

Environmental Science Water Research & Technology

Anaerobic membrane gas extraction facilitates thermophilic hydrogen production from Clostridium thermocellum

Journal:	Environmental Science: Water Research & Technology
Manuscript ID	EW-ART-05-2018-000289.R1
Article Type:	Paper
Date Submitted by the Author:	24-Jul-2018
Complete List of Authors:	Singer, Scott; University of Colorado Boulder, Civil Environmental Engineering Magnusson, Lauren; National Renewable Energy Laboratory, Biosciences Center Hou, Dianxun; University of Colorado Boulder, Lo, Jonathan; National Renewable Energy Laboratory, Biosciences Center Maness, Pinching; NREL, Ren, Zhiyong; University of Colorado Boulder, Civil Environmental Engineering

SCHOLARONE[™] Manuscripts

Water Impact Statement

Recovering renewable H_2 from cellulosic wastewater and biomass plays a critical role in the renewable energy portfolio, but the dominant dark fermentation process showed limited H_2 yield due to product inhibition. By using anaerobic membrane gas extraction in thermophilic fermentation reactors, we found H_2 production by *Clostridium thermocellum* was significantly increased compared to conventional anaerobic fermentation.

1	
2	
3	Anaerobic membrane gas extraction facilitates thermophilic
4	hydrogen production from Clostridium thermocellum
5	
6	
7	
8	Scott Singer ¹ , Lauren Magnusson ² , Dianxun Hou ¹ , Jonathan Lo ² , Pin-Ching Maness ^{2*} and
9	Zhiyong Jason Ren ^{1,3*}
10	¹ Department of Civil, Environmental, and Architectural Engineering, University of Colorado
11	Boulder, Boulder, Colorado 80309, United States
12	² National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United
13	States
14	³ Department of Civil and Environmental Engineering, Princeton University, Princeton, New
15	Jersey, 08544, United States
16	*Corresponding Authors
17	National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United
18	States Phone: 303-384-6114, Email: PinChing.Maness@nrel.gov
19	UCB 607, SEEC S291B, University of Colorado, Boulder, CO 80309
20	Phone: 303-492-4137, Email: zhiyong.ren@colorado.edu
21	

22 Abstract

23 *Clostridium thermocellum* is among the most efficient bacteria to convert cellulosic biomass 24 into H₂ during dark fermentation. However, despite great progress the H₂ yield and rate are still 25 not satisfactory for large scale applications. The purpose of this study was to evaluate whether 26 in-situ gas extraction using membrane bioreactors would increase H₂ production from 27 *Clostridium thermocellum* when compared to a conventional anaerobic fermentation setup in 28 thermophilic conditions. C. thermocellum DSM 1313, a cellulotyic, thermophilic bacterium was 29 grown on cellobiose and Avicel in an anaerobic-fermenter (AF) and an anaerobic-membrane-30 bioreactor (AnMBR). Compared to the AF, the AnMBR increased cumulative H₂ production by 31 63%, from 25.8 to 42.1 mmols, increased the max H₂ production rate by 24%, from 3.4 to 4.2 32 mmol/hr, and increased yield by 58%, from 0.43 to 0.68 mmol H₂/mmol hexose, on cellobiose. 33 Likewise, on Avicel, the AnMBR increased cumulative H₂ production by 59%, from 46.8 to 74.6 34 mmols, increased the max H₂ rate by 87%, from 3.1 to 5.8 mmol/hr, and increased the yield by 35 59%, from 0.76 to 1.21 mmol H₂/mmol hexose. These results show that anaerobic membrane 36 gas extraction can be an effective approach to increasing both rate and yield of fermentative H₂ 37 production.

38

39 Key words: Clostridium thermocellum, membrane bioreactor, fermentative hydrogen

40 production, partial pressure, hydrogen yield, cellulose

41 **1. Introduction**

42 Hydrogen gas is a clean and efficient renewable energy carrier that provides great 43 potential for addressing fossil fuel dependence and climate change concerns.¹⁻³ Hydrogen 44 derived from biomass is appealing because it is considered sustainable and can be used directly 45 in fuel cell vehicles for transportation to displace petroleum.⁴⁻⁶It is estimated that 46 approximately 50 billion tons of cellulose could be produced annually from lignocellulosic 47 residues, so the abundant availability of waste cellulose makes it an ideal renewable resource for renewable H₂ production.⁷ Anaerobic fermentation has been a primary approach for bio-H₂ 48 49 production, but the low H₂ molar yield from cellulosic substrates has been a challenge. This is partially due to its theoretical ceiling of 4 mol H₂ mol⁻¹ hexose, but a more common issue is 50 51 the low hydrolysis rate that limits fermentation kinetics.⁸⁹ Of all known cellulolytic 52 microorganisms, *Clostridium thermocellum* displays one of the highest known rates of cellulose degradation.¹⁰⁻¹³ One advantage of *C. thermocellum* is that it grows at 60 °C, which significantly 53 54 increases the conversion rate, and it reduces the chances of contamination by precluding the 55 growth of predominant mesophilic microorganisms. In addition, because the solubility of gases 56 decreases with higher temperatures, the high temperature promotes more efficient removal of 57 the product gases such as H₂ and CO₂. 9-10, 14

It is known that high H₂ partial pressure has a negative effect on H₂ production because it inhibits the forward reaction and decreases hydrogenase activity, which makes the H₂ production reaction thermodynamically unfavorable.¹⁵ To limit the impact of H₂ partial pressure, researchers have used techniques like sparging bioreactors with inert gases (carbon dioxide, nitrogen, and argon), vigorously shaking culture flasks, or increasing the stirring rate.¹⁶⁻²⁰

63 The availability of CO₂ also affects H₂ yield, because cells synthesize succinate and formate via 64 CO₂, pyruvate and NADH via the hexose monophosphate pathway.²¹ Timely removal of CO₂ can 65 prevent NADH consumption and in turn increase H₂ yield.²¹ Compared with sparging and 66 stirring, direct removal of produced gas using membrane bioreactors (MBRs) can be a promising 67 yet under-investigated approach. MBRs have been used in aerobic and anaerobic wastewater 68 treatment, and have demonstrated good effluent quality and low footprints by using 69 hydrophilic membranes for water separation.²²⁻²⁵ Recently researchers have started to combine 70 H₂ fermenters with membrane technology in order to replicate the benefits of MBRs in 71 wastewater treatment, because membrane bioreactors can increase H₂ yield and production 72 rate by increasing the retention time of the solid substrate and the concentration of microorganisms. 26-29 73

74 Table 1 summarizes the hydrogen fermentation MBR studies reported so far. While 75 different studies focused on various aspects of the technology, including substrates, microbial 76 strains, membrane materials, and reactor configurations, most studies demonstrated that 77 employing membranes in fermenters increased H₂ production yield and rate (Table 1). For 78 example, studies using a mixed culture in mesophilic conditions showed that varying an 79 AnMBR's HRT influences H_2 production, with the highest H_2 yields occurring at longer HRTs 80 while the highest volumetric H₂ production rates occurred at the shortest HRTs.³⁰⁻³² Other mixed 81 culture studies showed that H₂ rate and typically H₂ yield increases linearly with an AnMBR's organic loading rate (OLR).³³⁻³⁵ Some AnMBR studies also employed hydrophilic membranes to 82 83 continuously remove fermentation carbon co-products, such as volatile fatty acids (VFAs), which in high enough concentrations can suppress H₂ production. ^{36, 37} Aside from using 84

Page 6 of 33

membranes for increased cell retention and VFA extraction, numerous studies also evaluated
 which membrane materials and operating conditions are best suited for purifying H₂ from
 biogas mixtures. ³⁸⁻⁴¹

88 Table 1 indicates that to date, no study has investigated the benefits of using gas 89 extracting hydrophobic membranes in pure-culture fermentation reactors, which are different 90 from hydrophilic membranes used for water separation. Moreover, despite the findings that 91 thermophiles demonstrated higher H₂ yield and rate, no study has reported AnMBR operation 92 in thermophilic pure-culture conditions. With this knowledge gap in mind, this study evaluated 93 whether continuous membrane gas extraction facilitates H_2 production from *C. thermocellum*. 94 In order to maximize mass transfer, we submerged a hydrophobic polypropylene tube 95 membrane inside a fermenter to extract gas produced in-situ during dark fermentation 96 (AnMBR). We compared system performance with a no-membrane anaerobic fermentation 97 (AF) control using two cellulosic substrates (Cellobiose, a cellulose-derived sugar, and Avicel). 98 The batch experiments were carried out using a pure-culture of C. thermocellum Δhpt DSM 99 1313.⁴² The H₂ yield and H₂ rate were compared between the AF and the AnMBR setups, with 100 the latter showing increases in both rate and yield of H₂ production, highlighting the importance 101 of H₂ removal to maximize its productivity. 102

- 103
- 104
- 105
- 106

107 **Table 1:** Summary of all anaerobic H₂ MBR studies. ³⁰⁻⁴¹

Organism	Substrate	Temperature	Reactor	Study	Max Yield	Max Rate	Improvement	Reference
		°C	Configuration		mol H2/mol hexose	L/(L-d)		
E. coli (XL1- BLUE)	Formate	37	CSTR coupled with a	How CSTR HRT impacts H2 production and how	0.26 mmol H2/	0.13	Rate = N/A	Bakonyi, 2012
			membrane module	to separate H2/CO2 using a HF membrane	mmol formate		Yield = N/A	
R. capsalatus	Lactate		Side-stream MBR	Influence of membrane material	N/A	N/A	Rate = N/A	Teplyakov,2002
T. kirishi	Glucose			in purifying H2/CO2 streams			Yield = N/A	
Mixed Culture	Agrowaste	35	Externally- submerged	How removing VFAs, mixing, TMP	1.10	5	Rate = N/A	Trad, 2015
			MBR	and fouling affected H2 production			Yield = N/A	
Mixed Culture	Glucose	37	Double side-	Evaluating H2 production	1.13 (HRT=92	6.11 (HRT=12	Rate = 140%	Bakonyi, 2015
			stream	at different	hrs)	hrs)		
			MBR	HRTs and ability of PDMS to purify H2			Yield = 232%	
Mixed Culture	Glucose	35	Gas Separation	Comparing H2 production between a	1.91	9.20	Rate = 25%	Bakonyi, 2017
			MBR				Viold 240/	
			and CSTR	GSMBR and a CSTR			Yield = 21%	

Mixed microflora	Tofu processing waste	60	CSTR and MBR	Comparing H2 production between a	1.87 (HRT = 8 hrs)	12.81 (HRT=8 hrs)	Rate = 57%	Kim, 2011
				CSTR and MBR on tofu processing waste			Yield = 56%	
Mixed Culture	Glucose, Sucrose	35	Side-stream hollow fiber	Impact of HRT, substrate, and	At HRT (Hrs) = 4,2, 2	At HRT (Hrs) = 4,2, 2	Rate = 580%, 351%, 345%	Lee, 2006
	Fructose		MBR	reactor configuration on H2 production	1.72, 1.51, 1.55	1.02, 1.67, 1.87	Yield(s)=64%, 13%, 4%	
Mixed mesophilic	Glucose	35	submerged MBR	Influence of SRT on continuous H2	1.19 (SRT=12.5 d)	5.8 (SRT=12.5 d)	Rate = N/A	Lee, 2010
microflora				production in a submerged MBR			Yield = N/A	
Mixed Culture	Food waste	55	HF-MBR	Influence of organic loading rates	111.1 mL-H2/g- VS added	2.2	Rate = N/A	Lee, 2014
				on H2 production from a HF-MBR			Yield = N/A	
Mixed Culture	Glucose	35	Side-stream hollow fiber	Impact on H2 production when	0.93	3.0 mmol H2/	Rate = 10%	Liang, 2002
			MBR	H2 and CO2 are extracted.		g VSS hr	Yield = 15%	
Mixed consortia	Glucose	35	submerged anaerobic	Impact on H2 production	1.58	2.47	Rate = 51%	Noblecourt,2017
			MBR	when VFAs are removed from the medium			Yield = 11%	

Mixed Culture	Glucose	N/A	Side-stream ceramic cross-flow MBR	Compare H2 production between a chemostat and MBR at different SRTs	1	7.68 ± 0.48	Rate = 25% Yield = 3%	Oh, 2003
Mixed Culture	Glucose	23	CSTRs and MBRs	Influence of organic loading rates on H2 production	1.78	4.74	Rate = 53% Yield = 84%	Shen, 2009
Mixed Culture	Synthetic wastewater	23	HPMBR	Influence of organic loading rates on biomass, EPS, and H2 production	0.004-0.008 mol/g COD	4.77 ± 0.36	Rate = N/A Yield = N/A	Shen, 2010
N/A	N/A	23	Sidestream MBR	Using PDMS and SAPO 34 membrane modules to separate H2/CO2 streams	N/A	N/A	Rate = N/A Yield = N/A	Ramirez- Morales, 2013
N/A	N/A	37-55	Membrane Module	How different process variables impact a polyimide membranes ability to purify H2	N/A	N/A	Rate = N/A Yield = N/A	Bakonyi,2013

108 **2. Materials and Methods**

2.1 Preparation of Inoculum and Media

110 All reagents and chemicals for media and substrates were obtained from Sigma Chemical Co. 111 and Fisher Scientific. C. thermocellum DSM 1313 Ahpt derived strains were obtained from the 112 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures. 42 Inoculum was 113 cultured in 26 ml balch tubes (Bellco Glass Co.) containing 10 mL of CTFUD rich media and 5 g/L 114 filter sterilized cellobiose. These tubes were incubated at 55°C and shaken at 125 rpm inside a 115 MaxQ 4000 incubator. Each tube was air sealed with butyl rubber stoppers. 10% by volume of 116 the actively growing culture was successively transferred and grown in 100 ml then 200 ml glass 117 bottles (Bellco Glass Co.) containing 5 g/L filter sterilized cellobiose and CTFUD rich media prior 118 to being grown in the 4.25 L polycarbonate batch reactors. The CTFUD rich media contained 119 (per liter of distilled deionized water): $Na_3C_6H_5O_7 * 2H_2O_7 = 2H_2O_7 = 2H_2O_7 + 2H_2O_7 = 2H_2O_$ 120 1.5 g; $CaCl_2 * 2H_2O$, 0.13 g; L-Cysteine-HCl, 0.50; MOPS sodium salt (adjust pH to 7.0 after 121 addition of MOPS), MgCl₂ * 6H₂O, 2.6 g; FeSO₄ * 7H₂O, 0.001 g (use 1000 fold dissolved liquid 122 concentration); Yeast Extract, 4.5 g; Resazurin 0.2% (w/v), 0.5 ml/l.¹⁴ Culture was grown at 60 °C 123 until it reached late exponential phase.

124

125 **2.2 AF and AnMBR Reactors Setup**

As shown in Figure S1 and Figure S2 (supplemental information), batch culture fermentations were carried out using two different bioreactor setups that were custom designed for this study: an anaerobic fermenter (AF) as a control and an anaerobic-membranebioreactor (AnMBR) as the active reactor. In total the bioreactors had a total volume of 4.25 L

130	and a working volume of 2 L. The AF was operated atop a magnetic stir plate (Fisher-Scientific)
131	at a stir rate of 60 rpm. The AF was maintained at 60 °C using an electronic heating jacket
132	connected to a temperature controller (ElectroLab 240). The reactor pH was maintained at 7.0
133	by using a pH controller (ElectroLab 260) delivering 2M NaOH solution. The AF was kept
134	anaerobic by constantly delivering argon gas from a gas canister which subsequently passed
135	through a mass flow controller (AALBORG GFC17), through a 0.2 μm PTFE membrane filter
136	(Gelman Nylon Acrodisc) and into a gas dispersion tube (Pyrex, pore size 40-60 μ m). The entire
137	gas delivery setup was connected by platinum cured silicon tubing (Cole-Parmer). The AF setup
138	also had a headspace gas line that dropped into a beaker of water that constantly vented gas
139	into the beaker to eliminate pressure buildups in the reactor vessel. The head-plate of the
140	reactor also contained a condenser unit used to cool down headspace gas before it traveled
141	into the gas sampling line that led to the Gas Chromatography unit. This condenser unit was
142	connected to a water faucet using platinum-cured silicon tubing and cold tap water was
143	circulated through the unit.
144	The AnMBR reactor was setup similar as the AF reactor except that a 2.44 m long coiled
145	hydrophobic polypropylene microfiltration tube membrane (3M Membrana, Accurel PP V8/2
146	HF) was submerged in the 2L liquid. The V8/2 membrane had a pore size of 0.2 um, a wall
147	thickness of 1550 um \pm 150 um, an inner diameter of 5500 um \pm 300 um, and a melting point
148	of 160 C. The submerged membrane had an active surface area of 600 cm ² and was connected

149 to a pressure gauge module using Tygon SE-200 tubing (Cole-Parmer). Black Norprene chemical

150 tubing (Cole-Parmer) attached to the other side of the pressure gauge module was run through

a peristaltic pump (Watson Marlow 505 Du) and connected to a gas bag (Kynar Bag 12X12" Dual

152	Valve). The AnMBR was maintained at the same pH, temperature, and stir rate as the AF. A
153	peristaltic pump was used to apply a vacuum to the membrane and was operated at a
154	continuous pumping rate of 0.2 rpm. The gas bag collected the product gas that permeated
155	through the membrane and the condenser unit cooled down the headspace gas on its way for
156	GC measurements. The pressure gauge was used to record the trans-membrane-pressure
157	throughout the fermentation.
158	
159	2.3 AF and AnMBR Reactor Operations
160	Prior to the startup of batch cellobiose experiments, the bioreactors were filled with 1700 ml of
161	CTFUD rich media, the media was adjusted to a pH=7.0, and the vessels were sterilized by
162	autoclave. Prior to the startup of batch Avicel experiments the bioreactors were filled with
163	1800 ml of CTFUD rich media and 5 g/L Avicel, the media was adjusted to a pH=7.0, and then
164	the reactors were sterilized by autoclave.
165	For the AF reactor, the air in the reactor liquid and headspace was replaced with argon
166	after 30 minutes of sparging. Once the AF was shown to be anaerobic on the u-GC the sparge
167	rod was pulled from the reactor liquid and up into the reactor headspace for the duration of
168	the fermentation. For the AnMBR reactor, the membrane was cleaned by soaking the module in
169	122 $^\circ$ C autoclaved water for 10 minutes prior to submerging it in the freshly autoclaved
170	bioreactor inside of a laminar hood. After assembling the AnMBR inside of the laminar hood,
171	the reactor was allowed to cool to 60 $^\circ$ C and the Argon flow, temperature control, pressure
172	gauge and gas bag was hooked up to the reactor. The air in the reactor liquid and headspace
173	was replaced with argon by sparging for 30 minutes. Once the AnMBR was shown to be

anaerobic on the u-GC the sparge rod was pulled from the reactor liquid and up into the reactorheadspace for the duration of the fermentation.

176 For cellobiose experiments, when the reactors reached 60 °C and the pH was adjusted 177 to 7.0 with NaOH, the reactor was inoculated with 200 ml of actively growing C. thermocellum 178 culture along with 100 ml of 100 g/L filter-sterilized cellobiose. A peristaltic pump was turned 179 on for AnMBR gas extraction at a constant rate of 0.2 rpm. The 2L reactor culture was grown in 180 batch mode on 5 g/L cellobiose for 24 hours. For Avicel experiments, when the reactors 181 reached 60 °C and the pH was adjusted to 7.0 with NaOH, the reactor was inoculated with 200 182 ml of actively growing *C. thermocellum* culture and grown in batch mode on 5 g/L Avicel for 27 183 hours. Throughout testing, the reactors were kept anaerobic by sparging the headspace with 20 184 standard cubic centimeters of argon and maintained at a pH of 7.0, a temperature of 60 °C, and 185 a stir rate of 60 rpm.

186

187 **2.8** Analytical procedures

188 Cell growth during cellobiose experiments was measured as a function of optical density 189 (OD) by spectrophotometry (DU800; Beckman Coulter) at OD_{600} . An OD_{600} of 1 correlated to 1.04 g/L cell dry weight (R^2 =0.9918). The composition of *C. thermocellum* biomass was 190 191 determined to be $C_5H_8NO_2$ by elemental analysis. Briefly, *C. thermocellum* was grown to 192 stationary phase on 5 g/L cellobiose; the biomass was pelleted and washed three times before 193 drying overnight at 105 °C and subsequently sent to Huffman Labs for analysis of carbon, 194 hydrogen, nitrogen, oxygen, and sulfur. Cell growth on the insoluble Avicel substrate was 195 determined indirectly by measuring the total protein content of samples using a modification of

196	the Bradford method. ⁴³ Samples (10 ml) taken during the Avicel experiments were centrifuged
197	(8000 x g for 15 min) and the supernatant was removed. Pellets were washed with 0.9%
198	(wt./vol.) NaCl and resuspended in 2 mL of 0.2N NaOH. Samples were then incubated in a
199	boiling water bath to hydrolyze the cells from the solid substrate. After the bath, the samples
200	were cooled, centrifuged (8000 x g for 15 min), then supernatants were collected for protein
201	content analysis as described. ^{44,45} The leftover pellets were stored in a -80 °C freezer for 24
202	hours before getting lyophilized for 48 hours. Post lyophilization the samples were weighed and
203	the Avicel degradation values were recorded.
204	Headspace gas concentrations of H_2 and CO_2 in the AF and AnMBR were measured by
205	automatic sampling using a 2-channel uGC (490 Micro GC, Agilent Technologies). Channel 1
206	contained a Poraplot U column with argon as carrier gas and operated at an oven temperature
207	of 100 °C. Channel 2 contained a Molsieve column with helium as carrier gas, operated at an
208	oven temperature of 65 °C. Peak areas were compared with a standard curve, considering both
209	temperature and pressure. The membrane effluent gas extracted from the reactor liquid of the
210	AnMBR was fed to a gas collection bag (Kynar Bag 12X12" Dual Valve) after passing through a
211	desiccator.
212	Cellobiose, lactate, formate, acetate, and ethanol were measured by HPLC (1200 series;
213	Agilent Technologies) with a mobile phase of 4 mM $ m H_2SO_4$ using an Aminex HPX-87H column
214	with a Micro Guard Cation H Cartridge. The column temperature was set to 55 \degree C and the flow

215 rate was 0.6 mL/min. All data points shown represent the average of two independently

216 replicated experiments, each with multiple batches. 46,47

217

3. Results and Discussion

219 **3.1 Cumulative Gas Totals and Rates**

220 Data from Figure 1 shows the cumulative H₂ production from each reactor configuration 221 and substrate type with respect to time. The AnMBR gas extraction environment facilitated 222 substantial increases in cumulative H₂ production from both the cellobiose and cellulose 223 substrates when compared to the AF configuration. No loss of reactor liquid was observed 224 during the gas extraction process. On cellobiose, the AnMBR headspace produced 31.9 ± 12.3 225 mmols of H₂, which is an improvement of near 24%, when compared to the AF cumulative 226 headspace amount of 25.8 \pm 3.35 mmols of H₂. Figure 1 (A) reveals that 10 mmols of H₂ were 227 extracted from the reactor solution and collected in the gas bag, which brings the cumulative 228 total amount of H₂ produced from cellobiose using the AnMBR to 42.1 ± 12.6 mmols of H₂, a 229 58% increase in total H₂ compared to the AF. On Avicel, the AnMBR headspace produced 52.5 ± 230 3.87 mmols of H₂, which is an improvement of 12% more H₂ when compared to the AF 231 cumulative headspace amount of 46.8 ± 1.41 mmols of H₂. Figure 1 (B) reveals that 22.1 mmols 232 of H₂ were extracted from the reactor solution and collected in the gas bag, which brings the 233 cumulative H_2 produced from Avicel using the AnMBR to 74.6 ± 6.7 mmols, which is a 59% 234 increase compared to the AF.

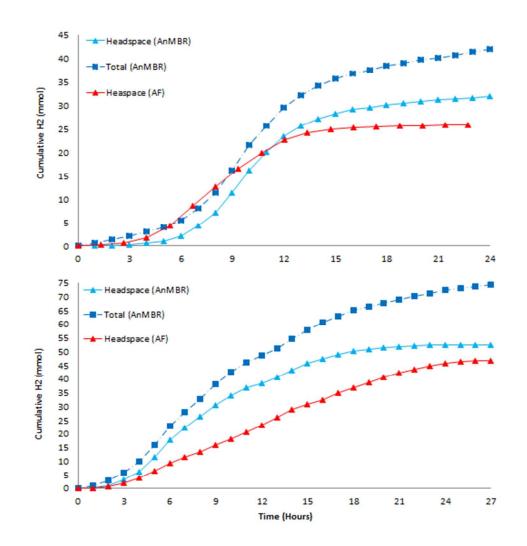


Figure 1: Cumulative H₂ production from Cellobiose (A) and Avicel (B) from the AF and
 AnMBR over time.

238Data from Figures S3 and S4 (supplemental information) reveal the membrane239permeate, headspace, and total (permeate + headspace) biogas compositions as H2/CO2 from240the cellobiose and Avicel AnMBR experiments were 3.8 (334 mL/87 mL), 1.0 (1063 mL/1112241mL), 1.2 (1459 mL/1198 mL), and 4.0 (735 mL/184 mL), 0.71 (1752 mL/2471 mL), 0.94 (2488242mL/2655 mL), respectively. The significant difference between the membrane and headspace243H2/CO2 ratios indicates that the hydrophobic membrane was more selective to H2 than CO2.244Since the total biogas compositions as H2/CO2 for cellobiose and Avicel were fairly close in value

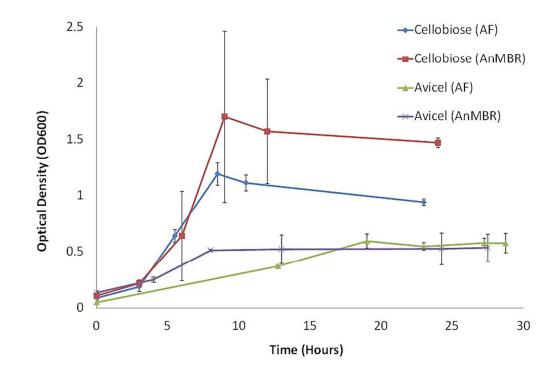
245	to each other, 1.2 and 0.94 respectively, it suggests the gas extraction process was relatively
246	uniform between the two substrates. Figure S3 also shows how membrane resistance from
247	cellular growth influenced the pressure gradient over the course of the different AnMBR
248	growth experiments. On Cellobiose, the vacuum pressure during the fermentation was well
249	correlated to the optical density graph provided in Figure 2. At t=0, t=4, t=8, and t=24 the
250	corresponding vacuum pressures are -0.70, -3.2, 0.90, and -5.8 psi for the AnMBR cellobiose
251	experiments. The vacuum pressure increased from t=0 to t=4 correlated to the lag phase in
252	cellular growth and an increase in biomass being present in the reactor. The vacuum pressure
253	decrease from t=4 to t=8 was the result of peak gas production through the membrane which
254	correlated with the exponential phase of cellular growth. The large increase in vacuum pressure
255	from t=8 to t=24 was caused by substantial increases in biomass concentration and increased
256	biofilm formation incurred by the stationary and death phases of <i>C. thermocellum's</i> growth. At
257	t=0, t=4, t=9.5, and t=27 the corresponding vacuum pressures were -0.70, 0.90, 0.45, and -4.5
258	psi for the AnMBR Avicel experiments. The decrease in vacuum pressure and positive pressure
259	readings from t=0 to t=9.5, revealed that enough gas was produced through the membrane
260	during the lag and exponential phases of growth to overcome vacuum resistance produced
261	from biofouling. The increase in vacuum pressure from t=9.5 to t=27 was the result of
262	increased resistance resulting from membrane adhesion of the solid substrate and biofilm
263	formation incurred from high biomass concentrations during the stationary and death phases of
264	C. thermocellum's growth. Further studies are needed to better examine membrane biofilm
265	formation, but the changes in vacuum pressure over time suggested biofilm growth on
266	membrane surface. Several studies in the literature reveal that the increases in membrane

pressure displayed over time like the ones shown in Figure S3 is a good proxy for resistance
caused from biofilms. ^{22, 48-50}

269	Data from Table 2 summarizes <i>C. thermocellum's</i> gas production metrics from each
270	reactor configuration and substrate type with results averaged from two independent runs. The
271	data reveal that the highest rate of H $_2$ production from the AF was 3.4 mmol ${\rm hr}^{-1}$ on cellobiose
272	and 3.1 mmol hr^{-1} on Avicel, respectively. In comparison, the highest rate of H ₂ production
273	from the AnMBR was 4.2 mmol ${\rm hr^{-1}}$ on cellobiose and 5.8 mmol ${\rm hr^{-1}}$ on avicel. Both Table 2
274	and Figure 1 clearly reveal that reducing the partial pressure of dissolved gases via membrane
275	gas extraction increased the rate of H_2 production by 24% on cellobiose and by 87% on Avicel,
276	respectively. Table 2 shows the AnMBR also increased the CO $_2$ production rate by 218%
277	compared to AF, from 0.95 \pm 0.13 mmol ${\rm hr^{-1}}$ to 2.8 \pm 0.06 mmol ${\rm hr^{-1}}$ on cellobiose, and by
278	64%, from 2.8 \pm 0.50 mmol hr^{-1} to 4.6 \pm 0.64 mmol hr^{-1} on Avicel. The H ₂ and CO ₂ total gas
279	volume was also increased using the AnMBR, with the H ₂ volume increasing by 63% and 46%,
280	and the CO ₂ volume increasing by 218% and 78%, on cellobiose and Avicel, respectively.

281 **Table 2.** Gas metrics with respect to substrate type and reactor configuration.

Substrate	Reactor Mode	Total H ₂	Max H₂ Rate	H ₂ Yield	Total CO ₂	Max CO ₂ Rate
		(mmol)	(mmol/hr)	(mmol H2 H2/mmol Hexose)	(mmol)	(mmol/hr)
Cellobiose (5 g/L)	AF	25.8 ± 13%	3.4 ± 0%	0.43 ± 11%	11.3 ± 4%	0.95 ± 14%
	AnMBR	42.1 ± 30%	4.2 ± 16%	0.68 ± 30%	35.9 ± 21%	2.8 ± 2%
	% Increase	63%	24%	58%	218%	195%
Avicel (5 g/L)	AF	46.8 ± 3%	3.1 ± 7%	0.76 ± 3%	44.8 ± 12%	2.8 ± 18%
	AnMBR	74.6 ± 9%	5.8 ± 9%	1.21 ± 15%	79.6 ± 9%	4.6 ± 14%
	% Increase	59%	87%	59%	78%	64%


282

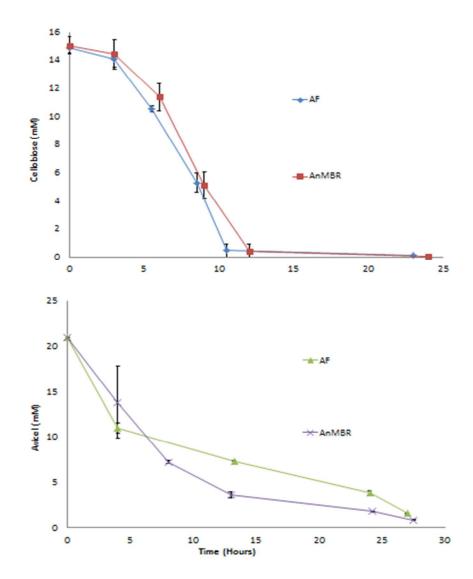
283	The increases in all H_2 and CO_2 related metrics associated with the AnMBR is to be
284	expected according to Le Chatelier's principle which states that the equilibrium of C.
285	thermocellum's fermentation reaction will shift to the right if one or both of the gaseous
286	products of the reaction are removed from solution. ⁵¹ Decreasing the partial pressure of
287	dissolved gases in solution reduces the total pressure of gas in solution, allowing C.
288	<i>thermocellum</i> to increase both H ₂ and CO ₂ production. A study performed by Tanisho et al.
289	using Enterobacter aerogenes fermenting molasses as the substrate demonstrated that the
290	amount of NADH, a likely electron donor supporting H ₂ evolution, was increased by 107% when
291	Ar(g) was blown into solution to remove accumulating CO ₂ . ²¹ A study involving the H ₂ producer
292	C. cellobioparum found that removing H ₂ from solution by gassing out the growth flask with CO_2
293	increased total H $_2$ production by 80%, 107%, and 165% when the cells were grown on glucose at
294	concentrations of 0.2 %, 0.4%, and 0.6%, respectively. ¹⁶ Liang et al. grew a mixed mesophilic
295	culture in a membrane bioreactor that had a side-stream hollow fiber membrane module
296	operated under a vacuum of -10.8 kPA. $^{\scriptscriptstyle 28}$ The operation facilitated hydrogen evolution rate by
297	10% and hydrogen yield by 15% when compared with a CSTR operation. The literature confirms
298	that decreasing the partial pressure of dissolved gases in solution can promote cumulative ${\sf H}_2$
299	increases anywhere between 15-165% and H_2 production rate increases anywhere between
300	12.5%-130%. All the cumulative gas totals and production rates carried out using <i>C</i> .
301	thermocellum in this study are consistent with findings reported in the literature, indicating that
302	the application of an AnMBR is an effective strategy to increase H ₂ production.
303	
204	

304

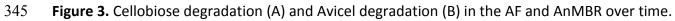
305 3.2 Cell growth and substrate degradation

Figure 2 shows the influence of reactor type and substrate on the optical density (OD) of *C. thermocellum.* In both reactor configurations, *C. thermocellum* achieved a higher overall cell biomass concentration and grew at a faster rate when grown on the soluble substrate (cellobiose) compared to the solid substrate (Avicel). The cells grew to a higher overall biomass concentration and at a quicker rate when they were grown on cellobiose in the AnMBR when compared to the AF. The cells also grew at a faster rate but achieved the same final OD when grown on Avicel in the AnMBR when compared to the AF.

313


Figure 2: Optical Density (OD600) of *Clostridium thermocellum* on Cellobiose and Avicel in the
AF and AnMBR over time.

The faster growth rate and higher optical density (OD) observed in the cellobiose AnMBR is consistent with results published in the literature. Chung et al. found that the H_{2} - 318 producing C. cellobioparum grew to a higher optical density and at a faster rate, when H₂ was continuously removed from the growth culture compared to the control of no H_2 removal.¹⁶ 319 320 Since the AnMBR continuously removed H₂ as it was produced, we assume it reduced cellular 321 feedback inhibition, making the hydrogenase reaction thermodynamically favorable in C. 322 thermocellum, which allowed the cells to achieve higher OD's with this setup when compared 323 to the AF. The error bars on the cellobiose AnMBR curve are much greater than the error bars 324 on the cellobiose AF curve because the membrane surface could give rise to biofilm formation 325 and increased cell density variability between AnMBR experiments.

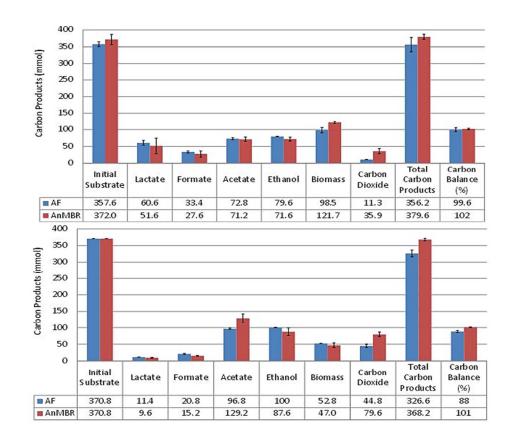

326 Intense biofilm formation may provide one explanation as to why the measured Avicel 327 AnMBR final optical density was not greater than the Avicel AF final biomass density or 328 cellobiose AF and AnMBR biomass densities. During the Avicel AnMBR experiments, the solid 329 substrate was observed to accumulate on the surface of the membrane, which in turn 330 facilitated microbial growth on the membrane surface. Since liquid samples were taken from 331 reactor liquid in the middle of the reactor instead of near or from the coiled-membrane located 332 at the edges of the reactor they may under-report the actual cell density of C. thermocellum 333 grown on Avicel in the AnMBR.

334 Substrate degradation rates for cellobiose and Avicel are illustrated in Figure 3. As can 335 be seen in Figure 3 (A), the degradation rate of the liquid substrate was similar between the 336 two reactor setups. It appears that the partial vacuum environment had negligible benefits 337 when it came to the cells degrading the cellobiose but since the cells readily metabolize soluble 338 substrates this behavior is not too surprising. As can be seen in Figure 3(B) the AF achieves 339 faster degradation of the Avicel substrate during the first 8 hours and the AnMBR achieves

faster degradation of the substrate after the first 8 hours. The large error bar on the second data point of the AnMBR plot in Figure 3 (B) indicates there was considerable variability at this time point, however, with this variability this graph suggests that the AnMBR did increase the overall degradation rate of the solid substrate when compared to the AF.

346

347


Page 23 of 33

22

349	3.3 Organic End-Product Synthesis and Carbon Balance

- 350 Figure 4 (A) shows that when *C. thermocellum* was grown in the AnMBR on cellobiose,
- 351 the cells produced 15% less lactate, 17% less formate, 2% less acetate, 10% less ethanol, and 24%
- 352 more biomass when compared to the organic end-products produced in the AF. Similarly,
- 353 Figure 4 (B) shows that when C. thermocellum was grown in the AnMBR on Avicel, the cells
- 354 produced 16% less lactate, 27% less formate, 33% more acetate, 12% less ethanol, and 11% less
- 355 biomass when compared to the organic end-products produced in the AF.
- 356 The shift in metabolites facilitated by continuously removing gas via extraction, sparging,
- 357 shaking, and stirring is well established in the literature.^{16, 18, 19, 31} Compared to the control,
- 358 increases in H₂ production are accompanied by increases in CO₂ and acetate and decreases in
- 359 the more reduced metabolites, such as ethanol and lactate.⁹ The best H₂ production runs from
- 360 this study were also paired with the highest production rates of CO₂ and acetate as indicated by
- 361 Table 2 and Figure 4. The combination of Avicel with the AnMBR achieved the highest total
- amount of H₂ produced, 68.6 \pm 8.9 mmols, and was accompanied by the highest amounts of
- 363 CO₂ and acetate production, which were 79.6 \pm 7.2 mmols and 129.2 \pm 12.9 mmols,

364 respectively.

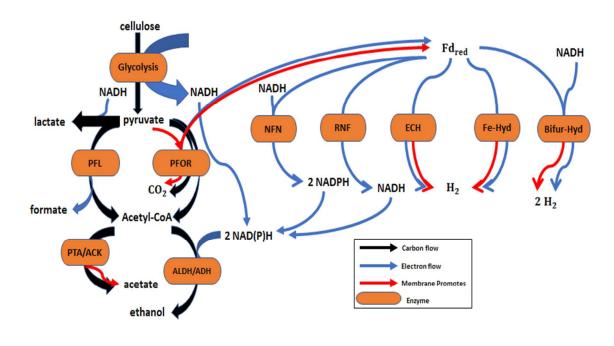
365

Figure 4: Distribution of carbon products and carbon balance recovery on Cellobiose (A) and
Avicel (B) using the AF and AnMBR.

368

369 **3.4 Yields, Carbon Balance, and Shifted Metabolism**

370 Due to membrane gas extraction, the H₂ yield increased from 0.43 \pm 0.05 to 0.68 \pm 0.20


371 mol H₂ mol hexose⁻¹, the CO₂ yield increased from 0.19 ± 0.01 to 0.58 ± 0.12 mol CO₂

372 mol hexose⁻¹, and the acetate yield decreased slightly from 0.61 ± 0.02 to 0.57 ± 0.05 mol

- 373 acetate mol hexose⁻¹, on Cellobiose. Similarly, as the result of membrane gas extraction, the
- H₂ yield increased from 0.76 \pm 0.02 to 1.21 \pm 0.14 mol H₂ mol hexose⁻¹, the CO₂ yield
- increased from 0.72 \pm 0.09 to 1.29 \pm 0.12 mol CO₂ mol hexose⁻¹, and the acetate yield
- increased from 0.72 ± 0.01 to 1.29 ± 0.13 mol acetate mol hexose⁻¹, on Avicel.

377	In order to determine whether the measured H ₂ yields in this study were reasonable,
378	the theoretical H_2 yield that could be generated from each experiment was calculated using
379	carbon balance equations 1 and 2 along with the organic acids data from Figure 3. $^{\rm s}$
380	$[CO_2] = [Acetate + Ethanol - [Formate] $ (1)
381 382	$[H_2] = [2*CO_2] + [Formate] - [2*Ethanol]$ (2)
383	Table S1 reveals that the H_2 yield increases reported in Table S1 by the AnMBR are
384	reasonable since the measured yields fall below the theoretically estimated yields for every
385	experimental setting. Furthermore, Table S1 indicates that continuous gas removal using the
386	AnMBR induces a metabolic response that pushes C. thermocellum further towards its
387	theoretical maximum H_2 producing potential. This is demonstrated by the increase in H_2 and
388	CO_2 yields on cellobiose, the increase in H_2 , CO_2 , and acetate yields on Avicel, and the decrease
389	in undesirable branched pathway end-products that are illustrated in Figure 4.
390	The production of H ₂ competes with the cellular electron pools of NAD(P)H and reduced
391	ferredoxin that otherwise are used toward the production of reduced carbon byproducts
392	including ethanol and lactate (Figure 5). Our observation of increased H ₂ production coincided
393	with a simultaneous decrease in both lactate and ethanol production. The AF and AnMBR
394	carbon balances in Figure 4 (A) and Figure 4 (B) are 99.6%, 102%, 88%, and 101%, which
395	indicates that almost all carbon from the substrates has been accounted for, demonstrating the
396	high fidelity of this work. The increases in H ₂ production are attributed to decreases in liquid
397	lactate and ethanol production. The hypothetical mechanism by which the AnMBR facilitates
398	increases in H ₂ , carbon dioxide, and acetate production is provided by the generalized

- 399 metabolic model for *C. thermocellum* in Figure 5. Figure 5 displays the various pathways,
- 400 enzymes, and metabolic reactions taking place as C. thermocellum converts sugars into
- 401 fermentation by-products. The black arrows show the carbon flux pathways, the blue arrows
- 402 show the electron flux pathways, and the red arrows hypothesize which pathways are
- 403 promoted in the AnMBR configuration compared to the AF configuration.
- 404

- 406 **Figure 5:** Metabolic pathway of *C. thermocellum* (PFL=pyruvate-formate lyase, PFOR=pyruvate
- 407 oxidoreductase, PTA=phosphotransacetylase, ACK=acetate kinase, ALDH= aldehyde
- 408 dehydrogenase, ADH=alcohol dehydrogenase, Fe-Hyd=iron hydrogenase, Bifur-Hyd=bifurcating-
- 409 hydrogenase, NFN=NADP (H) ferredoxin oxidoreductase, RNF=Ferredoxin: NAD (H)
- 410 Oxidoreductase, ECH=energy conservation hydrogenase). 52-54
- 411

412 **3.5 AnMBR Performance Assessment**

- 413 According to Table 1, this is the first study in the literature to examine active anaerobic
- 414 membrane gas extraction under thermophilic pure-culture conditions. Comparing the
- 415 performance of the reactors in this study to reactors in the literature is difficult since the

416	operating conditions for each reactor varied substantially for each study. The two pure-culture
417	studies listed in Table 1 by Bakonyi (2012) and Teplyakov (2002) investigated how well different
418	membranes separated biogas mixtures into purified H2 streams at mesophilic temperatures.
419	With the highest H ₂ /CO ₂ selectivity of Bakonyi's (2012) polyimide membrane study reaching 1.6
420	and the highest H ₂ /CO ₂ selectivity of Teplyakov's (2002) PVTMS membrane study reaching 5.7,
421	the H_2/CO_2 selectivity of 3.8-4.0 found in this study reveals that the V8/2 membrane has above
422	average H_2 purification ability. The study that most closely resembles this study from Table 1
423	was conducted by Liang et al., who achieved a 10% increase in H ₂ rate and 15% increase in H ₂
424	yield, by using an anaerobic continuous gas extraction MBR. The 59-63% increase in H2 rate and
425	58-59% increase in H ₂ yield achieved by the AnMBR is this study not only surpass Liang et al.'s
426	dark fermentation milestones but also reinforce the benefits of the membrane gas extraction
427	process. Taking into account the MBR H2 yield range of 0.93-1.87 mmol H2/mmol hexose from
428	Table 1, the AnMBR yields from this study of 0.68 \pm 0.20 and 1.21 \pm 0.18 mmol H ₂ /mmol hexose,
429	appear to be on the lower side of values reported in the literature. All in all, the gas production
430	metrics and membrane selectivity from this study appear to be reasonable, since the measured
431	values are close to those from similar studies reported in the literature.
432	While the AnMBR setup design for this study was sufficient in demonstrating the proof

of concept for using anaerobic membrane gas extraction to facilitate cellulosic hydrogen
production in *C. thermocellum,* further studies are needed to optimize system performance and
reduce cost. Before scaling up this process, operational factors such as membrane surface-area,
selectivity, fouling, and cost need to be addressed in order to obtain higher H₂ yields. The V8/2
membrane used in this study was surface-area limited as the result of its tubular design, and

438	only portions of the coiled membrane not in direct contact with the reactor shell were active in
439	extracting gas. Increasing the membrane surface-area/reactor volume by replacing the tubular
440	coiled membrane in this study with a hollow-fiber membrane bundle, would allow the removal
441	of more produced gas, thereby increasing H_2 yields. ²⁸ Although the V8/2 membrane in this
442	study already showed relatively high selectivity, 3.8-4.0 for H_2/CO_2 , increasing the H_2 selectivity
443	of the membrane would not only help purify the product stream but also increase yields by
444	further reducing feed-back inhibition. Although membrane fouling was a minor issue in this
445	study, implementing membrane backwashing, re-cycling produced gas for sparging, and
446	utilizing granular activated-carbon (GAC), would all be beneficial techniques for mitigating
447	fouling and promoting higher H ₂ yields. ^{23-24, 48-49} Implementing a jacketed reactor setup that
448	uses heated water coupled from an industrial process and recycling produced gas to use as a
449	sparging gas for maintaining an anaerobic environment are just a few ways operational costs
450	could be reduced for this setup.

451

452 **4.** Conclusions

This study demonstrates that anaerobic membrane gas extraction can be used to promote H₂ production on both sugar and cellulosic solid substrates from *C. thermocellum. C. thermocellum* converts more cellulose substrate to acetate, CO₂ and H₂ and grows to lower optical densities when grown on Avicel when compared to cellobiose. The AnMBR increased the rate of solid substrate degradation but did not increase the rate of liquid substrate degradation. The AnMBR increased the cumulative H₂ production by 63%, the hydrogen production rate by 24% and the overall H₂ yield by 58% when grown on 5 g/L cellobiose. The

460	AnMBR increased the cumulative H_2 production by 59%, the hydrogen production rate by 87%
461	and the overall H_2 yield by 59% when grown on 5 g/L Avicel. The most ideal growth
462	environment for <i>C. thermocellum</i> in this study involved growing the cells on Avicel in the
463	AnMBR. This growth environment prompted the production of 74.6 \pm 6.7 mmol's of H ₂ , a H ₂
464	production rate of 5.8 \pm 0.52 mmol $\rm hr^{-1}$, and a $\rm H_2$ yield of 1.21 \pm 0.14 mmol
465	$H_2 mmol hexose^{-1}$, which were the highest benchmarks of each $H_2 metric$ from this study. The
466	data also show that the AnMBR effectively partitions more electrons to the formation of
467	desirable gaseous products over the formation of undesirable liquid products. This study
468	demonstrates that anaerobic membrane gas extraction using the AnMBR can be an effective
469	process to facilitate cellulosic hydrogen production by dark fermentation.
470	
., .	
471	Acknowledgements
	Acknowledgements The authors acknowledged the financial support provided by the National Science Foundation
471	
471 472	The authors acknowledged the financial support provided by the National Science Foundation
471 472 473	The authors acknowledged the financial support provided by the National Science Foundation (CBET 1510682 to S. S., D. H., and Z. J. R.) as well as the Department of Energy (DOE) Energy
471 472 473 474	The authors acknowledged the financial support provided by the National Science Foundation (CBET 1510682 to S. S., D. H., and Z. J. R.) as well as the Department of Energy (DOE) Energy Efficiency and Renewable Energy Fuel Cell Technologies Office (to L. M., J. L., and P. C. M.). This
 471 472 473 474 475 	The authors acknowledged the financial support provided by the National Science Foundation (CBET 1510682 to S. S., D. H., and Z. J. R.) as well as the Department of Energy (DOE) Energy Efficiency and Renewable Energy Fuel Cell Technologies Office (to L. M., J. L., and P. C. M.). This work was authorized in part by Alliance for Sustainable Energy, LLC, the manager and operator

479 **References**

 Eker, Serkan, and Meltem Sarp. "Hydrogen Gas Production from Waste Paper by Dark Fermentation: Effects of Initial Substrate and Biomass Concentrations." *International Journal of Hydrogen Energy*, vol. 42, no. 4, 2017, pp. 2562–2568.

483 484	2.	Ren, Z., et al. "Characterization of the Cellulolytic and Hydrogen-Producing Activities of Six Mesophilic Clostridium Species." <i>Journal of Applied Microbiology</i> , vol. 103, no. 6,
485		2007, pp. 2258–2266.
	3.	Rau, GH, Willauer, H., Ren, ZJ. "The global potential for converting renewable
487	5.	electricity to negative-CO2-emissions hydrogen." <i>Nature Climate Change</i> , 2018, 8, 621–
488		625.
	4.	Das, D, and T. Nejat Veziroglu. "Hydrogen Production by Biological Processes: a Survey
490	4.	of Literature." International Journal of Hydrogen Energy, vol. 26, no. 1, 2001, pp. 13-
491		28.
	5.	Guo, Xin Mei, et al. "Hydrogen Production from Agricultural Waste by Dark
493		Fermentation: A Review." International Journal of Hydrogen Energy, vol. 35, no. 19,
494		2010, pp. 10660–10673.
	6.	Lu, L., Williams, N., Turner, JA, Maness, PC, Gu, J., Ren, ZJ. "Microbial
496		Photoelectrosynthesis for Self-sustaining Hydrogen Generation." Environmental Science
497		& Technology, 2017, 51 (22), pp 13494–13501.
	7.	Tan, Hwei-Ting, et al. "Emerging Technologies for the Production of Renewable Liquid
499		Transport Fuels from Biomass Sources Enriched in Plant Cell Walls." Frontiers in Plant
500		<i>Science</i> , vol. 7, 2016.
	8.	Rydzak, Thomas, et al. "End-Product Induced Metabolic Shifts in Clostridium
502		Thermocellum ATCC 27405." Applied Microbiology and Biotechnology, vol. 92, no. 1,
503		2011, pp. 199–209.
	9.	Magnusson, L, et al. "Direct Hydrogen Production from Cellulosic Waste Materials with
505		a Single-Step Dark Fermentation Process." International Journal of Hydrogen Energy,
506		vol. 33, no. 20, 2008, pp. 5398–5403.
	10.	Levin, D, et al. "Hydrogen Production by Clostridium Thermocellum 27405 from
508		Cellulosic Biomass Substrates." International Journal of Hydrogen Energy, vol. 31, no.
509		11, 2006, pp. 1496–1503.
	11.	Zhang, Pengcheng, et al. "A Kinetics Modeling Study on the Inhibition of Glucose on
511		Cellulosome of Clostridium Thermocellum." <i>Bioresource Technology</i> , vol. 190, 2015,
512		pp. 36–43.
	12.	Lu, L., Ren, ZJ*. "Microbial Electrolysis Cells for Waste Biorefinery: A State of the Art
514		Review." Bioresource Technology, 2016, 215, 254-264
	13.	Shen, R., Jiang, Y., Ge, Z., Lu, J., Zhang, Y., Liu, Z., Ren, ZJ. "Microbial electrolysis
516		treatment of post-hydrothermal liquefaction wastewater with hydrogen generation."
517		Applied Energy, 2018, 212, 509-515.
	14.	Magnusson, Lauren, et al. "Continuous Hydrogen Production during Fermentation of $\alpha \pm -$
519		Cellulose by the Thermophillic BacteriumClostridium Thermocellum." <i>Biotechnology</i>
520		and Bioengineering, vol. 102, no. 3, 2009, pp. 759–766.
	15.	Jung, Kyung-Won, et al. "Bioreactor Design for Continuous Dark Fermentative
522		Hydrogen Production." Bioresource Technology, vol. 102, no. 18, 2011, pp. 8612–8620.
	16.	Chung, K T. "Inhibitory Effects of H2 on Growth of Clostridium Cellobioparum."
524		Applied and Environmental Microbiology, U.S. National Library of Medicine, Mar. 1976,
525		www.ncbi.nlm.nih.gov/pubmed/779644. Accessed 6 Nov. 2017.
	17.	Freier, Doris, et al. "Characterization of Clostridium Thermocellum JW20." Applied and
527		Environmental Microbiology, vol. 54, no. 1, 1988, pp. 204–211.

528	18.	Kim, D, et al. "Effect of Gas Sparging on Continuous Fermentative Hydrogen
529		Production." International Journal of Hydrogen Energy, vol. 31, no. 15, 2006, pp. 2158–
530		2169.
531	19.	Lamed, RJ, et al. "Effects of Stirring and Hydrogen on Fermentation Products of
532	-	Clostridium Thermocellum." Applied and Environmental Microbiology, American
533		Society for Microbiology, 4 Mar. 1988, europepmc.org/articles/PMC202629. Accessed
534		15 Nov. 2017.
535	20	Lu, L., Hou, D., Wang, X., Jassby, D., Ren, ZJ*. "Active H2 Harvesting Prevents
536	20.	Methanogenesis in Microbial Electrolysis Cells." <i>Environmental Science & Technology</i>
537		Letters, 2016, 3 (8), 286-290.
538	21	Tanisho, S, et al. "Effect of CO2 Removal on Hydrogen Production by Fermentation."
539	21.	International Journal of Hydrogen Energy, vol. 23, no. 7, 1998, pp. 559–563.
540	22	Oh, Sang-Eun, et al. "Biological Hydrogen Production Using a Membrane Bioreactor."
541	۲۲.	<i>Biotechnology and Bioengineering</i> , vol. 87, no. 1, 2004, pp. 119–127.
542	7 2	Hou, Dianxun, et al. "Microbial Fuel Cells and Osmotic Membrane Bioreactors Have
542 543	25.	Mutual Benefits for Wastewater Treatment and Energy Production." <i>Water Research</i> ,
545 544		6,
545	24	vol. 98, 2016, pp. 183–189. Hou, Dianxun, et al. "Microbial Electrochemical Nutrient Recovery in Anaerobic
545 546	24.	Osmotic Membrane Bioreactors." <i>Water Research</i> , vol. 114, 2017, pp. 181–188.
	25	
547	25.	Kim, Jeonghwan, et al. "Anaerobic Fluidized Membrane Bioreactor." <i>Environmental</i>
548	20	Science Technology, vol. 45, 2011, pp. 576–581, Accessed 1 Jan. 2016.
549	26.	Bakonyi, P., et al. "Fermentative Hydrogen Production in Anaerobic Membrane
550		Bioreactors: A Review." <i>Bioresource Technology</i> , vol. 156, 2014, pp. 357–363.
551	27.	Kim, Mi-Sun, et al. "Continuous Hydrogen Production from Tofu Processing Waste
552		Using Anaerobic Mixed Microflora under Thermophilic Conditions." International
553		<i>Journal of Hydrogen Energy</i> , vol. 36, no. 14, 2011, pp. 8712–8718.
554	28.	Liang, Teh-Ming, et al. "Behavioral Study on Hydrogen Fermentation Reactor Installed
555		with Silicone Rubber Membrane." International Journal of Hydrogen Energy, vol. 27,
556		no. 11-12, 2002, pp. 1157–1165.
557	29.	Hou, D., Iddya, A., Chen, X., Wang, M., Zhang, W., Ding, Y., Jassby, D., Ren ZJ.
558		"Nickel Based Membrane Electrodes Enable High Rate Electrochemical Ammonia
559		Recovery." Environmental Science & Technology, 2018, 10.1021/acs.est.8b01349.
560	30.	Bakonyi, P., et al. "Escherichia Coli (XL1-BLUE) for Continuous Fermentation of bioH2
561		and Its Separation by Polyimide Membrane." International Journal of Hydrogen Energy,
562		vol. 37, no. 7, 2012, pp. 5623–5630.
563	31.	Bakonyi, P., et al. "Simultaneous Biohydrogen Production and Purification in a Double-
564		Membrane Bioreactor System." International Journal of Hydrogen Energy, vol. 40, no.
565		4, 2015, pp. 1690–1697.
566	32.	Lee, K, et al. "Continuous Hydrogen Production by Anaerobic Mixed Microflora Using a
567		Hollow-Fiber Microfiltration Membrane Bioreactor." International Journal of Hydrogen
568		<i>Energy</i> , vol. 32, no. 8, 2007, pp. 950–957.
569	33.	Lee, Dong-Yeol, et al. "Effect of Organic Loading Rate on Continuous Hydrogen
570		Production from Food Waste in Submerged Anaerobic Membrane Bioreactor."
571		International Journal of Hydrogen Energy, vol. 39, no. 30, 2014, pp. 16863–16871.

572	34.	Shen, Lihong, et al. "Effect of Organic Loading Rate on Fermentative Hydrogen
573		Production from Continuous Stirred Tank and Membrane Bioreactors." International
574		<i>Journal of Hydrogen Energy</i> , vol. 34, no. 9, 2009, pp. 3689–3696.
575	35.	Shen, Lihong, et al. "Membrane Fouling in a Fermentative Hydrogen Producing
576		Membrane Bioreactor at Different Organic Loading Rates." Journal of Membrane
577		Science, vol. 360, no. 1-2, 2010, pp. 226–233.
578	36.	Noblecourt, Alexandre, et al. "High Hydrogen Production Rate in a Submerged
579		Membrane Anaerobic Bioreactor." International Journal of Hydrogen Energy, vol. 42,
580		no. 39, 2017, pp. 24656–24666.
581	37.	Trad, Zaineb, et al. "Development of a Submerged Anaerobic Membrane Bioreactor for
582		Concurrent Extraction of Volatile Fatty Acids and Biohydrogen Production." Bioresource
583		<i>Technology</i> , vol. 196, 2015, pp. 290–300.
584	38.	Bakonyi, P., et al. "Biohydrogen Purification Using a Commercial Polyimide Membrane
585		Module: Studying the Effects of Some Process Variables." International Journal of
586		<i>Hydrogen Energy</i> , vol. 38, no. 35, 2013, pp. 15092–15099.
587	39.	Bakonyi, Péter, et al. "A Novel Gas Separation Integrated Membrane Bioreactor to
588		Evaluate the Impact of Self-Generated Biogas Recycling on Continuous Hydrogen
589		Fermentation." Applied Energy, vol. 190, 2017, pp. 813–823.
590	40.	Ramírez-Morales, J.e., et al. "Evaluation of Two Gas Membrane Modules
591		For Fermentative Hydrogen Separation." International Journal of Hydrogen Energy, vol.
592		38, no. 32, 2013, pp. 14042–14052.
593	41.	Teplyakov, V, et al. "Lab-Scale Bioreactor Integrated with Active Membrane System for
594		Hydrogen Production: Experience and Prospects." International Journal of Hydrogen
595		<i>Energy</i> , vol. 27, no. 11-12, 2002, pp. 1149–1155.
596	42.	Xiong, Wei, et al. "CO2-Fixing One-Carbon Metabolism in a Cellulose-Degrading
597		Bacterium Clostridium Thermocellum." Proceedings of the National Academy of
598		Sciences, vol. 113, no. 46, 2016, pp. 13180–13185.
599	43.	Bradford, Marion M. "A Rapid and Sensitive Method for the Quantitation of Microgram
600		Quantities of Protein Utilizing the Principle of Protein-Dye Binding." Analytical
601		<i>Biochemistry</i> , vol. 72, no. 1-2, 1976, pp. 248–254., doi:10.1006/abio.1976.9999.
602	44.	Lu, Y., et al. "Enzyme-Microbe Synergy during Cellulose Hydrolysis by Clostridium
603		Thermocellum." Proceedings of the National Academy of Sciences, vol. 103, no. 44,
604		2006, pp. 16165–16169.
605	45.	Bae, Jaeho, et al. "Anaerobic Treatment of Low-Strength Wastewater: A Comparison
606		between Single and Staged Anaerobic Fluidized Bed Membrane Bioreactors."
607		Bioresource Technology, vol. 165, 2014, pp. 75–80.
608	46.	Lu, L., Hou, D., Fang, Y., Huang, Y., Ren, ZJ*. "Nickel based catalysts for highly
609		efficient H2 evolution from wastewater in microbial electrolysis cells." <i>Electrochimica</i>
610		Acta, 2016, 206, 381-387.
611	47.	Lu, L., Zeng C., Wang, L., Yin, X., Jin S., Lu, A., Ren, ZJ*. "Graphene Oxide and H2
612		Production from Bioelectrochemical Graphite Oxidation." Scientific Reports, 2015, 5,
613		16242.
614	48.	Shin, Chungheon, et al. "Pilot-Scale Temperate-Climate Treatment of Domestic
615		Wastewater with a Staged Anaerobic Fluidized Membrane Bioreactor (SAF-MBR)."
616		Bioresource Technology, vol. 159, 2014, pp. 95–103.

anes, vol. 2, during , 2006, pp. ecreased . 28, no. 11, Production in 79. llum L- ion." m Strains <i>Microbiology</i> 13-1275-5.
d', e P17 11 11 11