

68x26mm (300 x 300 DPI)  

 

 

Page 25 of 45 Soft Matter



  

 

 

Illustration of a non-local trefoil, with knotted subarc drawn with solid line.  
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Open chain with a non-local trefoil component.  
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A non-local trefoil.  
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The locations of the two pairs of vertical red lines indicate the locations of the two 2-sections in this polygon; 
in this example, the polygon can be decomposed into a start unknot pattern, a proper trefoil knot pattern, 

and an end unknot pattern. The proper knot pattern is classified as non-local in this case.  
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A local proper knot pattern in the same tube with span 7.  
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A 36-edge polygon π that fits inside TL,M with L≥2 and M≥1;  the tube extends without bound to the right 
and the span s(π)=6. Blue vertices and edges denote a hinge of π, and green edges denote a section of π.  
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Two polygons of 31 in 2×1 tube with the smallest span 6; the first consists of 36 edges and the second 
consists of 38 edges.  
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A polygon of 41 in 2×1 tube with the smallest span 8; this consists of 50 edges.  
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Two polygons of 51 in 2×1 tube with the smallest span 10; these consist of 60 edges.  
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A polygon of 52 in 2×1 tube with the smallest span 10; this consists of 62 edges.  
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A schematic of the non-local trefoil pattern from Figure 10 in a polygon. This knot is tight (because the 
connect-sum size C is small) but non-local (because the arclength size A is large).  
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Plot of the probabilities of non-local (red) and local (blue) trefoil knots, for Hamiltonian polygons in the 3×1 
tube, sampled uniformly from the fixed-span ensemble (g=0). The horizontal axis is span s. The (barely 

visible) error bars represent 95% confidence intervals.  
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Plot of the probabilities of non-local (red) and local (blue) trefoil knots, for all polygons in the 3×1 tube, 
sampled uniformly from the fixed-span ensemble (g=0). The horizontal axis is span s. The (barely visible) 

error bars represent 95% confidence intervals.  
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Theoretical and numerical evidence suggests that knotted polymers at

equilibrium in nanochannels tend to favour the top shape.
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