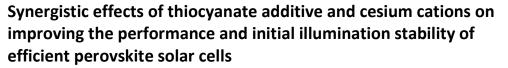


Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells

Journal:Sustainable Energy & FuelsManuscript IDSE-ART-04-2018-000200.R1Article Type:PaperDate Submitted by the Author:29-Jun-2018Complete List of Authors:Wang, Changlei; the university of toledo, Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ., Yan, Yanfa; University of Toledo, Department of Physics and Astronomy		
Article Type:PaperDate Submitted by the Author:29-Jun-2018Complete List of Authors:Wang, Changlei; the university of toledo, Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of toledo, Zhao, Dewei; University of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ.,	Journal:	Sustainable Energy & Fuels
Date Submitted by the Author: 29-Jun-2018 Complete List of Authors: Wang, Changlei; the university of toledo, Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of toledo, Zhao, Dewei; University of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo Grice, Corey; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ.,	Manuscript ID	SE-ART-04-2018-000200.R1
Complete List of Authors: Wang, Changlei; the university of toledo, Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of toledo, Zhao, Dewei; University of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo Grice, Corey; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ.,	Article Type:	Paper
Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of toledo, Zhao, Dewei; University of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo Grice, Corey; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ.,	Date Submitted by the Author:	29-Jun-2018
	Complete List of Authors:	Song, Zhaoning; University of Toledo, Physics and Astronomy Yu, Yue; the university of toledo, Zhao, Dewei; University of Toledo, Physics and Astronomy Awni, Rasha; University of Toledo Grice, Corey; University of Toledo, Department of Physics and Astronomy Shrestha, Niraj; University of Toledo, Physics and Astronomy Ellingson, Randy; University of Toledo, Physics and Astronomy Zhao, Xingzhong; Wuhan Univ.,


SCHOLARONE[™] Manuscripts

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Changlei Wang, ‡^{a,b} Zhaoning Song, ‡^b Yue Yu,^b Dewei Zhao, *^{,b} Rasha A. Awni,^b Corey R. Grice,^b Niraj Shrestha,^b Randy J. Ellingson,^b Xingzhong Zhao, *^{,a} Yanfa Yan^{*,b}

The mixed triple-cation (cesium (Cs), methylammonium (MA) and formamidinium (FA)) lead tri-iodide perovskite solar cells (PVSCs) exhibit improved optical and thermal stabilities compared to similar PVSCs without Cs. However, the triple-cation PVSCs still suffer from initial instability under illumination. Here, we report on improvement of device performance and operational illumination stability of PVSCs via simultaneous incorporation of lead thiocyanate (Pb(SCN)₂) additive and Cs cations, which enhances the perovskite crystallinity and lowers the trap density. We systematically investigate the impact of Cs on the device performance of PVSCs and demonstrate stable power conversion efficiencies of up to 20%. Importantly, our PVSCs with Cs and SCN additives sustain maximum power conversion efficiencies of about 19% without noticeable degradation for continues operation of 20000 seconds under a 100 mW/cm² AM 1.5G illumination. The excellent illumination stability of our PVSCs is mainly attribute to the reduced defect density and suppressed photodecomposition of perovskite due to the incorporation of nonvolatile Cs ions.

efficiency photovoltaic devices.³²

low solubility of Cs compounds.³⁷

cations of Rb, Cs, FA, and MA can effectively improve the

photovoltaic performance of the corresponding PVSCs with high efficiency as well as good stability.^{7, 31} Polymer-coated

four-cation PVSCs maintained 95% of their initial performance

at 85°C for 500 hours under full illumination and maximum

power point tracking (MPPT).⁷ More recently, Tsai et al.

reported continuous light illumination leads to the relaxation

of local lattice strain of CsMAFA perovskite, which lower

energetic barriers at perovskite interfaces and enable high-

the Cs containing PVSCs are unstable during the initial several

hours under illumination when using MPPT.^{25, 26, 29} Some

devices show a dramatic decrease in power output within the

first two hours of operation.^{25, 26, 31} The rapid degradation

under initial illumination could be due to the relatively smaller

grain size in the Cs containing perovskite films compared to

their counterparts with mixed organic cations, and

consequently higher density of grain boundaries that are

vulnerable to light-induced degradation.^{26, 29, 37, 38}

Incorporating Cs into the perovskite precursor solution

accelerates the nucleation process during the formation of perovskite films by creating more nuclei, possibly due to the

Our group has followed a simple formulation of

MA_{0.7}FA_{0.3}PbI₃ with Pb(SCN)₂ additives to synthesize perovskite

films and has achieved PCEs of $^{\sim}20\%$ in planar devices with a

n-i-p configuration.³⁹⁻⁴¹ We have shown that the Pb(SCN)₂

additives can effectively enhance grain size and, consequently,

However, in several reported works, the power outputs of

Introduction

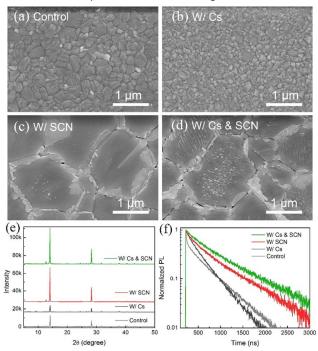
Organic-inorganic metal halide perovskite solar cells (PVSCs) have gained tremendous interest in the past few years,¹⁻²¹ and the record power conversion efficiency (PCE) has now exceeded 22%.⁵⁻⁸ Despite this rapid progress, the commercialization of this emerging photovoltaic technology is still facing challenges. For example, most PVSCs show fast degradation due to thermal, moisture, and illumination instabilities.²²⁻²⁵ Significant efforts have been made to develop approaches to stabilize PVSCs with one promising method being the incorporation of inorganic monovalent cations such as cesium (Cs) and rubidium (Rb).^{7, 26-32}

Lead iodide perovskites combining Cs and organic cations such as methylammonium (MA) and formamidinium (FA) may incorporate the advantages of both the inorganic and organic cations in halide perovskites.^{28, 29, 32-34} It has been reported that adding a small amount of Cs into MAPbBr₃ and FAPbl₃ perovskite layers significantly improves the stability and reproducibility of the resulting PVSCs.^{26, 31, 35, 36} Furthermore, Saliba et al. and Duong et al. also reported that including four

^{a.} Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China. Email: xzzhao@whu.edu.cn

^{b.} Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA. E-mail: Dewei.Zhao@utoledo.edu; Yanfa.Yan@utoledo.edu

⁺Electronic Supplementary Information (ESI) available. See DOI:10.1039/x0xx00000x

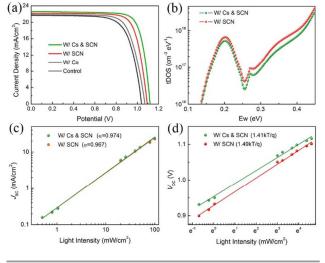

[‡]These authors contributed equally to this work.

ARTICLE

device performance of PVSCs. These devices, however, suffer from instability and gradually degrade under illumination, similar to PVSCs with mixed MA/FA compositions reported by others.^{7, 25, 26} In this work, we combine Pb(SCN)₂ additive and Cs ions strategies to prepare perovskite films with enhanced grain size and photostability. Moreover, we systematically study the synergistic effects of Pb(SCN)₂ additive and CsPbI₃ on the perovskite film properties and device performance. By tuning the Cs concentration, we fabricate efficient triple-cation lead iodide PVSCs with high operational stability and reproducibility.

Results and discussion

We start with an investigation of the effects of CsPbl3 and Pb(SCN)₂ additives on the structural and optoelectronic quality of $MA_{0.7}FA_{0.3}PbI_3$ films. Fig. 1(a) shows the sanning electron microscopy (SEM) image of a MA_{0.7}FA_{0.3}PbI₃ film with compact and smooth morphology. When a small amount of CsPbl₃ (e.g. 10 mol%) was incorporated into $MA_{0.7}FA_{0.3}PbI_3$ perovskite films (referred as to W/ Cs), the average grain size was decreased from 400 to 100 nm (Fig. 1(b)), likely due to the acceleration of nucleation process caused by the low solubility of Cs compounds that introduced more nuclei during the formation of perovskite film.³⁷ The small grain size in perovskite absorber layers is typically unfavorable because the high density of grain boundaries limits the performance of resulting solar cells. In contrast, the addition of Pb(SCN)₂ (e.g. 2 mol%) to $MA_{0.7}FA_{0.3}PbI_3$ (referred as to W/ SCN) increased the grain size to ~1 μ m (Fig. 1(c)) and created excess PbI₂ that segregated and passivated at grain boundaries. It was reported that excess PbI₂ results in an intrinsic instability of the film under illumination.⁴² We optimized the concentration of Pb(SCN)₂ to reduce side effects of excess PbI₂ while remaining small amount of PbI_2 that was located at grain boundaries with helpful passivation effects. We have demonstrated that the enlarged grain size and passivated grain boundaries are benifitial for the performance of resulting devices.^{16, 33, 41, 43, 44}



Journal Name

Interestingly, combining CsPbI₃ and Pb(SCN)₂ additive that individually have contradictory effects on grain growth resulted in perovskite films (referred as to W/ Cs & SCN) with high quality large-sized (~1 µm) crystals and PbI₂ passivation at the grain boundaries (Fig. 1(d)). The enlarged grains are likely attributed to the methylamine gas released during the formation of perovskite films,¹⁶ which softens the grain boundaries and facilitates the interdiffusion and coalescence of a large density of nuclei introduced by Cs addition.

Fig. 1(e) compares X-ray diffraction (XRD) spectra of MA0.7FA0.3PbI3 films without and with Cs and/or SCN. The addition of Cs decreased the intensities of the perovskite (110) and (220) peaks compared to the control sample and introduced the $\delta\text{-phase } \text{CsPbI}_3$ impurities, as evident in the peaks at low 20 angles of 9.8° and 13°.45 In contrast, adding Pb(SCN)₂ additives to both the control and W/ Cs films substantially enhanced the intensities of the perovskite peaks, indicating increased degree of crystallinity, consistent with the SEM observation. Interestingly, W/ Cs & SCN sample show no evidence of the δ -phase CsPbI₃ impurities but a minor PbI₂ peak at 12.8°. TRPL results show the carrier lifetimes of 480, 360, 645 and 720 ns for samples of control, W/ Cs, W/ SCN, and W/Cs & SCN, respectively (Fig. 1(f)). It is worth noting that the MA_{0.7}FA_{0.3}PbI₃ control sample exhibits a bi-exponential decay feature, likely related to the large density of grain boundaries because of the small grain size. Synergistic incorporation of Cs and SCN increased grain size, improved crystallinity and suppressed non-radiative recombination, leading to the longest carrier lifetime approaching 1 µs. A long carrier lifetime is critical to the performance of solar cells.¹⁴

We fabricated PVSCs in the n-i-p configuration to study the synergistic effects of Cs and SCN on the performance of PVSCs.

Fig. 2 Characterizations of photovoltaic performance of PVSCs. (a) *J*-*V* curves under reverse scan of PVSCs without and with Cs and/or SCN. (b) Trap density of states and light density dependence of (c) J_{SC} and (d) V_{OC} of W/ SCN and W/ Cs & SCN.

The current density-voltage (*J-V*) curves and photovoltaic parameters of corresponding devices are shown in Fig. 2(a) and Table S1, respectively. Compared to the $MA_{0.7}FA_{0.3}PbI_3$ control device's PCE of 17.16%, W/ Cs device has a lower PCE

This journal is © The Royal Society of Chemistry 20xx

of 16.22%. The reduced performance can mainly be ascribed to the deteriorated film quality with smaller grains, lower crystallinity, δ -CsPbl₃ and impurity phase that led to relatively shorter carrier lifetime than the control film. W/ SCN and W/ Cs & SCN devices outperform the control with PCEs of 18.83% and 19.92%, respectively, confirming the combined advantages of large crystal size and low trap density resulted from Pb(SCN)₂ additive.⁴⁴

To identify the reasons for the improved performance after Cs and SCN incorporated, we employed additional characterization techniques to compare the two most efficient PVSCs with Pb(SCN)₂. We first measured the trap density of states (tDOS) distribution of the devices using admittance spectroscopy. Fig. 2(b) shows that the W/ Cs & SCN device has a lower trap density than the W/ SCN one, which is consistent with lifetime measurements using TRPL. Further reduction of trap density is expected if the optimal Cs composition can be identified, as reported in literatures.⁴⁶⁻⁴⁸ We then investigated the light intensity dependence of J_{SC} and V_{OC} of PVSCs W/ SCN and W/ Cs & SCN. Fig. 2(c) shows the power law dependence of J_{SC} on the light intensity in a double logarithmic scale. The fitted slopes (α) of the PVSCs with and without Cs are 0.974 and 0.967, respectively, indicating a slightly more balanced charge carrier transportation in W/ Cs & SCN device than W/ SCN.⁴⁹ The V_{oc} has a linear relationship with natural logarithmic light intensity, as shown in Fig. 2(d). The fitted slopes for W/ Cs & SCN and W/ SCN devices are 1.41 and 1.49 kT/a. respectively, revealing a Shockley–Read–Hall recombination in both devices. However, the W/ Cs & SCN device has a lower slope, corresponding a lower trap-assisted recombination than the W/ SCN device. The light dependence measurements indicate that the introduction of Cs and SCN will reduce light-activated trap states. It was reported that the photocurrent degradation could be caused by the lightactivated meta-stable deep-level trap states.⁴⁸ The reduction of these defects would lead to better operational stability of PVSCs. The aforementioned results demonstrate the synergistic effects of Cs and SCN: SCN improves the film quality sufficiently, while Cs further reduces light-activated trap

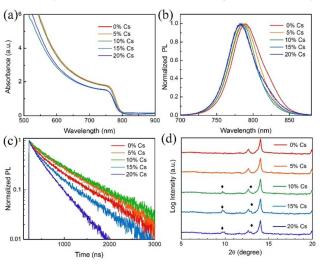
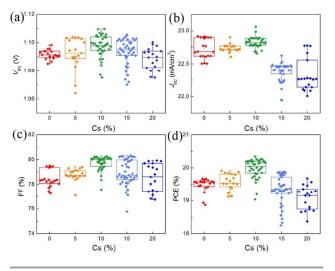
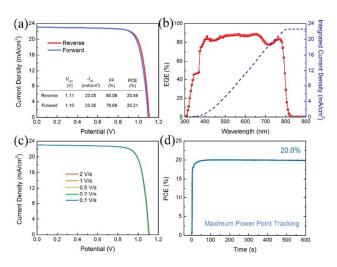


Fig. 3 (a) Absorbance, (b) Normalized PL, (c) PL decay and (d) XRD patterns of Pb(SCN)₂-incorporated ($MA_{0.7}FA_{0.3}$)_{1×}Cs_xPbl₃ films with x varying from 0 to 20%. This journal is © The Royal Society of Chemistry 20xx

density.47

To better understand the impact of Cs on the MA_{0.7}FA_{0.3}PbI₃ with 2% Pb(SCN)₂ films, we systematically investigated the properties of the films with different Cs fractions. We first characterized the optical properties of the $(MA_{0,7}FA_{0,3})_{1-}$ _xCs_xPbI₃ triple-cation perovskite thin films deposited on bare glass substrates using UV-visible spectroscopy. As shown in and (b), the absorption onset and Figs. 3(a) photoluminescence (PL) peak of the films show a slightly blue shift after the introduction of Cs, indicating that the bandgap increases as the Cs content increases, consistent with reports by others.²⁶ Tauc plots derived from absorbance also show the bandgap increases (Fig. S2). Fig. S3 shows the photos of the Pb(SCN)₂-incorporated (MA_{0.7}FA_{0.3})_{1-x}Cs_xPbI₃ perovskite thin films deposited on glass substrates with different concentrations of Cs. As the Cs concentration exceeds 10%, the perovskite films become hazy, likely due to the formation of excessive CsPbl₃ impurity phase.⁴⁵ Fig. S4 shows the filmside reflectance spectra of these films, it is clear that the reflectance of perovskite films with Cs exceed 15% were lower than the others, confirming the smaller grain sizes and the existence of excessive CsPbl₃ at the film surface.⁵⁰ PL decays (Fig. 3(c)) indeed show that small amount Cs substitution prolongs carrier lifetime by reducing defects,⁴⁷ however, large amount Cs causes short lifetimes due to small grain size and poor crystallinity. The XRD patterns (Fig. S5) show strong intensities of the (110) and (220) diffraction peaks at around 14.2° and 28.4°, respectively, indicating the similar preferred orientation for these films. The peak position of (110) shows a little bit shift to higher angle after the introduction of CsPbI₃ (Fig. S5(b)), demonstrating the successful incorporation of Cs ion into the perovskite lattice since Cs has a small atomic radius than MA and FA.⁷ XRD patterns plotted in log scale at the range from 5° to 20° (Fig. 3(d)) show the appearance of the orthorhombic CsPbI₃ phase. Since the δ -phase CsPbI₃ shows no desirable photovoltaic properties, the device performance will deteriorate when the amount of δ -phase CsPbI₃ become massive.⁴⁵ Hence, the amount of CsPbl₃ in the precursor




Fig. 4 Statistical results of 135 PVSCs based (MA $_{0.7}FA_{0.3})_{1\times x}Cs_xPbI_3$ perovskites with Cs content changing from 0 to 20%.

J. Name., 2013, 00, 1-3 | 3

solution must be controlled to avoid the formation of significant amount of $\delta\text{-phase.}^{46}$

The SEM images show that the grain size has negligible change when Cs content is lower than 10% (Fig. S6), however, when Cs concentration is above 15%, the grain size decreases dramatically, which is likely due to the acceleration of Cs ions on the nucleation process with more nuclei and consequent formation of small grains in the perovskite film.³⁷ The SEM images also show that small brighter grains start to appear when the Cs concentration is higher than 10%. SEM-based Xray energy dispersive spectroscopy (EDS) analysis indicated that these small brighter grains are CsPbl₃. This is consistent with the XRD patterns shown in Fig. 3(d), which also show the formation of CsPbl₃ impurity phase with the concentration of Cs exceed 10%. When Cs concentration reached 15%, the grain size decreased dramatically, which means the crystallinity decreases when significant amount of δ -phase CsPbI₃ starts to form. This is consistent with XRD shown in Fig. S5 that the intensity of (110) peak decreased and the FWHM increased when Cs is over 15%. Fig. S6(f) shows the cross sectional SEM image of a 10% Cs incorporated PVSC, the film has very high aspect ratio and there are no lateral grain boundaries, desirable for charge transporting.44, 51

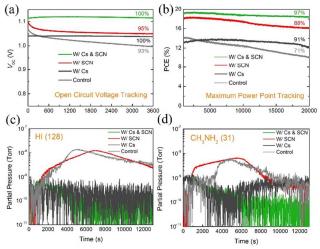

Fig. 4 shows the statistics of the photovoltaic parameters of 135 PVSCs measured under reverse voltage scans to confirm the effects of Cs on the device performance and reproducibility. The device performance of these PVSCs are summarized in Table S2. The J-V and external quantum efficiency (EQE) curves of repetitive devices of the PVSCs with different Cs contents are shown in Fig. S7. As the Cs concentration increases, the average $V_{\rm OC}$ increases from 1.092 \pm 0.003 (1.071 \pm 0.013) V for perovskite without Cs to 1.098 \pm 0.008 (1.081 ± 0.010) V for 10% Cs measured reverse (forward) voltage scan, due to the enhanced crystallinity as well as the increased bandgap.⁵² Further increase in Cs concentration led to decreased average $V_{\rm OC}$'s, partially due to the formation of CsPbI₃ impurity phase. The average J_{sc} also increases and reaches the maximum value of 22.82 \pm 0.06 mA/cm² at 10% Cs. This can only be explained by the improved crystallinity and film quality, since the bandgap increases as the Cs concentration increases. However, when the concentration of

Fig. 5 Photovoltaic parameters of the best-performing PVSCs with 10% Cs. (a) *J-V* curves measured under reverse and forward voltage scans with a scan rate of 1V/s. (b) The EQE plot and integrated current density curve. (c) *J-V* curves measured under reverse voltage scan with different scan speeds. (d) MPPT profile of the best-performing PVSC under 100 mW/cm² AM 1.5G illumination.

Cs is larger than 15%, the J_{sc} decreases dramatically because of the formation of a large amount of CsPbl₃ and the reduced grain size according to SEM. The trend of average FF as a function of Cs concentration can also be explained by the increased film quality and reduced traps at 10% Cs and then decreased grain size and crystallinity beyond 10% Cs.⁵² As a result, the average PCE increased from 19.47 ± 0.22 (17.86 ± 0.60)% for none Cs containing PVSCs to 19.98 ± 0.29 (18.63 ± 0.53)% for 10% Cs incorporated PVSCs measured under reverse (forward) voltage scans.

Fig. 5 shows the photovoltaic performance of the bestperforming PVSCs fabricated using a 10% Cs containing perovskite absorber. This device shows very small hysteresis when measured under reverse and forward voltage scans, as shown in Fig. 5(a). This PVSC exhibits a $V_{\rm OC}$ of 1.11 (1.10) V, a J_{sc} of 23.05 (23.05) mA/cm² and a FF of 80.09 (79.69)%, yielding a PCE of 20.49 (20.21)%, when measured under reverse (forward) voltage scan at a sweep speed of 1 V/s. Fig. 5(b) shows the EQE plot of the PVSC and the corresponding integrated current density of 22.56 mA/cm², which is in good agreement with the J_{sc} value obtained from the J-V curve. Due to the relatively small degree of hysteresis, our PVSCs show almost same performance irrespective of scan speed, as shown in Fig. 5(c), maintaining a stable PCE of about 20.40% with negligible variation when measured under reverse voltage scan with different scan speeds. The best-performing PVSC shows a stable power output of 20.0% for 600 seconds using

Fig. 6. (a) Open-circuit voltage and (b) MPP tracking of V_{OC} of PVSCs without encapsulation under a 100 mW/cm² AM 1.5G illumination in ambient air. Mass spectroscopy traces for (c) HI (m/z = 128) and (d) CH₃NH₂ (m/z = 31) released from perovskite films under light induced decomposition measurements.

maximum power point tracking (MPPT) (Fig. 5(d)).

The introduction of Cs has been found to improve the longterm stability of PVSCs.^{7, 26, 53} However, some state-of-the-art Cs-containing PVSCs reported in the literature showed somewhat degradation under the initial illumination.^{25, 26, 29, 54} To investigate the synergistic effects of Cs and SCN on the device operational stability of PVSCs, especially under the initial illumination, we tracked the V_{OC} and PCE of PVSCs without and with Cs and/or SCN, under 100 mW/cm² AM 1.5G

This journal is C The Royal Society of Chemistry 20xx

illumination. Fig. 6(a) shows the $V_{\rm OC}$ profiles of four PVSCs. The W/ Cs & SCN device shows no change in $V_{\rm OC}$ (1.12 V) after illumination for 3600 s. In contrast, the V_{OC} of the W/ SCN device rapidly declined from its initial value of 1.10 V and plateaued to 1.05 V in the first 600 s. The W/ Cs device also shows a stable V_{OC} output; however, the value is inferior to the W/ Cs & SCN device. Fig. 6(b) compares the MPPT profiles of PVSCs without and with Cs and/or Pb(SCN)₂ under operating conditions in ambient air for 20000 s (~6 h). Within the test group, the W/ Cs & SCN device shows the highest PCE of 19.1% and the most stable power output that remaining 97% of its initial PCE after 20000 s of continuous operation under one sun illumination. This efficient and stable performance outperformed the control, W/ Cs and W/ SCN PVSCs measured under the same conditions, whose PCEs decreased to 71%, 91%, and 88% of their initial values, respectively, confirming the synergistic effects of SCN additive and Cs cation.

To understand the origins of the operational stability of PVSCs with Cs incorporating perovskites, we performed mass spectroscopy measurements on the perovskite films with and without Cs. Figs. 6(c) and (d) show the traces of HI (m/z = 128) and CH_3NH_2 (m/z = 31) that released from $MA_{0.7}FA_{0.3}PbI_3$ based perovskite films (control, W/ Cs, W/ SCN and W/ Cs & SCN) under one sun illumination, respectively. The volatile HI and CH₃NH₂ gases are the main decomposition products of $\mathsf{MAPbI}_3.^{29,\,55\text{-}57}$ The release of HI and $\mathsf{CH}_3\mathsf{NH}_2$ from the control and W/ SCN samples shows the photo-instability of the mixed MA/FA perovskites and could be the reason of the unstable performance of corresponding devices under operating conditions, as shown in the MPPT measurements. The addition of Cs to the perovskite films effectively suppress the photodegradation of perovskite films (W/ Cs and W/ Cs & SCN), as evident in the substantial reduction of released of HI and CH₃NH₂ from the perovskite film under illumination. This could be the reason of the good operational stability of devices with both Cs and SCN.

Moreover, we checked the thermal stability of perovskite films by keeping them on a hotplate at different temperatures. As shown in Fig. S10, the absorption onset of perovskite films W/ SCN and W/ Cs & SCN are similar around 800 nm, however, the absorbance of W/ Cs & SCN shows less change compared to the W/ SCN one, indicating a better thermal stability. The moisture tolerance of perovskite films with and without Cs and/or SCN are shown in Fig. S11. Among all the tested samples, the W/ Cs film has the worst moisture tolerance probably due to the smallest grain size that are vulnerable to moisture induced degradation. In contrast, simultaneous addition of Cs and SCN does not significantly change the stability of the films against moisture. Overall, the results show the synergistic effects of Cs and SCN on improving the quality and stability of perovskite films.

Conclusions

In conclusion, we have systematically investigated the synergistic effects of Cs and SCN additives on the performance and operational stability of PVSCs. The combination of

 $\mathsf{Pb}(\mathsf{SCN})_2$ and CsPbI_3 results in high quality perovskite films with large grain sizes, high crystallinity, reduced trap density, and improved photostability, consequently leading to high performance PVSCs that can sustain high power output with negligible degradation in continuous operation for 20000 seconds under AM 1.5G illumination.

Experimental

Precursor preparation

Pbl₂ (Alfa Aesar, 99.9985%), MAI (Dyesol), FAI (Dyesol), lead thiocyanate (Pb(SCN)₂ (Sigma-Aldrich, 99.5%)), DMSO (Sigma-Aldrich, 99.8%), and DMF (Sigma-Aldrich, 99.8%) were purchased and used directly. Based on reports in literature, we choose compositions of $Cs_x(MA_{0.7}FA_{0.3})_{1-x}PbI_3$ for our study owing to the suitable bandgap of MA_{0.7}FA_{0.3}PbI₃ perovskite absorber for terrestrial solar cell applications (1.57 eV).41, 58 We first made individual MA_{0.7}FA_{0.3}PbI₃ and CsPbI₃ precursors by dissolving mixed FAI, MAI, PbI₂ and Pb(SCN)₂ powders and mixed CsI, PbI₂ and Pb(SCN)₂ powders in mixed N,Ndimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvents, respectively, and then mixed these precursors with the desirable volume ratios to form (MA_{0.7}FA_{0.3}PbI₃)_{1-x}(CsPbI₃)_x precursors (Fig. S1). The solutions were stirred overnight on a 60 °C hot plate before deposition. The amount of Pb(SCN)₂ in perovskite precursors is 2.0% with respect to PbI₂.

Fabrication of solar cells

Our PVSCs have the regular cell configuration: Glass/FTO/PEALD SnO_2/C_{60} -SAM/(MA_{0.7}FA_{0.3}Pbl₃)₁. _x(CsPbl₃)_x/Spiro-OMeTAD/Au. Here, FTO is fluorine-doped tin oxide (SnO₂:F), C₆₀-SAM is self-assembled fullerene monolayer, PEALD SnO₂ is the electron selective layer (ESL) deposited by plasma-enhanced atomic layer deposition.⁴³ Spiro-OMeTAD is 2,2',7,7'-tetrakis(N,N'-di-*p*-methoxyphenylamine)-9,9'-

spirobifluorene hole selective layer (HSL).^{20, 59} The perovskite precursor solution was spin-coated on the ESL first at 500 rpm for 3s, and then at 4000 rpm for 60s with diethyl ether as the anti-solvent agent dropped on the film at 10 s of second step. The as prepared perovskite film was annealed on a hot plate at 65 °C for 2 minutes and then 100 °C for 5 minutes. The typical thickness of our perovskite layers is about 500 nm. The Spiro-OMeTAD solution was prepared as we have reported previously.^{39-41, 44} All of the fabrication processes were conducted in a N₂ filled glove box.

Characterization

Scanning electron microscopy (SEM) images were taken with a Hitachi S-4800 high resolution microscope. The XRD patterns were acquired with a Rigaku Ultima III high resolution X-ray diffractometer using the Cu-K α line ($\lambda = 0.15481$ nm) at 44 kV and 40 mA source excitation. Absorbance spectra were characterized with a UV–visable spectrophotometer (PerkinElmer Lambda 1050). *J-V* curves were measured using a Keithley2400 sourcemeter, with the samples under AM 1.5G (100 mW/cm²) illumination (PV Measurements Inc.), the voltage of which was scanned between -0.1 V and 1.3 V. EQE spectra were measured using a commercialized QE system (PV

ARTICLE

Measurements Inc.). All device characterizations were 9. performed in the ambient air (~22 °C, 30% humidity). A 532 nm continuous-wave laser at 40 mW/cm² was used as an excitation wavelength for steady-state photoluminescence (PL) measurement, and PL signal was detected via Symphony-II CCD (from Horiba) detector after a 300 g/mm grating monochromator. Time resolved photoluminescence (TRPL) measurements were performed with time correlated single photon counting module and the radiative recombination events were detected via hybrid APD/PMT module (R10467U-50). The mass spectroscopy measurements were performed using a built-in-house temperature programed desorption system.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work is financially supported by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990), the Office of Naval Research under Contract no. N00014-17-1-2223, Air Force Research Laboratory, Space Vehicles Directorate (contract # FA9453-11-C-0253), National Science Foundation under contract no. CHE-1230246 and DMR-1534686, and the Ohio Re-search Scholar Program. This work also received financial support from National Basic Research Program of China (2011CB933300), National Science Fund for Distinguished Young Scholars (50125309), National Natural Science Foundation of China (Grants 51272184 and 91433203).

Notes and references

- A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. 22. Chem. Soc., 2009, 131, 6050-6051.
- 2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643-647.
- M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, 501, 395-398.
- D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz and H. J. Snaith, *Science*, 2016, **351**, 151-155.
- N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, *Nature*, 2015, **517**, 476-480.
- W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, *Science*, 2015, 348, 1234-1237.
- M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, *Science*, 2016, **354**, 206-209.
- W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, *Science*, 2017, **356**, 1376-1379.

- D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano and J.-P. C. Baena, *Sci. Adv.*, 2016, **2**, e1501170.
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen and Y. Yang, *Science*, 2014, **345**, 295-298.
- W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.-G. Xiong and Y. Yan, *Adv. Mater.*, 2016, 28, 9333-9340.
- W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C. R. Grice, C. Wang, Y. Xiao, A. J. Cimaroli, R. J. Ellingson, N. J. Podraza, K. Zhu, R.-G. Xiong and Y. Yan, *J. Am. Chem. Soc.*, 2016, **138**, 12360-12363.
- Z. Yu, B. Chen, P. Liu, C. Wang, C. Bu, N. Cheng, S. Bai, Y. Yan and X. Zhao, *Adv. Funct. Mater.*, 2016, 26, 4866-4873.
- D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong and Y. Yan, *Nat. Energy*, 2017, 2, 17018.
- M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest and K. Zhu, *Nat. Energy*, 2017, 2, 17038.
- W. Ke, C. Xiao, C. Wang, B. Saparov, H.-S. Duan, D. Zhao, Z. Xiao, P. Schulz, S. P. Harvey, W. Liao, W. Meng, Y. Yu, A. J. Cimaroli, C.-S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D. B. Mitzi and Y. Yan, *Adv. Mater.*, 2016, 28, 5214-5221.
- D. Zhao, W. Ke, C. R. Grice, A. J. Cimaroli, X. Tan, M. Yang, R. W. Collins, H. Zhang, K. Zhu and Y. Yan, *Nano Energy*, 2016, **19**, 88-97.
- Y. Yu, D. Zhao, C. R. Grice, W. Meng, C. Wang, W. Liao, A. J. Cimaroli, H. Zhang, K. Zhu and Y. Yan, *RSC Adv*, 2016, 6, 90248-90254.
- W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang and Y. Yan, *J. Mater. Chem. A*, 2015, 3, 17971-17976.
- Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel and M. J. Heben, Adv. Energy Mater., 2016, 6, 1600846.
- Z. Song, C. L. McElvany, A. B. Phillips, I. Celik, P. W. Krantz, S. C. Watthage, G. K. Liyanage, D. Apul and M. J. Heben, *Energy Environ. Sci.*, 2017, 10, 1297-1305.
 - D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant and S. A. Haque, *Energy Environ. Sci.*, 2016, **9**, 1655-1660.
 - N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath and S. A. Haque, *Angew. Chem. Int. Ed.*, 2015, **54**, 8208-8212.
 - Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong and J. Huang, *Energy Environ. Sci.*, 2017, **10**, 516-522.
 - K. Domanski, E. A. Alharbi, A. Hagfeldt, M. Grätzel and W. Tress, *Nat. Energy* 2018, **3**, 61-67.
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel, *Energy Environ. Sci.*, 2016, 9, 1989-1997.
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin and J. Liu, *J. Am. Chem. Soc.*, 2016, 138, 15829-15832.
- Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, *Chem. Mat.*, 2016, 28, 284-292.
- J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho and N.-G. Park, *Adv. Energy Mater.*, 2015, 5, 1501310.

6 | J. Name., 2012, 00, 1-3

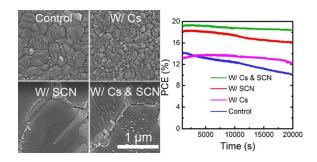
This journal is © The Royal Society of Chemistry 20xx

23.

24.

25.

48.


Journal Name

- H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim and J. Y. Kim, *Nano Energy*, 2014, 7, 80-85.
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, K. Weber and K. Catchpole, *Adv. Energy Mater.*, 2017, 7, 1700228.
- H. Tsai, R. Asadpour, J.-C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie and A. D. Mohite, *Science*, 2018, 360, 67-70.
- Y. Yu, C. Wang, C. R. Grice, N. Shrestha, J. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. Roland, R. J. Ellingson and Y. Yan, *ChemSusChem*, 2016, 9, 3288-3297.
- L. Guan, X. Yin, D. Zhao, C. Wang, Q. An, J. Yu, N. Shrestha, C. R. Grice, R. A. Awni, Y. Yu, Z. Song, J. Zhou, W. Meng, F. Zhang, R. J. Ellingson, J. Wang, W. Tang and Y. Yan, J. Mater. Chem. A, 2017, 5, 23319-23327.
- K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. J. Johansson, W. Tress, A. Hagfeldt and G. Boschloo, *Adv. Mater.*, 2017, 29, 1606398.
- 36. M. Salado, M. Oliva-Ramirez, S. Kazim, A. R. González-Elipe and S. Ahmad, *Nano Energy*, 2017, **35**, 215-222.
- T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.-B. Cheng and J. Zhong, *Energy Environ. Sci.*, 2017, **10**, 2509-2515.
- B. Philippe, M. Saliba, J.-P. Correa-Baena, U. B. Cappel, S.-H. Turren-Cruz, M. Grätzel, A. Hagfeldt and H. Rensmo, *Chem. Mater.*, 2017, 29, 3589-3596.
- C. Wang, L. Guan, D. Zhao, Y. Yu, C. R. Grice, Z. Song, R. A. Awni, J. Chen, J. Wang, X. Zhao and Y. Yan, *ACS Energy Lett.*, 2017, 2, 2118-2124.
- C. Wang, C. Xiao, Y. Yu, D. Zhao, R. A. Awni, C. R. Grice, K. Ghimire, I. Constantinou, W. Liao, A. J. Cimaroli, P. Liu, J. Chen, N. J. Podraza, C.-S. Jiang, M. M. Al-Jassim, X. Zhao and Y. Yan, *Adv. Energy Mater.*, 2017, 7, 1700414.
- C. Wang, D. Zhao, Y. Yu, N. Shrestha, C. R. Grice, W. Liao, A. J. Cimaroli, J. Chen, R. J. Ellingson, X. Zhao and Y. Yan, *Nano Energy*, 2017, **35**, 223-232.
- L. Fangzhou, D. Qi, W. M. Kwong, D. A. B., N. Annie, R. Zhiwei, S. Qian, S. Charles, C. W. Kin, W. Jian, N. A. M. Ching, L. Changzhong, L. Hangkong, S. Kaimin, W. Chengrong, S. Huimin and D. Junfeng, *Adv. Energy Mater.*, 2016, 6, 1502206.
- C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R. J. Ellingson, X. Zhao and Y. Yan, *J. Mater. Chem. A*, 2016, 4, 12080-12087.
- Y. Yu, C. Wang, C. R. Grice, N. Shrestha, D. Zhao, W. Liao, L. Guan, R. A. Awni, W. Meng, A. J. Cimaroli, K. Zhu, R. J. Ellingson and Y. Yan, ACS Energy Lett., 2017, 2, 1177-1182.
- A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, *Science*, 2016, **354**, 92-95.
- 46. S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei and J. Huang, *Adv. Energy Mater.*, 2017, **7**, 1700302.
- Y. Hu, E. M. Hutter, P. Rieder, I. Grill, J. Hanisch, M. F. Aygüler, A. G. Hufnagel, M. Handloser, T. Bein, A. Hartschuh, K. Tvingstedt, V. Dyakonov, A. Baumann, T.

J. Savenije, M. L. Petrus and P. Docampo, *Adv. Energy Mater.*, 2018 10.1002/aenm.201703057, 1703057.

- W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta and A. D. Mohite, *Nat. Commun.*, 2016, 7, 11574.
- 49. V. Mihailetchi, J. Wildeman and P. Blom, *Phys. Rev. Lett.*, 2005, **94**, 126602.
- D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim and N.-G. Park, *Nat. Energy* 2016, 1, 16081.
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Adv. Mater., 2014, 26, 6503-6509.
- 52. T. Singh and T. Miyasaka, *Adv Energy Mater.*, 2018, **8**, 1700677.
- H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland and E. H. Sargent, *Science*, 2017, 355, 722-726.
- J. Song, I. liu, X.-F. Wang, G. Chen, W. Tian and T. Miyasaka, J. Mater. Chem. A, 2017, 5, 13439-13447.
- S. Ito, S. Tanaka, K. Manabe and H. Nishino, J. Phys. Chem. C, 2014, 118, 16995-17000.
- 56. S. Wang, Y. Jiang, Emilio J. Juarez-Perez, Luis K. Ono and Y. Qi, *Nat. Energy*, 2016, **2**, 16195.
- 57. D. B. Mitzi and K. Liang, J. Solid State Chem., 1997, 134, 376-381.
- Z. Yang, C.-C. Chueh, P.-W. Liang, M. Crump, F. Lin, Z. Zhu and A. K. Y. Jen, *Nano Energy*, 2016, 22, 328-337.
- 59. Z. Yu and L. Sun, Adv. Energy Mater., 2015, 5, 1500213.

Graphical Abstract

The combination of Pb(SCN)₂ and CsPbI₃ results in high quality perovskite films, leading to high performance PVSCs with stable power output.