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The linking of molecular building units with covalent bonds has opened the door to a 

data rich field of reticular materials design1-4. The combinations of potential chemistries 

and bonding arrangements permits large numbers of materials chemistries covering a 

broad range of crystallographic space groups of extended structures. The resulting 

framework structures, such as Metal-organic framework (MOF) structures, can be tuned 

to create well defined pore geometries, networks and sizes. In this paper, we present a 

machine learning / data driven approach to characterize MOF structures. Thisapproach 

permits one to map high dimensional correlations between diverse chemistries and 

crystallography so as to discover how the interplay between chemical bonding and 

chemical geometry govern relationships between seemingly diverse families of MOF 

structures. It is demonstrated that this correlative analysis approach can serve as a way 

to map design strategies for MOF structures for the tuning of pore size and pore 

network geometry and establishes a template for interrogating databases to uncover 

new relationships in materials chemistries.  
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Abstract 

 

We demonstrate the use of non-linear manifold learning methods to map the connectivity 

and extent of similarity between diverse metal-organic framework (MOF) structures in 

terms of their surface areas by taking into account both crystallographic and electronic 

structure information. The fusing of geometric and chemical bonding information is 

accomplished by using 3-dimensional Hirshfeld surfaces of MOF structures, which 

encode both chemical bonding and molecular geometry information. A comparative 

analysis of the geometry of Hirshfeld surfaces is mapped into a low dimensional manifold 

through a graph network where each node corresponds to a different compound. By 

examining nearest neighbor connections, we discover structural and chemical 

correlations among MOF structures that would not have been discernible otherwise. 

Examples of the types of information that can be uncovered using this approach are 

given. 

 

1 Introduction 

 

 

In the case of MOF systems, machine learning techniques have discovered promising 

materials for CH4 uptake5, 6 and carbon green-house gas capture7. In those applications, 

the desired properties were affected by a number of factors and their synergistic effects, 

such as chemical formulas, bonding (electronic structures), intermolecular packing, 

crystallographic parameters, the nature of the building blocks, and their network 

connections6-13, were explored. 

 

In the present study, we take an approach that is different from those previous studies in 

two fundamental ways:  

i) We integrate geometric and chemical bonding information in the 

characterization of MOF structures. This integrated information is treated as 

our training data set for a machine learning / informatics analysis. This 
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integration is accomplished by representing MOF structures in terms of 

3-dimensional Hirshfeld surfaces that encode both chemical bonding and 

molecular geometry information14-15. 

ii) The correlations between compounds in terms of their structural similarities 

and properties are mapped from a manifold learning based analysis of the 

Hirshfeld surfaces (Figure 1). The information is projected in terms of a graph 

network that permits us to quickly identify the extent of similarity between 

different MOF structures and the nature of the connections or lack thereof 

between compounds. The ability to map the connectivity between structure, 

bonding, and intermolecular interactions has permitted us to now show how a 

new type of structure map for MOF systems can be derived. 

 

 

 

 
Figure 1 Schematic of the manifold learning process of MOFs structures 

 

2 Methods 

 

 

2.1 Hirshfeld surface calculations 

 

A fundamental issue in materials design process is how to assemble molecules into 

molecular crystals. The idea of Hirshfeld surfaces arises from the above question: how to 

assemble molecules and fabrication of flexible or rigid, organic or metal-organic building 

blocks into multicomponent system? Hirshfeld surfaces have been widely used in 

studying organic and inorganic solids, including MOF structures8-11. It is based 

promolecule and procrystal models, which are rooted in quantum mechanics and 

simplified further by spherical-atom approximation. Promolecule and procrystal models 

are originated from in electron charge density analysis and X-ray diffraction analysis as 
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the ‘independent atom model’ (IAM). In standard structural analysis of X-ray diffraction 

data, the scattering of a crystal is the sum of scattering by the spherically-symmetrical, 

ground-state atoms calculated by Hartree-Fock method. In charge density analysis, they 

are employed as ideal reference systems, which are made up by non-interacting atoms 

held fixed at the same positions as they are in the corresponding ‘real’ molecule and 

crystal. As the charge density of an isolated atom is spherically symmetric, the 

corresponding promolecular density is just the sum of the spherically-averaged atomic 

charge densities, each centered on the coordinates of the corresponding ‘real’ nucleus. 

On the other hand, procrystal density can be obtained by the same summation over the 

whole unit cell of a crystal. 

 

Molecular Hirshfeld surfaces in crystal structures are constructed based on the electron 

distribution calculated as the sum of spherical atomic electron densities as an isosurface 

around molecules-in-crystals, where the density from the promolecule contribution to the 

procrystal density exceeds the contributions coming from all the other molecules in the 

periodic system (Equation 1). Hirshfeld surfaces of each molecule of a given crystal 

structure are unique, thus they can be used as a generic ‘finger-print’ of a particular 

molecule-in-crystal.  

 

Equation 1 
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where promolecule / procrystal: is a model of a molecule / crystal where the electron 

density distributions of each of its atoms have been spherically averaged and placed at 

their minimum energy positions. 

 

In addition to the Hirshfeld surface itself, we can encode other geometric properties on 

surfaces. In particular, each point on the surface can be mapped with a set of values 

based on the neighboring environments. The contact distances de and di are the 

distances from the Hirshfeld surface to the nearest atoms outside and inside the surface, 

respectively. The pairs of contact distances highlight the donor-acceptor in the crystal so 

that they can be applied as a powerful tool for analyzing directional intermolecular 

interactions. The 2D histogram generated by the de and di pairs for all of the points on the 

Hirshfeld surface serve as a 2D fingerprint plot which provides a summary of the 

intermolecular contacts in the crystal.  

 

Aside from the 2D fingerprint plots, di and de can be normalized as an indicator of 

intermolecular contact distance by taking the atomic van der Waal’s radii into account. 
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The normalized contact distance is defined as: 

Equation 2 
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As an example, we show in Figure 2 the Hirshfeld surface of 

catena-(bis(µ2-4-Nitrophenolato)-lead(II)) (CCDC identifier: FIRPOM) and its fingerprint 

plots. In Figure 2(a), the Hirshfeld surface color-coded by dnorm highlights the 

intermolecular interactions in crystal, which affect the assembly of molecular crystals into 

networks. The strong short range interactions are mapped out in red, whereas the porous 

regions are mapped out in blue, indicating long-range intermolecular interactions or even 

non-interactions. As mentioned previously, Hirshfeld surface (Figure 2(b)) can be 

color-coded with various properties, including di, de (Figure 2(c)), and their normalized 

distance (dnorm) by the Van der Waals radii of the involved atoms (Figure 2(d)). Despite 

being qualitatively visualized, the intermolecular interactions can also be captured 

quantitatively by the histogram of pairwise di and de sets. The Hirshfeld surface gives a 

unique signature of a molecule in a crystal, because it strongly depends on the 

surrounding, so the same molecule in different crystal packing looks different. Thus, the 

histogram of the geometric mappings to the molecule itself and its neighboring 

environment, is able to capture the high dimensionality of the descriptor spaces of 

materials databases, including chemical formula, molecular structures, crystal 

parameters, intermolecular interactions and et al. 

 

The range of de and di across the Hirshfeld surface varies considerably depending on the 

atoms in the molecule (size dependence) and the particular type of intermolecular 

interaction experienced (interaction dependence). The ‘jet’ color map on the surface are 

customized to each group of molecules in order to present the contrast of contact 

distances. Whereas for dnorm, the diverging color map is used to illustrate the deviation 

from non-interaction state. 

Page 5 of 22 Molecular Systems Design & Engineering



 

 
Figure 2 Finger-printing MOF structure (CCDC identifier: FIRPOM) and 
quantitative visualization of the molecule-in-crystal interactions. The Hirshfeld 
surface (c) of this molecule is encoded with a red-blue color scale reflected by the 
relative distance between pairwise di / de and the corrresponding Van der Waals 
radii. Red indicates close contact, where the interatomic distance is less than the 
Van der Waals radii, while blue indicates long range contact, where the interatomic 
distance is longer than the Van der Waals radii. (d) is the 2D histogram of di and de 
values for the example MOF structure. 

 

Since Hirshfeld surfaces not only contain all of the geometric information of a compound 

but also the electronic structure and bonding information (involving solving spherical 

Schrödinger’s equations of atoms), Hirshfeld surfaces and their fingerprint plots are able 

to discern differences that one may not be able to realize just through visual inspection of 

the MOF crystal structures. Despite the fact that the 2D fingerprint plot can visualize all 

close contacts and to decode each possible contribution involved within the structure, we 

need a sophisticated data/graph analysis tool to derive the quantitative structure-property 

relationships and the formation pathways for MOF structures. In this work, the outcome of 
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3D Hirshfeld surfaces are reduced to 2D histograms of di and de as the material 

fingerprints, which serve as the only input descriptors for the manifold learning algorithm 

mapping out the correlations.  

 

2.2 Manifold Learning 

 

In previous studies, we have successfully applied the use of the Isomap algorithm as a 

powerful tool to decipher the relationship between different chemistries12, 13. One of the 

features of the Isomap algorithm is that instead of assuming the data has an intrinsic 

linear structure, it allows the data, which is usually represented by a set of points, to be 

located on a non-linear manifold. Based on this allowance, it generates a low dimensional 

embedding of the data in a linear space (usually 2
� or 3

� ) such that the inner products 

between all of the pairs of data points preserves, with minimum error, the inner products 

between the data points on the original manifold.  

 

This is done by first constructing a weighted graph (the neighborhood graph13), that has 

all of the data points { }ix  as the vertices. The edges of this graph are determined by 

connecting each vertex to its k nearest neighbors in terms of the distance defined in the 

input space, with the weights of the edges as the input space distances between the two 

vertices that the edge is connecting to. By using the weighted graph, the geodesic 

distance can then be estimated as the least weighted path between an arbitrary pair of 

given points. With the estimated geodesic distances, the algorithm then applies the 

classical multidimensional scaling method to produce a low dimensional projection / 

embedding of the data that geometrically maps the correlations (in terms of the relative 

positions) between the points on the original manifold. Nevertheless, in practice the 

dimension of the manifold may be unknown, and for the purpose of visualization, the 

original data is commonly projected onto a 2D plane. The distance between two points in 

the low-dimensional projection may not be used as a measure for similarity, yet there is a 

one-to-one correspondence between the points on the original manifold and the points on 

the low-dimensional projection. The latter can be connected by edges that are 

determined in the first step to produce an unweighted graph network, which can be 

regarded as a similarity/dissimilarity map for the input points. Therefore, in general, two 

points in the input data are said to be similar if they are close in terms of Euclidean 

distance in the projected space and they are connected by a path in the graph network. 

For two points, the more edges in the shortest path that is connecting them, the less 

similar they are. 

 

With the ultimate goal being to look for a new methodology for MOF design and selection 

with target properties based on the information / data that is already at our disposal, we 

applied the Isomap algorithm to the 2D fingerprint plots of the Hirshfeld surfaces as a first 
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step towards this goal. Here, a MOF structure is represented by its 2D fingerprint plot 

which is treated as a point { }ix  in a high dimensional Euclidean space. Since a 2D 

fingerprint plot is able to capture various properties, such as intermolecular interactions 

within the crystal structure, short / long-range contacts, and bonding information of the 

MOF compound, the points { }ix  are assumed to lie on a manifold that contains all of this 

information, although the dimension of this manifold is not necessarily n. Based on the 

results from Tenenbaum et al.13, it is reasonable to assume that the low-dimensional 

projection of the set of the 2D fingerprint plots will map some trend along the manifold in 

the input MOF structures, and the similarity / dissimilarity map will provide information 

about how different MOF chemistries and structures are related by using the connectivity 

in the graph. 

 

The fingerprints of Hirshfeld surfaces of MOF structures can be thought of as points in a 

high-dimensional vector space ( 500 500×
� ). The Isomap algorithm was then used to 

discover the optimal low dimensional graph which contains the information of the 

intermolecular interactions and bonding information of the MOFs in the input dataset, 

such that the geodesic distance relative geometric relations between the finger print of 

the MOFs in the higher dimensional manifold is preserved when mapped onto the 

reduced dimensional graph. The full details of the library of Hirshfeld surfaces and the 

treatment of the computational details of the manifold learning analysis are provided in 

the Supplementary Materials. 

 

It is crucial to construct, in the first step, an appropriate graph so that the estimated 

geodesic distance between the vertices on the graph is an accurate approximation of the 

geodesic distances between points on the manifold. The effect of a “manifold 

short-circuit”14 could occur if care is not taken for selecting the number of nearest 

neighbors when constructing the weighted graph in this step. To check for the potential 

short-circuits in the manifold, we compared the results by changing the number of nearest 

neighbors while looking at the residual variance of the reconstruction and the shape and 

connections of the resulting graph network.  

 

 

3 Results and discussion 

 

The 57 MOF structures investigated in this work are randomly chosen from the MOFs 

database6 and have structures which are amenable for computation. Tthe Hirshfeld 

surface of those MOFs were generated and transformed into 2D histograms with 500 by 

500 bins per graph. 
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Figure 3 presents the graph network (connectivity map) generated by the Isomap 

algorithm for these 57 MOF structures that we used as our template of study (see 

Supplementary Data for full library of calculated Hirshfeld surfaces and their fingerprints). 

The number of nearest neighbors and the number of reconstruction dimensions are two in 

this dataset for optimal mapping results (see section 3.1 and 3.2 in supplementary 

materials for the details on the optimization step). They represented over 30 different 

space groups, as we wanted to explore our machine learning approaches on as diverse 

set of crystal chemistries as possible. This manifold learning based graph network can be 

viewed as a form of structure map for reticular compounds: that is, an analogue to 

structure maps in crystal chemistry that seek patterns among diverse chemistries of 

compounds. The advantage of this network structure map is that it links chemistry and 

bonding to properties or other meso-scale attributes of the materials (in this case, surface 

area, which is a key metric in defining many physical properties of MOF structures). It 

should be noted that since the Hirshfeld surface is capturing a set of different types of 

information (chemical, physical and crystalline) about the MOF structures, so too does its 

2D fingerprint plot. Thus, different edges in the graph network could represent different 

sets of information; e.g., the edge that is connecting MOF structures A and B represents 

the similarity in certain physical properties in A and B, yet the edge that is connecting 

MOF structures B and C represents some similarity in their chemical properties. As we 

will show in the following examples, different parts of the network structure map identify 

similarity in terms of the pore size between compounds of very different chemistries and 

crystal structure. The connectivity map draws attention to compounds that encourages 

one to ask what drives the apparent similarity. As discussed below, it can reveal structural 

features that are “hidden” and the data manifold derived from the Hirshfeld surfaces 

provides insight into the structural origins in the MOF structures that drives similarity in 

properties (in this case represented by surface area) different from structural similarities. 
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Figure 3 Graphical representation of mapping similarity/dissimilarity between MOF 
structures based on the 2D-fingerprint of their Hirshfeld surfaces. The vertices on 
the graphical map is color coded with accessible surface area. The lookup table of 
reference number, structure, and property information of MOFs can be found in 
Supplementary Data. 

 

For this input set of MOF structures, the resulting perspective of the graph network can be 

qualitatively described in terms of an approximate ‘Y’ shape, with 3 branches and one 

centroid of cluster of compounds. To get a better insight of the extent of information 

captured by this graph network, the vertices are color-coded according to the 

corresponding accessible surface area, which is not an input of the Isomap algorithm. 

The colors of vertices show a globally decreasing trend of accessible surface area on the 

Branch A, as indicated by the blue arrow. For structures on Branch B and C, their 

accessible surface areas are approximately on the same order. Despite the fact that 

structures on branches B and C have similar orders of accessible surface area, the main 

difference between these two branches is the dimension of structures. That is, branch B 
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has low dimensional MOFs, whereas branch C only has 3D MOFs. This global clustering 

could help the initial phase of MOFs design. For example, if we are searching for the low 

dimensional MOFs in the database, we can leave the materials on branch C out, thus 

narrowing down the search space. In addition to the global trend, Isomap algorithm can 

also serve as a visualization tool to capture the similarities between MOF structures, 

which are not easily discernable from simple inspection of either the crystal structure or 

Hirschfeld surface alone. 

 

 

3.1 Exploring similarities between two- or one- dimensional MOF structures 

 

One aspect of material similarity/dissimilarity is the range and strength of bonding / 

interactions, which has a significant impact on engineering layered materials. There are 

both strong covalent bonding and weak van der Waals interactions in those two- or one- 

dimensional layered materials15. Atoms are covalently bonded within the same plane, 

while the inter-planes interact with neighboring layers via van der Waals forces. With 2D 

fingerprint plots containing the information about the intermolecular interactions in the 

crystal, we are able to visualize the similarity between the 1D and 2D MOF structures in 

the input dataset.  

 

Figure 4 highlights all of the 1D and 2D materials in the graph network, and their crystal 

structures are shown in Supplementary Material 1. In Figure 4, the 1D and 2D materials 

are mainly located in the center part of the network as well as on Branch A and C. On 

Branch A, Isomap finds some correlation between vertices 29 and 55 (CCDC identifiers / 

space group are LILWAE / I m m a and ZBPPHN01 / P 21 21 21, respectively) by showing 

a close connecting edge among all the input points (see Supplementary Material for 

zoomed-in figures). They share the same metal ion in the secondary building unit (SBU) 

in 1D layered structures as illustrated in Figure 5. This correlation is not easily to discover 

by just looking at the large database with sparse descriptors. Not to mention that they 

have different chemical formulas and crystal parameters.  

 

Furthermore, the clustering on the end of Branch C are all 2D materials (vertices 8, 25 

and 56 with CCDC identifiers being DEGJEG, KELJIV and ZIVDIT, respectively). 

Furthermore, the distance between vertices 8 and 56 is closer than that of vertex 25, 

indicating structure 8 and 56 are more closely related, with the same chemical formula 

(C6H4Cu1N5)n and space group of P 21 / c in Figure 6. Thus our method has a certain level 

of flexibility and is capable of detecting subtle differences between different compounds. 

 

In the paper introducing Isomap, it is obvious to associate the features with the two 

detected dimensions of face and fingers13. However, for the ‘fingerprint’ of MOFs, the 
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fingerprinting process itself has lost some extent of the information, although it has 

retained and summarized most of descriptor space. Thus, the correlation between the 

MOFs structures to the two detected dimensions is difficult. 

 

In this study, the data lies along a broad curve in the projected space, which appears to 

trace the accessible surface area of the MOF structures. Although this methodology may 

not be feasible for the task of classifying MOF structures, it does help in getting an insight 

and big picture of the database of MOFs. It could also give information about how to move 

forward with the current state-of-the-art large and sparse database, such as how to 

preprocess the data before building a classification pipeline in the initial phase of MOFs 

design project. 

 

 
Figure 4 Two- and one-dimensional weakly bonded MOF structures with their 
correlations visualized by a graph network 
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Figure 5 Case studies of molecular, crystal and fingerprint plots of 1D MOF 
structures 
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Figure 6 Case studies of molecular, crystal and fingerprint plots of 2D MOF 
structures 

 

 

3.2 Identifying Compounds with Similar Building Unit Coordination Chemistry 

 

The two MOF structures 13 and 31 on Branch B have one single edge connecting them, 

and by inspection we found that they have the same coordination unit, see Figure 6. 

Therefore, this part of the network structure map is capturing MOF structures having the 

same coordination unit. The materials on the first two vertices are 2D and 2D/1D 

materials with relatively comparable accessible surface area and with pore-geometries 

featuring square cross-sections of the channels. From FIRTEH to MIJSII, their crystal 

structures and pore geometries are not similar. The crystal space groups for FIRTEH and 

MIJSII are 3 1P m  and 4P nmm , respectively. However, the Isomap algorithm finds their 

similarities manifested in the secondary building units (SBU). Namely, both of their SBU 

consist of a binuclear unit of distorted octahedral CuO2N4 sites with the Cu2(azole)2 planar 

core, as shown in Figure 8. The coordination geometry at each Cu(II) site is defined by the 

oxygen donors of a chelating acetylacetonate ligand, two tetrazolate nitrogen donors and 

two pyridyl nitrogen donors (Figure 9). Since the HS captures both molecular geometry 
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and packing characteristics of those molecular building units, we can find structural 

features that are unique in pore design. 

 

 

 

 
Figure 7 Mapping similarities of site chemistry between structure 31 (CCDC 
identifier: MIJSII) and structure 13 (CCDC identifier: FIRTEH) 
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Figure 8 Case studies of molecular, crystal and fingerprint plots of structures with 
similar site chemistry. 

 

 
Figure 9 Metal-containing SBU of FIRTEH and MIJSII structures Cu2(CO2)4. 
Atom colors in molecular drawings: C, ochre; O, red; Cu, blue squares. 
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3.3 Identifying Leading Compounds for MOF design 

 

A fundamental question in discovering and designing new molecules is to know where to 

start. Identifying a template structure to lead the search is of course a well-established 

field in bioinformatics and drug discovery. The connectivity map can serve as a 

foundation for identifying such leading compounds in designing MOF structures.  

 

Here we propose the idea of a ‘lead MOF Compound' (‘lead’ not ‘Pb’ compound!), 

borrowing the concept from the drug discovery field, for the set of input MOF structures. 

Specifically, for a graph network generated from a given set of MOF structures, we can 

identify the vertices with a relatively large number of edges connected to it. From a graph 

theoretic point of view, these vertices will have relatively high centrality in the graph and 

thus can be considered as containing more information than others about the graph 

network. From the similarity point of view, the existence of an edge between two vertices 

generally means that there is correlation between the two MOF structures; thus the 

compounds with a relatively large number of edges connected would potentially have 

properties that are in common with more of the MOF structures in the dataset than others. 

Starting from a lead MOF compound vertex, one can trace the edges to reach other MOF 

structures, and this provides a design path with potential information on design rules. 

 

In our case, we choose the vertex in the graph network with the most edges connected to 

it: namely, (C11H9N7O2Zn1)n with space group P n a 21 , which is shown as vertex number 

42 (CCDC identifier: TEPGUS) in Figure 10. Also shown in Figure 8 are the vertices which 

are connected to vertex 42 by one edge and the corresponding crystal structures. In total, 

there are 17 MOF structure that are considered as similar to TEPGUS, and from the 

crystal structure we can see there are 11 different space groups and that the pore 

geometry varies significantly. This diversity indicates the nature of a lead compound. The 

crystal structure of TEPGUS is shown in Figure 11, which features the interconnected 

channels. By viewing the cross-sections from three different major crystallographic axes, 

significant channels are identified in all these directions with qualitatively similar cross 

sections geometries. This may suggest that (C11H9N7O2Zn1)n has a structure that 

inherently accommodates a diversity of trajectories of channels and thus can serve as a 

signature compound from which one can build and explore other chemistries for targeted 

surface areas. One of the physical properties of ‘lead compound’ discovered here 

features high CO2 uptake at 0.1 bar (273 K: 73 mg g-1; 298 K: 49 mg g-1) and high 

enthalpy of CO2 adsorption (40 kJ mol-1)16. This is due to the rich hydrogen donors on the 

framework, which are in favor of the adsorption of the guest molecules into the pores. 

Although the ‘lead compound’ has characterized to be useful for gas adsorptions, it may 

nevertheless have suboptimal structure that requires modification to fit better to the 

specific guest molecules. We hope the methodology presented in this work, as well as the 

Page 17 of 22 Molecular Systems Design & Engineering



concept of ‘lead compound’, could help accelerate the discovery of novel MOFs and 

tuning the gas adsorption performance in the community. 

 

In this study, we have used pore size and geometry as a metric for designing MOF 

structures and the value of using our manifold learning approaches to identify candidate 

systems as lead compounds to initiate a discovery process. This approach can have 

impact in many areas of study including the study of guest-host interactions in MOF 

structures. Guest-host interactions in MOFs is a multiscale problem and ascertaining the 

complexity of what combination of crystallographic and chemical features in MOFs is a 

challenge17, 18. The strategy proposed here provides a framework for identifying 

candidate compounds around which MOFs can be engineered to be tailored for specific 

guest-host interaction. This is one of the areas of further study we will be embarking on for 

future reports. 

 

 
Figure 10 ‘lead compound’ (structure 42, chemical formula: (C11 H9 N7 O2 Zn1)n) 
with its connected/similar compounds 
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Figure 11 Hirshfeld surfaces, and perspective view along the three major 
crystallographic axes of the unit cell of the ‘lead compound’ 

 

 

3.4 Scalability and Reproducibility 

 

 

In this section, we expand our exploration space by an order of magnitude from 57 to 508 

compounds. The resulting high-throughput calculations and the transformed Hirshfeld 

surfaces of MOFs followed the same mathematical procedures and the systematic 

statistical analysis previously described. Due to the expansion in information space, the 

2D recoveries of the manifold are not sufficient to represent the embedded correlations 

(see section 6.3 in supplementary materials for detailed discussion), and therefore we 

extend the graphical networks to the first three detected dimensions in Figure 12. This 

larger network shows that the global trend tracing the accessible surface area is indeed 

valid with the extended dataset (for better visualization, please refer to the animated 3D 

network in supplementary document). Our findings regarding the detection of the 

significance of the specific structural building units and the identification of unique 

features associated with 1D and 2D structures are preserved from section 3.1 and 3.2 

(see section 6.2 in supplementary materials for detailed discussion). We found a new set 

of compounds that serve as ‘lead’ compounds, but that in itself is not surprising given that 

we have far more compounds to choose from.  

 

In order to test the performance and stability of this approach, we performed manifold 

learning on increasing sample sizes with random sampling drawn from the 508 
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populations. There are 10 experiments for each case, ensuring the reproducibility and 

robustness of the parameterized study. The statistical sampling results show that in order 

to minimize the reconstruction error with an increasing number of MOFs, we need a larger 

number of nearest neighbors (6 for this dataset) and higher dimensionality. With the 

tuned parameters, we have reproduced the same observations as described above but 

with a data set that is 10 times larger. 

Thus, the scalability of our method is demonstrated without sacrificing the performance. 

 

 
Figure 12 3 dimensional visualizations of the similarity/dissimilarity between 508 
MOF structures based on the 2D-fingerprint of their Hirshfeld surfaces. The 
vertices on the graphical map is color coded with accessible surface area. The 
lookup table of reference number, structure, and property information of MOFs can 
be found in supplementary spreadsheets. 
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4 Conclusion 

 

 

In this paper we have provided a new template for interrogating MOF structure 

databases. Harnessing the information in crystallographic databases to compute 

Hirschfeld surfaces, we have created a new library of information that fuses both 

structural and chemical bonding information. Manifold learning provides a means to 

navigate and interrogate this new data space to reveal new structure-property 

correlations that would not have been discernible by just looking at either electronic 

structure or crystallographic structure alone. The example provided in this paper used a 

limited set of compounds to demonstrate the technique but is readily scalable to much 

larger databases. We see this as the foundation for a database tool that can leverage the 

rapid growth of data in MOF structures derived from experiments and simulations.  

 

 

 

 

 

Acknowledgements 

We gratefully acknowledge support from National Science Foundation (NSF) DIBBs 

program, award number 1640867.  The authors would also like to acknowledge support 

from the Toyota Research Institute Accelerated Materials Design and Discovery program. 

KR also acknowledges the Erich Bloch Endowed Chair at the University at Buffalo- State 

University of New York. We gratefully acknowledge support from the Collaboratory for a 

Regenerative Economy (CoRE). 

 

 

 

 

Reference 

 

1. J. Jiang, Y. Zhao and O. M. Yaghi, J Am Chem Soc, 2016, 138, 3255-3265. 
2. P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. 

Ward and D. Fairen-Jimenez, Chemistry of Materials, 2017, 29, 2618-2625. 
3. K. E. Cordova and O. M. Yaghi, Materials Chemistry Frontiers, 2017, 1, 

1304-1309. 
4. C. S. Diercks, Y. Liu, K. E. Cordova and O. M. Yaghi, Nat Mater, 2018, DOI: 

10.1038/s41563-018-0033-5. 
5. M. Pardakhti, E. Moharreri, D. Wanik, S. L. Suib and R. Srivastava, ACS Comb 

Sci, 2017, 19, 640-645. 

Page 21 of 22 Molecular Systems Design & Engineering



6. Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. 
Yildirim, O. K. Farha, D. S. Sholl and R. Q. Snurr, Chemistry of Materials, 2014, 26, 
6185-6192. 

7. M. Fernandez, P. G. Boyd, T. D. Daff, M. Z. Aghaji and T. K. Woo, J Phys Chem 
Lett, 2014, 5, 3056-3060. 

8. H. Ghasempour, A. Azhdari Tehrani, A. Morsali, J. Wang and P. C. Junk, 
CrystEngComm, 2016, 18, 2463-2468. 

9. K. Rissanen, Chem Soc Rev, 2017, 46, 2638-2648. 
10. S. K. Seth, A. Bauzá and A. Frontera, CrystEngComm, 2018, 20, 746-754. 
11. G. Mahmoudi, H. Chowdhury, B. K. Ghosh, S. E. Lofland and W. Maniukiewicz, 

Journal of Molecular Structure, 2018, 1160, 368-374. 
12. S. Srinivasan, S. R. Broderick, R. Zhang, A. Mishra, S. B. Sinnott, S. K. Saxena, J. 

M. LeBeau and K. Rajan, Sci Rep, 2015, 5, 17960. 
13. J. B. Tenenbaum, V. De Silva and J. C. Langford, science, 2000, 290, 2319-2323. 
14. M. Balasubramanian and E. L. Schwartz, Science, 2002, 295, 7-7. 
15. G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen and E. J. Reed, Nano 

Lett, 2017, 17, 1915-1923. 
16. E. Yang, H.-Y. Li, F. Wang, H. Yang and J. Zhang, CrystEngComm, 2013, 15, 

658-661. 
17. S. Amirjalayer and R. Schmid, The Journal of Physical Chemistry C, 2016, 120, 

27319-27327. 
18. Z. Li, Z. Zhang, Y. Ye, K. Cai, F. Du, H. Zeng, J. Tao, Q. Lin, Y. Zheng and S. 

Xiang, Journal of Materials Chemistry A, 2017, 5, 7816-7824. 
 

Page 22 of 22Molecular Systems Design & Engineering


