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Microfluidic gradient generators are used to study the movement of living cells, lipid vesicles,
and colloidal particles in response to spatial variations in their local chemical environment. Such
gradient driven motions are often slow (less than 1 µm/s) and therefore influenced or disrupted
by fluid flows accompanying the formation and maintenance of the applied gradient. Even when
external flows are carefully eliminated, the solute gradient itself can drive fluid motions due to
combinations of gravitational body forces and diffusioosmotic surface forces. Here, we develop
a microfluid gradient generator based on the in situ formation of biopolymer membranes and
quantify the fluid flows induced by steady solute gradients. The measured velocity profiles agree
quantitatively with those predicted by analytical approximations of relevant hydrodynamic models.
We discuss how the speed of gradient-driven flows depends on system parameters such as the
gradient magnitude, the fluid viscosity, the channel dimensions, and the solute type. These results
are useful in identifying and mitigating undesired flows within microfluidic gradients systems.

Introduction
Spatial gradients in the concentration of chemical species drive
the migration of colloidal particles, lipid vesicles, and motile cells
through the respective processes of diffusiophoresis, osmophore-
sis, and chemotaxis. In diffusiophoresis,1,2 attractive (repulsive)
interactions between solute molecules and the surface of a col-
loidal particle drive its motion up (down) concentration gradi-
ents, thereby increasing the number of favorable interactions.
In osmophoresis,3,4 gradients in the osmotic pressure difference
across the semipermeable membrane of a lipid vesicle result in
fluid flows and directed motion to regions of lower concentra-
tion. In chemotaxis,5 motile cells such as the bacteria E. coli bias
their stochastic run-and-tumble motion in response to chemical
stimuli to swim up or down chemoeffector gradients. In addition
to bacteria, the directed migration of eukaryotes in chemical gra-
dients is critical to cancer metastasis,6 immune response,7 and
morphogenesis.8 These different types of gradient driven trans-
port are often slow (of order 1 µm/s) and compete with those
due to Brownian motion and fluid convection to direct the move-
ment of biological and non-biological colloids alike. The quanti-
tative study of these phenomena requires well-characterized ex-
perimental platforms, in which to create solute gradients, control
fluid flow, and capture colloidal motions.
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In this context, microfluidic systems offer a variety of strategies
for creating transient or steady solute gradients with or without
external flows.9–12 Chemical gradients are readily achieved us-
ing diffusive transport along channels connecting two reservoirs
that contain solutions of different concentrations—a high concen-
tration “source” and a low concentration “sink”. In the simplest
case, exemplified by traditional Zigmond13 and Dunn14 cham-
bers used in chemotaxis assays, the reservoirs are closed, and
the concentration gradient decays in time as the system equili-
brates. Steady gradients are created using fluid flow to maintain
the concentrations within the respective reservoirs. Often, how-
ever, such flows lead to fluid motion in the channel connecting the
reservoirs, potentially disrupting the solute gradient and/or gra-
dient driven motions therein. To address this challenge, microflu-
idic systems have been developed using hydrogel membranes to
separate the flowing reservoir streams from the quiescent gra-
dient region. Wu et al. fabricated a microfluidic system from
an agarose hydrogel that permits the diffusive exchange of so-
lutes between neighboring channels;15 Squires et al. used pro-
jection lithography to photopolymerize thin hydrogel membranes
between the channels of standard PDMS-based devices;16 Luo et
al. used the rapid complexation of oppositely charged polyelec-
trolytes to create biopolymer membranes at the interface between
two co-flowing streams.17,18 Owing to their small size and con-
tinuous reservoir streams, these systems allow for the rapid gen-
eration and indefinite maintenance of steady solute gradients iso-
lated from external flows.

However, even in the absence of external flows, concentration
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gradients can themselves induce steady convection due to buoy-
ancy19 and to diffusioosmosis2. Buoyancy driven flows arise
when gravity acts perpendicular to the concentration gradient
due to spatial variations in the fluid density. Diffusioosmotic
flows arise due to interactions between the solute and the chan-
nel walls, resulting in finite slip velocities directed parallel to the
solute gradient. In microfluidic systems, the flow velocities due
to solute gradients can vary from 0.1 to 10 µm/s depending on
properties such as the channel dimensions, fluid viscosity, solute
type, and gradient magnitude among others. The presence and
potential impact of such flows are often overlooked, even when
the phenomena of interest involve motions at similar speeds. The
chemotactic velocity of motile bacteria is typically 0.1–1 µm/s;20

the diffusiophoretic velocities of micron-scale colloids fall within
a similar range.2 Our interest in gradient-driven fluid flows grew
from a desire to quantify the similarly slow motions of lipid vesi-
cles in solute gradients via osmophoresis.3,4 A quantitative under-
standing of these flows is required to account or mitigate for their
potentially disruptive impacts on the study of colloidal motions.
At the same time, such flows can also prove useful as illustrated by
demonstrations of buoyancy-driven transport via enzyme microp-
umps21,22 and diffusioosmotic transport into dead-end pores.23

Here, we investigate the convective flows that accompany the
formation of steady solute gradients within a microfluidic gradi-
ent generator. Building on previous designs, we use the in situ
formation of biopolymer membranes within a three channel de-
vice to separate the gradient region from two reservoir streams
containing solutes at different concentrations (Fig. 1a,b). The re-
sulting concentration gradients induce fluid flows due to a com-
bination of gravitational body forces and diffusioosmotic surface
forces. The velocity profiles within the gradient channel are quan-
tified using fluorescent tracer particles as a function of system pa-
rameters such as the solute type, gradient magnitude, solution
viscosity, and channel height. Our experimental observations are
described quantitatively by hydrodynamic models that account
for forces due to viscosity and buoyancy as well as gradient-driven
flows at the channel walls. Guided by these results, we discuss
how convective flows can be mitigated to enable the study of
other gradient driven motions in the absence of fluid convection.
Our methods and conclusions should be useful to researchers in-
terested in quantifying cell chemotaxis as well as phoretic motions
within colloidal systems.

Experiment

3-Channel Microfluidic Device

A 3-channel microfluidic device was fabricated in poly-
dimethylsiloxane (PDMS) using standard methods of soft lithog-
raphy (Fig. 1a).24 In the imaging area, the three parallel channels
were separated by linear arrays of of circular pillars (90 µm diam-
eter separated by δ = 80 µm gaps), designed to support the in situ
formation of two polymer membranes separating the channels
(see below). The width of the central channel was W = 400 µm;
its height was varied from H = 35 to 120 µm. The region of con-
tact between the three channels extended over a longer length
L = 2 mm, as to create uniform solute gradients spanning the cen-

tral channel. Prior to use, the device was heated at 180◦C for two
hours to render the PDMS surface hydrophobic with a measured
water contact angle greater than 90◦.

c1 c3H

W

flow
g

z
x

imaging

1

2

3 Q

Q

L

W

c1

c3

chitosan
membrane

solute
gradientx

y

c

b

a

alginate

chitosan membrane

air

chitosan

PDMS

d

c1

c3

Fig. 1 (a) Schematic illustration of the three-channel microfluidic system
as viewed from the top (xy plane). (b) Illustration of solute-driven flows as
viewed down the length of the center channel (xz plane). (c) Three stages
of the in situ formation of chitosan membranes. (d) Fluorescence image
of the steady concentration gradient formed across the center channel;
a plot of the fluorescence intensity as a function of x is superimposed on
the image. Scale bars are 100 µm.

In situ Membrane Formation
The three channels were separated by chitosan membranes that
served to prevent convective flows between the channels but al-
lowed for the diffusive exchange of dissolved species. These at-
tributes allowed us to generate and maintain uniform concentra-
tion gradients indefinitely by continuous flow of solute solutions
through the side channels. The membranes were fabricated using
a recently reported protocol with a simplifying modification.18

First, an acidic chitosan solution (0.5 %w/v with pH = 5.7 by
addition of HCl) was flowed into the two side channels using a
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pressure pump. Importantly, the inlet pressure was chosen as to
avoid flooding the central channel (1–3 kPa depending on chan-
nel height H). The capillary pressure required to force the menis-
cus through the rectangular gap between two pillars can be ap-
proximated as ∆p∼ γ(H−1 +δ−1), where γ is the surface tension
of the chitosan solution. Because the gap between the pillars was
smaller than the channel width (δ < W), the meniscus could be
advanced down the channel at pressures below this critical value.
After filling the side channels, the inlet pressure was increased
slowly by ca. 50% to create convex menisci in the gaps between
the pillars, as monitored by optical microscopy (Fig. 1c, left).

Next a basic solution of alginate (0.5 %w/v with pH = 10 by
addition of NaOH) was flowed into the center channel by a sec-
ond pump at inlet pressures exceeding those applied to the side
channels (3–5 kPa). At the interface between the two solutions,
the oppositely charged polyelectrolytes came together to form a
thin chitosan-alginate membrane (Fig. 1c, middle). This fragile
membrane was reinforced by the subsequent deposition of chi-
tosan, which precipitated onto the surface as hydroxide ions dif-
fused into the side channels and increased the pH therein (Fig. 1c,
right). The chitosan membrane grew to a desired thickness of
ca. 30 µm over the course of five minutes, after which the chan-
nels were flushed with phosphate buffer (pH = 7.4) to terminate
growth.

In contrast with the previous protocol,18 our modification
avoided the trapping of air bubbles in the gaps between neigh-
boring pillars. Such bubbles can interfere with or prohibit the dif-
fusive exchange of solutes between the channels and must there-
fore be removed or avoided. It is possible to remove trapped
air bubbles via pressure-driven transport through PDMS into an
evacuated chamber;18 however, it’s simpler to avoid them all to-
gether. By using small circular pillars and pressure driven flows,
we found that careful positioning of the initial chitosan meniscus
enabled the introduction of the alginate solution without trapping
air.

Generation of Steady Concentration Gradients

Steady solute gradients were established by flowing solutions of
different concentrations—denoted c1 and c3—into the respective
side channels 1 and 3 using a syringe pump. A relatively high
flow rate of Q = 0.1 mL/h was used to ensure a nearly uni-
form concentration down the length of the side channels. Under
these conditions, the net flux of solute through the membrane
(roughly, DcLH/W , where D is the solute diffusivity) was much
smaller than that via convection down the channel (cQ)—that is,
DLH/WQ ∼ 0.02� 1. Owing to the small scales of the channels,
a stable concentration gradient was established relatively quickly
on a time scale of W 2/D∼ 3 min.

To visualize the solute gradient and to confirm the absence of
convective flows in the central channel, we introduced a fluores-
cent dye (0.08 mM of calcein) to the flowing stream in chan-
nel 1. After 10 minutes, the stable concentration gradient was
imaged using an inverted fluorescence microscope. The fluores-
cence intensity decreased linearly across the central channel as
expected for steady-state diffusion between a plane source and

sink (Fig. 1d). The measured gradient was 50% smaller than
(c1− c3)/W due to additional resistances introduced by the chi-
tosan membranes (see below).

Quantifying Convective Flows

Convective flows induced by the concentration gradients were
quantified by particle image velocimetry (PIV) using fluores-
cent polystyrene (PS) tracer particles (500 nm in diameter;
carboxylate-modified) dispersed in the central channel. The size
of the tracers was chosen so as to limit both sedimentation (favor-
ing smaller particles) and Brownian motion (favoring larger par-
ticles). Particles located at a prescribed height above the channel
floor were imaged at regular time intervals by an inverted fluores-
cence microscope (10X magnification, 0.3 numerical aperture).
Such images captured particles within a depth of field of ca. 10
µm. The resulting particle trajectories were reconstructed from
the image sequences using standard particle tracking algorithms
(Trackpy v0.3.2; Fig. 2a).

The tracking data was analyzed to estimate the local fluid ve-
locity U in the imaging plane along the gradient direction (x-
direction) for different heights z within the channel (Fig. 2b).
The particle displacements ∆ during each time interval τ were
assumed to be uncorrelated and normally distributed with mean
µ∆ =Uτ and standard deviation σ∆ =

√
2Dpτ where Dp is the par-

ticle diffusivity. As detailed in the Supplementary Information,†

our analysis also accounted for spatial variations in the fluid ve-
locity within the finite thickness of the imaging region. For sim-
plicity, we approximated such variations by a normal distribution
with mean µU and standard deviation σU . With this model, we
computed the maximum likelihood estimates25 for the unknown
parameters, µU , σU , and Dp, along with their respective uncer-
tainties using data from at least 20 particles tracked for at least
40 time intervals of 0.2 s.

Figure 2b shows the measured velocity profile due to an applied
glucose gradient. For each height z, the markers denote the aver-
age velocity within the imaging region µU ; the errorbars denote
the standard deviation of the velocity in that region σU . Control
experiments confirmed that there was no flow in the central chan-
nel in the absence of solute gradients (i.e., when c1 = c3). These
experiments suggest that any pressure driven flows through the
chitosan membranes were negligible under the experimental con-
ditions.

Hydrodynamic Model

The interpretation of the experimental velocity measurements is
guided by models of solute transport and fluid flow within the
center channel.

Solute Transport

The concentration c(xxx, t) of the dilute solute evolves in time due
to fluid convection with velocity vvv(xxx, t) and to Fickian diffusion
with diffusivity D,

∂c
∂ t

+ vvv ·∇v = D∇
2c. (1)
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Fig. 2 Glucose gradients (c1 = 540 mM, c3 = 40 mM) induce steady fluid
flows in a channel of height H = 65 µm. (a) Visualization of the flows
via movement of tracer particles at different heights z within the channel.
Scale bars are 10 µm. (b) Steady-state velocity profile as a function of
height z of the focal plane. The circular markers are experimental mea-
surements of the mean particle velocity; error bars denote the standard
deviation in the particle velocity within the imaging region. The solid curve
is the theoretical prediction for the mean particle velocity; the dashed
curve shows the inferred fluid velocity in the channel. The inferred mag-
nitude of the buoyancy-driven flows is UB = 0.46±0.04 µm/s. The square
markers show the mean particle velocity in the absence of the solute
gradient (i.e., when c1 = c3).

Here, the rate of convective transport with characteristic velocity
U is much slower than that of diffusive transport—that is, the Pé-
clet number is small, Pe=UH/D� 1. In this limit, we can neglect
the influence of fluid flow on the solute concentration. Moreover,
we neglect variations in the concentration in both the y and z
directions. Owing to the length of the channel (L�W > H), con-
centration variations in the y direction are expected only near its
ends. There is no flux of solute through the floor or ceiling of the
channel (z = 0 and z = H) and therefore no concentration gradi-
ents in the z direction. At the membrane surface, we introduce
a constant mass transfer coefficient k and balance the solute flux
across the membrane with that into the central channel,

−D
dc
dx

= k(c1− c) for x = 0. (2)

An analogous condition applies at x = W . Physically, the mass
transfer coefficient is related to the relative solubility of the solute
in the membrane K = cm/c, the solute diffusivity Dm, and the
membrane thickness Wm as k = KDm/Wm.

With these simplifying assumptions, the steady-state solute

concentration varies linearly across the channel as

c1− c(x)
c1− c3

=

(
1

2+Bi

)
+

(
Bi

2+Bi

)
x

W
, (3)

where Bi = kW/D is a dimensionless Biot number characterizing
the resistance to mass transfer through the channel relative to
that through the membrane. This uniform gradient G = −dc/dx
develops over a characteristic time scale of order W 2/D. From
the fluorescence data shown in Figure 1d, we infer that the Biot
number in our experiments is approximately Bi = 2 such that
G = 0.5(c1 − c2)/W . We use the same value for other solutes,
which could not be imaged directly; however, differences in so-
lute diffusivity and solubility in the membrane can impact the
resulting gradient.

Buoyancy-driven Flows

The spatial variations in the solute concentration lead to similar
variations in the density, which can be approximated by the linear
relation ρ/ρ0 = 1+β (c−c0), where β is the solutal expansion co-
efficient evaluated at some reference concentration c0. Assuming
the density variations are small, the fluid velocity and pressure
are well described by the so-called Bosussinesq approximation,26

∇ · vvv = 0, (4)

ρ0

(
∂vvv
∂ t

+ vvv ·∇vvv
)
=−∇p+η∇

2vvv+ρ0gggβ (c− c0). (5)

Here, the gravitational vector is oriented in the negative z-
direction ggg = −geeez. In microfluidic systems, buoyancy driven
flows are sufficiently slow that inertial effects can be safely
neglected—that is, the Reynolds number is small, Re ≡ HU/ν �
1. In this limit, the left-hand-side of the momentum equation
(5) can be set to zero. The no slip condition implies that the
fluid velocity is zero at the boundaries of the channel (x = 0,W
and z = 0,H). With these simplifications, the fluid velocity and
pressure distributions can be solved numerically as illustrated in
Figure 3a.†

When the height of the channel is much smaller than the width
(H �W), the above equations have a simple analytical solution
corresponding to unidirectional flow along the x-direction.† The
steady-state velocity vx(z) is given by

vx(z) =UB

[
16
( z

H

)3
−24

( z
H

)2
+8
( z

H

)]
, (6)

where UB = βgGH3/96ν is a characteristic velocity of the flow
(similar to the peak velocity, vmax = 0.77UB). When the solute
concentration increases from x = 0 to W (G > 0) and β is positive,
fluid flows in the positive x-direction along the bottom half of the
channel and the reverse direction along the top half (Fig. 3a).
An analogous expression can be derived in the opposite limit of
tall channels (H �W).† Figure 3b shows the peak velocity for
buoyancy driven flow as a function of the channel aspect ratio,
highlighting the limiting behaviors for short and tall channels.

Using the above solution, we can identify the conditions under
which the simplifying assumptions of small Péclet and Reynolds
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Fig. 3 (a) Computed buoyancy driven flows for a channel with aspect ra-
tio H/W = 0.215. Black curves show the steamlines; the colormap shows
the magnitude of the fluid velocity v. (b) Maximum fluid velocity scaled by
UB = βgGH3/96ν as a function of the channel aspect ratio. The markers
show the result of numerical solutions; the dashed lines show the analyt-
ical predictions for the limiting scenarios of short and tall channels. For
H�W , the exact solution is well approximated by equation (6).

numbers are valid. In particular, the condition of small Péclet
number implies that the height of the channel be sufficiently small
that H � (96Dν/βgG)1/4. For a glucose concentration gradient
of 100 mM/mm in water at 25◦C, the channel height must be
smaller than 200 µm (for D = 0.67× 10−9 m2/s, ν = 8.9× 10−7

m2/s, β = 6.8× 10−5 m3/mol). For taller channels with Pe ≥ 1,
buoyancy driven flows act to weaken the solute gradient thereby
reducing the flow velocity relative to the zero Péclet prediction.
The condition of small Reynolds numbers is less stringent and
remains valid for even larger channel heights.

Diffusioosmotic flows
In addition to buoyancy-driven convection, concentration gradi-
ents within the channel may also lead to diffusioosmosis, which
results in a finite slip velocity at the surface of the channel walls.
For dilute solutions of non-electrolytes,27,28 the slip velocity at
the surface of the channel wall (z = 0) is given by

UD =−kBT α

η

dc
dx

(non-electrolyte) (7)

where kBT is the thermal energy. The parameter α is determined
by the potential of mean force Φ(z), which characterizes the in-
teraction between the solute and the surface,

α =
∫

∞

0
z [exp(−Φ(z)/kBT )−1]dz. (8)

For the idealized case of a spherical solute of radius a that inter-
acts with the surface only through excluded volume interactions,

the above expression implies that α = −a2/2; fluid flows from
regions of lower to higher solute concentration. Approximating
glucose as a non-interacting solute with a = 0.4 nm, a gradient of
100 mM/mm in water is predicted to drive fluid flows at speeds of
only 10 nm/s. By contrast, solutes that interact favorably with the
surface can result in slip velocities that are orders-of-magnitude
larger and directed from high to low solute concentrations.2

While diffusioosmosis can often be neglected for uncharged so-
lutes, concentration gradients in dilute electrolytes can generate
slip velocities as large as 10 µm/s along charged surfaces.23 For
symmetric z : z electrolytes,28,29 the slip velocity is given by

UD =−3DB

2z2

[
β ζ̃ +4lncosh

ζ̃

4

]
1
c

dc
dx

(electrolyte), (9)

where ζ̃ = eζ/kBT is the zeta potential of the surface scaled
by the thermal potential, DB = kBT/6πηλB is a characteristic
diffusivity based on the Bjerrum length λB = e2/4πεkBT , and
β = (D+−D−)/(D++D−) describes the diffusivity difference be-
tween cation and anion.2 For water at 25◦C, the Bjerrum length
is λB = 0.7 nm, corresponding to DB = 3× 10−10 m2/s. The
quantities in brackets are typically of order unity—for example,
β =−0.21 for NaCl30 and ζ̃ =−1 for PDMS at pH = 7 in 10 mM
NaCl.31

Importantly, diffusioosmosis driven by electrolyte gradients de-
pends on both the concentration gradient and the local concen-
tration. For the homogeneous gradients studied here, the largest
slip velocities are expected to occur on the low concentration side
of the channel. Owing to the significant membrane resistance
(Bi = 2), the maximum possible gradient in our system is lim-
ited to dlnc/dx = 2/W , which corresponds to a slip velocity of 0.7
µm/s using the above estimates for the relevant parameters. Such
velocities are comparable to those of buoyancy-driven flows and
are therefore considered in our analysis of ionic solutes.

For short channels (H�W), the lubrication approximation can
be used to derive the following velocity profile within the central
channel,†

vx(x,z) =UD(x)
[

6
( z

H

)2
−6
( z

H

)
+1
]
, (10)

where UD(x) is the diffusioosmotic slip velocity, which varies with
position across the channel. Owing to the linearity of the equa-
tions governing low Reynolds number flow, such diffusioosmotic
flows can be superimposed onto the buoyancy-driven flows de-
tailed in the previous section.

Finally, in addition to the diffusioosmosis at the floor and
ceiling of the channel, similar flows arise at the surface of the
tracer particles resulting in their motion parallel to the concen-
tration gradient. The diffusiophoretic velocity of the particles is
equal and opposite to the slip velocity presented in equation (9).
Such motions contribute a spatially uniform shift in the measured
tracer particle velocity and must be considered when measuring
fluid flows driven by electrolyte gradients (see below).
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Results and Discussion
We first consider flows driven by glucose gradients, for which
buoyancy is the dominant driving force and diffusioosmosis can
be neglected. For a channel of height H = 65 µm, an imposed
concentration difference of 500 mM resulted in bouyancy-driven
flows with a characteristic magnitude of UB = 0.46± 0.04 µm/s
as inferred from the data in Figure 2b. The parameter estimates
and the fitted velocity profile (solid curve) were obtained using
Bayesian inference25 with Markov chain Monte Carlo (MCMC)
sampling and the hydrodynamic model outlined above.† The
measured velocity profile as a function of height z agrees with the
predictions of equation (6), when accounting for the finite thick-
ness of the imaging region. For the experimental conditions, the
model predicts that UB = 1.0 µm/s, roughly twice that observed
in experiment. One possible explanation for the discrepancy is
that the chitosan membranes are less permeable to glucose than
to the fluorescent dye used to estimate the membrane resistance.
Previous studies support this possibility by showing that chitosan
membranes are ca. four times more permeable to NaCl than to
glucose.32,33 A comparable four-fold reduction in the Biot num-
ber from Bi = 2 to 0.6 is necessary to reconcile the discrepancy
between experiment and theory.

Perhaps more important than the precise magnitude of
buoyancy-driven flows is their scaling dependence on various sys-
tem parameters such as the concentration difference ∆c = c1−c3,
the viscosity η , and the channel height H. Figure 4a shows how
the measured flow velocity increases linearly with the difference
in solute concentrations applied across the channel. These ex-
periments were performed using the same gradient generator
(H = 65 µm) and the same focal region (z ∼ 5 µm). The glu-
cose concentration in channel 1 was increased from c1 = 90 mM
to 1040 mM; the concentration in channel 3 was held constant
at c3 = 40 mM. Following each change in the concentration, the
system was allowed to relax to the new steady-state (at least 10
min) before data collection. At high concentrations, the expected
linear dependence on concentration is also influenced by the con-
comitant increase in the solution viscosity: the kinematic viscosity
of 1 M glucose is 60% higher than pure water at T = 20◦C. The
solid curve in Figure 4a shows the model prediction accounting
for the increase in solution viscosity.

One strategy for mitigating buoyancy-driven flows is to in-
crease the viscosity of the solution. To demonstrate this effect,
we flowed aqueous solutions of PEG600 in different concentra-
tions into the central channel to alter the viscosity therein. As
predicted, the measured flow velocity due to an applied glucose
gradient (c1 = 540 mM, c3 = 40 mM) decreased inversely with in-
creasing viscosity (Fig. 4b). The addition of 250 g/L of PEG600
induced a four-fold increase in the viscosity and a comparable
decrease in the speed of buoyancy-driven flows. This approach
is particular useful for studies of osmophoresis, which does not
depend on the viscosity of the surrounding fluid.3

The most effective strategy for mitigating buoyancy-driven
flows is to reduce the height of the channel, thereby increasing
the viscous resistance to fluid motion and decreasing the gravi-
tational pressure difference (Fig. 4c). The characteristic velocity

scale UB is predicted to increase as the cube of the channel height
H. To demonstrate this dependence, we prepared a series of de-
vices with channel heights ranging from H = 35 µm to 120 µm.
For each device, we applied a glucose concentration difference
of 500 mM across a width of W = 400 µm and measured the ve-
locities of tracer particles at different heights within the channel.
From these data, we inferred the velocity magnitude UB for each
device as described above and in Figure 2. The velocity increased
by more than an order of magnitude as the channel height was
increased by a factor of three (Fig. 4c) in reasonable agreement
with the theoretical prediction.

c

3

a

b

η

Fig. 4 Buoyancy-driven flows due to glucose gradients depend on the
concentration difference ∆c = c3 − c1, the solution viscosity η , and the
channel height H. (a) The measured velocity increased linearly with
the concentration difference. Other parameters were held constant:
W = 400 µm, H = 65 µm. The solid curve shows predicted deviations
from the linear trend due to changes in the solution viscosity with in-
creasing glucose concentration. (b) The measured velocity decreased
with increasing viscosity due to addition of PEG600. Other parameters
were held constant: W = 400 µm, H = 65 µm, c1 = 540 mM, c3 = 40 mM.
(c) The inferred magnitude of buoyancy drive flows UB increased with
channel height H as UB ∝ H3. Other parameters were held constant:
W = 400 µm, c1 = 540 mM, c3 = 40 mM.

Electrolyte Gradients

In addition to buoyancy driven flows, electrolyte gradients are
accompanied by diffusiomotic flows in the channel as well as dif-
fusioosmotic motions of the tracer particles. Figure 5 shows the
measured velocity profile within a channel of height H = 65 µm
due to a NaCl gradient with reservoir concentrations c1 = 677
mM and c3 = 177 mM. In analyzing these data,† we considered
three independent contributions: buoyancy driven flows as de-
scribed by equation (6), diffusioosmotic flows as described by
equation (9), and diffusiophoretic motions of the tracer particles.
The magnitude of the buoyancy driven flows was inferred to be
UB = 1.1±0.05 µm/s, as compared to the theoretical prediction of
UB = 0.7 µm/s for Bi= 2. Again, these differences can be resolved
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by accounting for possible differences in the membrane resistance
for the different solutes; for NaCl, a physically reasonable Biot
number of Bi = 6 resolves the discrepancy between experiment
and theory.

The speed of particle diffusiophoresis averaged across the chan-
nel width was inferred to be UDP =−0.20±0.03 µm/s, with parti-
cles moving towards regions of high salt concentrations. This be-
havior is consistent with the predictions of equation (9) when ac-
counting for the measured zeta potential of the polystyrene tracer
particles ζ = −29 mV in 500 mM NaCl. For the experimental
conditions and assuming Bi = 6, equation (9) predicts an aver-
age diffusiophoretic velocity of UDP =−0.28 µm/s. Similarly, the
magnitude of the diffusioosmotic flows averaged across the chan-
nel width was inferred to be UDO = 0.2±0.1 µm/s, as compared
to UDO = 0.23 µm/s predicted by theory assuming ζ = −25 mM
for the PDMS walls31.

Here, diffusioosmotic flows are smaller than those due to buoy-
ancy; however, that need not be the case. For small mem-
brane resistances (Bi � 1) and low sink concentrations (c3 →
0), the diffusiosmotic velocity near the sink (x = W) scales as
UD ∼ 3BiDB/2W , which can exceed 10 µm/s for highly perme-
able membranes Bi > 10 and/or narrow channels W < 400 µm. In
contrast to buoyancy driven flows, diffusiophoretic flows do not
depend on the channel height H nor the absolute magnitude of
the concentration difference ∆c. Consequently, such flows may
be present even in short channels due to small concentration dif-
ferences, provided these differences are comparable to the con-
centrations themselves—that is, ∆c ∼ c. The most effective strat-
egy for mitigating such flows is to use concentration gradients in
which the minimum concentration is comparable in magnitude to
the maximum concentration—that is, c3 ∼ c1 such that ∆c� c.

NaCl

Fig. 5 Steady-state velocity profile as a function of height z of the focal
plane for an NaCl gradient (c1 = 677 mM, c3 = 177 mM) in a channel
of height H = 65 µm. The markers are experimental measurements of
the mean particle velocity; error bars denote the standard deviation in
the particle velocity within the imaging region. The solid curve is the
theoretical prediction for the mean particle velocity; the dashed curve
shows the inferred fluid velocity in the channel. The inferred velocities
are UB = 1.1± 0.05 µm/s for buoyancy-drive flow, UDO = 0.2± 0.1 µm/s
for diffusioosmositic flow, and UDP =−0.2±0.03 µm/s for diffusiophoretic
particle motions.

Temperature Dependence

The above experiments were conducted at room temperature
(22◦C); however, the magnitude of gradient driven flows are ex-
pected to vary with temperature. Such variations may be im-
portant to consider in studies of chemotaxis and cell migration
at physiological temperatures (37◦C). For buoyancy driven flows,
the temperature influences both the solutal expansion coefficient
β and the kinematic viscosity ν . For example, the kinematic vis-
cosity of glucose in water (500 mM) decreases with increasing
temperature at a rate of ca. 2% per ◦C.34 Similarly, the solutal
expansion coefficient of glucose in water decreases at a rate of
ca. 0.5% per ◦C.34 One would therefore expect that buoyancy
driven flows would be ca. 30% larger at physiological tempera-
tures.

Conclusions
In sum, solute gradients drive steady flows at speeds of several
microns per second even within the small channels of microflu-
idic systems. These flows arise due to a combination of gravita-
tional body forces and diffusiophoretic surface forces and are well
described by simple hydrodynamic models. Such models predict
how gradient driven flows depend on relevant system parame-
ters such as the gradient magnitude, solution viscosity, channel
dimensions, and solute type. These predictions are useful in guid-
ing the design of microfluidic gradient generators, in which fluid
flows are effectively eliminated. The mitigation of gradient driven
flows is relevant to the study of other types of colloidal motion in
solute gradients—most notably, particle diffusiophoresis, vesicle
osmophoresis, and cell chemotaxis. In particular, failure to ac-
count for such flows can lead to significant errors in quantifying
the chemotaxis of bacteria populations (Fig. S1).
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