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Disordered hyperuniform materials are new, exotic class

of amorphous matter that exhibit crystal-like behavior, in

the sense that volume-fraction fluctuations are suppressed

at large length scales, and yet they are isotropic and do not

display diffraction Bragg peaks. These materials are en-

dowed with novel photonic, phononic, transport and me-

chanical properties, which are useful for a wide range of

applications. Motivated by the need to fabricate large sam-

ples of disordered hyperuniform systems at the nanoscale,

we study the small-wavenumber behavior of the spectral

density of binary mixtures of charged colloids in suspen-

sion. The interaction between the colloids is approximated

by a repulsive hard-core Yukawa potential. We find that

at dimensionless temperatures below 0.05 and dimension-

less inverse screening lengths below 1.0, which are experi-

mentally accessible, the disordered systems become effec-

tively hyperuniform. Moreover, as temperature and in-

verse screening length decrease, the level of hyperunifor-

mity increases, as quantified by the “hyperuniformity in-

dex”. Our results suggest an alternative approach to syn-

thesize large samples of effectively disordered hyperuni-

form materials at the nano scale under standard labora-

tory conditions. In contrast with the usual route to synthe-

size disordered hyperuniform materials by jamming par-

ticles, this approach is free from the burden of applying

high pressure to compress the systems.

The concept of disordered hyperuniformity was first intro-

duced in the context of many-particle systems over a decade

ago,1 and was subsequently generalized to two-phase het-

erogeneous materials.2 Disordered hyperuniform systems and

materials belong to a new, exotic class of amorphous matter
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that lies between crystal and fluid states: they behave like crys-

tals in the way that they suppress density or volume-fraction

fluctuations at large length scales, and yet they are statistically

isotropic with no Bragg diffraction peaks, as in the case of

liquids or glasses.3 Specifically, for disordered hyperuniform

materials, the local volume-fraction variance σ2
V
(R) within a

d-dimensional spherical observation window of radius R goes

to zero for large R asymptotically more rapidly than the in-

verse of the window volume, i.e., faster than R−d .2 This is

different from typical disordered two-phase materials, which

possess σ2
V
(R) that vanishes like R−d for large R. Equivalently,

the spectral density χ̃
V
(k), which is proportional to the scat-

tering intensity, goes to zero as the wavenumber k vanishes,2,4

i.e.,

lim
k→0

χ̃
V
(k) = 0. (1)

Note that the widely-used structure factor S(k) can be thought

as the counterpart of χ̃
V
(k) for point patterns.5 Methods to de-

sign realizations of two-phase disordered hyperuniform sys-

tems have been devised.6–8

Disordered hyperuniform systems have been shown to

be endowed with novel physical properties; see the recent

overview by Torquato.3 In particular, disordered hyperuni-

form dielectric networks were found to possess large com-

plete photonic band gaps comparable in size to photonic crys-

tals, but superior to photonic crystals because of their perfect

isotropy and robustness to defects.9,10 As a result, these net-

works are suitable for a wide range of applications such as

lasers, sensors, waveguides, and optical microcircuits. Sim-

ilarly, disordered hyperuniform materials possess desirable

phononic, electronic, transport, and mechanical properties,

and wave-propagation characteristics,6,7,11–19 and their full

potential in technological applications has yet to be explored.

Despite the desirable physical properties and technological

potential of disordered hyperuniform materials, their synthesis

and fabrication remain challenging, especially for large sam-

ples at the nano scale. While 3D printing and lithographic

technologies can now be applied to the rational design of ma-

terials with tunable disorder at the micro-scale,6,8,20 in this

particular instance, the spatial resolution of these techniques

limits their application at the nanoscale. Novel avenues need
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to be explored to optimize fabrication in the nanometer range.

The self-assembly and self-structuring of nanoparticles

with designed interactions into target structures represents

a promising route,21,22 and its application to the synthesis

of disordered hyperuniform materials is still in its infancy.

While disordered hyperuniformity was shown to arise in hard-

particle systems as they approach jammed (mechanically sta-

ble) states,23–25 the experimental realization of such systems

requires applying high pressure to compress the systems,

which is challenging. It is also known that systems with pure

Coulombic interactions in a neutralizing background can be

disordered and hyperuniform at positive temperatures.26–28

However, these systems by themselves cannot be experimen-

tally realized. Any real charged colloidal systems will have

a finite non-zero inverse screening length for finite non-zero

counterion concentration, by which χ̃
V
(k = 0) will also be

non-zero.

In this work, as an alternative, we computationally explore

the use of the self-structuring (self-assembly) process of bi-

nary mixtures of charged colloids in suspension in order to

guide experimentalists to fabricate large samples of effectively

disordered hyperuniform materials in two dimensions. Specif-

ically, it is desired that these designed materials be realized

in the laboratory at the nanoscale without resorting to com-

pression techniques. Following the coarse-graining approach

of Derjaguin, Landau, Verwey and Overbeek29,30 (DLVO),

we model the colloidal particles using repulsive hard-core

Yukawa interactions31,32. The system is studied by means

of canonical Monte Carlo simulations, using a sample size,

N, of 10000 particles and periodic boundary conditions. We

note that this system size is already large enough to determine

small-k behavior of the systems given the range of our po-

tential, and it is reasonable to assume that the effective dis-

ordered hyperuniformity will also hold for large sample sizes

and thus could be realized in experiments. We have considered

different systems with varying inverse screening lengths (i.e.,

effective counterion concentrations in the DLVO model) and

temperatures, up to a total of 50 different systems and condi-

tions. Particle size disparity is introduced to frustrate crystal-

lization.25 Our two-dimensional study applies to particles at

interfaces and thin films (monolayers). Additionally, for a pe-

riodic finite sample, in two dimensions we can access smaller

wavenumbers with a scaling of 2π/
√

N, compared to the scal-

ing of 2π/N1/3 in three dimensions. We study the small-k

behavior of the volume-fraction fluctuations of the resulting

structures, as measured by the spectral density. To that aim

we employ the “hyperuniformity index”, H, defined as:

H = χ̃
V
(0)/χ̃

V
(k = kmax), (2)

where χ̃
V
(0) is the extrapolated value of the spectral density

as k goes to zero and χ̃
V
(k = kmax) is the value of the largest

peak (often the first peak) of the spectral density. Clearly, the

lower is the value of H, the larger the degree of hyperuni-

formity displayed by the system. In this work, we deem the

systems to be effectively hyperuniform whenever H ≤ 10−2,

consistent with previous experience concerning hyperunifor-

mity in binary maximally-randomly-jammed packings of hard

disks.25 However, as detailed below, we note that H here is

different from its counterpart HS based on the structure factor

that is used in previous works.25,33,34

We find that at experimentally accessible temperatures and

inverse screening lengths, the disordered structures indeed be-

come effectively hyperuniform. Moreover, the degree of hype-

runiformity, as measured by H, increases as temperature and

inverse screening lengths decrease. On the other hand, the spa-

tial distribution associated with each individual component is

not hyperuniform, i.e., the system is not “multihyperuniform”

(the patterns of both the total population and the individual

types are simultaneously hyperuniform),35 which is contradis-

tinction to some systems with bare Coulomb interactions.28

Specifically, the hard repulsive Yukawa potential between

particles i and j is given by31,32

v(ri j)=





∞, ri j ≤ Di j

εi j(
exp[−κ(ri j−Di j)]

ri j/Di j
− exp[−κ(rC−Di j)]

rC/Di j
), Di j ≤ ri j ≤ rC

0, ri j > rC

(3)

where ri j is the distance between particles i and j, Di j =
Ri +R j (Ri and R j are the hard-core radii of particles i and

j), κ is the inverse screening length, and rC is the cutoff of the

soft repulsions [chosen to be sufficiently large compared to the

screening length, which increases as the screening length in-

creases such that the cutoff does not affect χ̃
V
(0)]. The energy

of the system E is the sum of these effective pairwise repul-

sions, i.e.,

E = ∑
i< j

v(ri j). (4)

Here we consider an equimolar binary mixture of small and

large colloids with a small to large colloid diameter ratio

α ≡ DS/DL = 2/3 and a small-colloid mole fraction x ≡
NS/(NS + NL) = 0.5. The packing fraction (the fraction of

space covered by the colloids) is set to φ = 0.21. Here DS and

DL are the hard-core diameters of the small and large colloids,

and NS and NL are the number of small and large colloids in

the system, respectively. We set the ratios of the energy scales

εSS : εSL : εLL = 1 : 2 : 4, where εSS, εSL, and εLL are energy

scales of the interactions between two small colloids, between

a small colloid and a large colloid, and between two large col-

loids, respectively. In addition, we note that the behavior of

our systems at small wavenumbers is not sensitive to the spe-

cific choice of the values of DS/DL, NS/NL, and εSS : εSL : εLL.

We then systematically study the effect of temperature T

and inverse screening length κ on the small-k behavior of the

spectral density of our system. For each T and κ, we employ
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a standard canonical Monte Carlo simulation technique36,37.

After a thermalization run consisting of 5000 translation trials

per particle, we collect 50 uncorrelated sample configurations

from each system and temperature under consideration. The

pair structure is first analyzed in terms of the total pair corre-

lation function, g2(r), and the corresponding spectral density,

χ̃
V
(k). Specific contributions for each mixture component are

also studied. Thus, for a binary mixture of small and large

colloidal particles, g2(r) can be decomposed into three com-

ponents:

g2(r) = x2g2,S(r)+(1− x)2g2,L(r)+2x(1− x)g2,C(r), (5)

where x is the small colloid relative concentration, g2,S(r) and

g2,L(r) are the pair distribution functions of the small and large

colloids, respectively, and g2,C(r) is a cross correlation term.

In parallel, the spectral density χ̃
V
(k) can be decomposed into

three contributions:

χ̃
V
(k) = χ̃

V,S(k)+ χ̃
V,L(k)+ χ̃

V,C(k), (6)

where χ̃
V,S(k), χ̃

V,L(k), and χ̃
V,C(k) are given by

χ̃
V,S(k) =

|m̃(k;RS)∑
NS
j=1 exp(−ik · r(S)j )|2

V
, (7)

χ̃
V,L(k) =

|m̃(k;RL)∑
NL
j=1 exp(−ik · r(L)j )|2

V
, (8)

and

χ̃
V,C(k)= 2Re[

m̃(k;RS)m̃(k;RL)∑
NS
j=1 exp(−ik · r(S)j )∑

NL
n=1 exp(ik · r(L)n )

V
].

(9)

Here χ̃
V,S(k), χ̃

V,L(k) are the spectral densities of the small and

large colloids, respectively, χ̃
V,C(k) is the cross term (that al-

ready includes a factor two stemming from identical small-

large and large-small contributions), {r
(S)
j } and {r

(L)
n } denote

the positions of the small and large colloids, respectively, and

m̃(k;R) is the Fourier transform of the indicator function of a

disk with radius R given by

m̃(k;R) =
2πR

k
J1(kR). (10)

where J1(x) is a Bessel function of the first kind. This quan-

tity, which reflects the finite size of the particles, would corre-

spond in a real scattering experiment to the form factor func-

tion, which accounts for the interaction of the probe particles

(photons, electrons, ...) with the individual sample particles38.

As an example, Fig. 1 shows a representative configura-

tion of the equilibrated system with κDS = 0.2 at kBT/εSS =

0.1, where kB is the Boltzmann’s constant. The lower graph

(a)

(b)

Fig. 1 (a) A representative configuration of the disordered

effectively hyperuniform equilibrated equimolar mixture of large

and small charged colloidal particles, with a small to large colloid

diameter ratio α = 2/3, dimensionless inverse screening length κDS

= 0.2, a packing fraction φ of 0.21, and at dimensionless temperature

kBT/εSS = 0.1. (b) Zoomed-in region of a representative portion of

the configuration depicted in (a).

corresponds to a 10-fold enlargement illustrating the size dif-

ference of our colloidal particles. Both figures correspond, at

first sight, to a simple disordered fluid.

A more quantitative description at the pair-statistics level
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can be obtained from the computed total pair correlation func-

tion g2(r), and its three partial contributions, g2,S(r), g2,L(r),
and g2,C(r). These are shown in Fig. 2, and are consistent

with the apparent lack of long-range correlations, as can be

appreciated by their decay to unity at pair distances r ≈ 5DL

and beyond in all instances.
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Fig. 2 Total pair correlation g2(r) and its partial counterparts for the

small and large charged colloids and the cross term g2,S(r), g2,L(r),
and g2,C(r) of the equilibrated equimolar mixture of large and small

charged colloidal particles, with a small to large colloid diameter

ratio α = 2/3, dimensionless inverse screening length κDS = 0.2, a

packing fraction φ of 0.21, and at dimensionless temperature

kBT/εSS = 0.1. Note that all of these four pair correlation functions

decay rapidly to unity as r increases, implying the lack of

long-range order at the two-particle level for the overall system as

well as the individual components.

The computed total spectral density χ̃
V
(k) and its three

components χ̃
V,S(k), χ̃

V,L(k), and χ̃
V,C(k) are shown in

Fig. 3. We fit χ̃
V
(k) with a third-order polynomial

f (k;a0,a1,a2,a3) = ∑n
j=0 a jk

j for all wavenumbers within

0.0130 ≤ kDS/(2π) ≤ 0.157. Interestingly, the resulting in-

tercept a0 has a value of 2.26×10−3, indicating that χ̃
V
(k) is

effectively going to zero as k goes to zero.

We have determined H to be 1.0× 10−2 from the spectral

density shown in Fig. 3, showing that the corresponding sys-

tem is effectively hyperuniform. However, χ̃
V,S(k) and χ̃

V,L(k)
do not go to zero as k goes to zero, an indication that the spatial

distribution of the small or large colloids alone is not “multi-

hyperuniform”.35

The value of H based on the spectral density χ̃
V
(k) here

is in general significantly higher than that of HS based on

the structure factor S(k) of the corresponding point configu-

rations [i.e., HS = S(0)/S(k = kmax), where S(0) is the ex-

trapolated value of S(k) as k goes to zero and S(k = kmax) is

its largest peak value]. For identical-particle packings, this is

based on the fact that χ̃
V
(k) = ρm̃2(k)S(k),4,37 where m̃(k) is

the Fourier transform of the particle indicator function and ρ
is the particle number density. Assuming that the location of

the largest peak of χ̃
V
(k) is roughly the same as that of S(k),

H/HS ≈ m̃2(0)/m̃2(kmax); since m̃(k) achieves its maximum at

k = 0 and m̃2(0)> m̃2(kmax), H should be higher than the cor-

responding HS. For polydisperse packings, χ̃
V
(k) possesses

a prefactor similar to m̃2(k) that decreases HS from H. We

have, for example, computed here H and HS for equilibrium

monodisperse packing of hard disks at φ = 0.40, and find H

to be 0.61 and HS to be only 0.093. Also, as φ increases, the

difference between H and HS increases dramatically.
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Fig. 3 Total spectral density χ̃
V
(k) and its partial counterparts for

the small and large colloids and the cross term χ̃
V,S(k), χ̃

V,L(k), and

χ̃
V,C (k) of the equilibrated equimolar mixture of large and small

charged colloidal particles, with a small to large colloid diameter

ratio α = 2/3, dimensionless inverse screening length κDS = 0.2, a

packing fraction φ of 0.21, and at dimensionless temperature

kBT/εSS = 0.1. Note that the spectral densities are all scaled by D2
s

so that they are dimensionless, where Ds is the diameter of the small

colloid. The total χ̃
V
(k) practically vanishes as k goes to zero,

implying the effective hyperuniformity of the overall system.

However, this is not the case for the partial counterparts χ̃
V,S(k) and

χ̃
V,L(k). This means that the spatial distributions of the small or large

colloids alone are not hyperuniform, i.e., the system is not

“multihyperuniform”.

Next, we carry out a similar analysis for 50 different com-

binations of T and κ in the range of kBT/εSS ∈ [0.01,0.2] and

κDS ∈ [0.2,2.0]. We then can construct a structural “phase di-

agram” of H in terms of T and κ, as shown in Fig. 4. Interest-
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ingly, H is on the order of 10−2 ∼ 10−3 when kBT/εSS ≤ 0.05

and κDS ≤ 1.0, implying that the corresponding systems are

effectively hyperuniform. Moreover, as T and κ decrease, H

decreases, implying the increasing level of hyperuniformity

for the corresponding system. For example, when we decrease

kBT/εSS to 0.01, the value of H falls below 10−3. This is con-

sistent with the fact that as κ decreases, the “screening” effect

becomes weaker and the potential becomes longer-ranged. As

a result, the suspension of charged colloids behaves more

like the pure-Coulombic system in a neutralizing background,

which is known to be perfectly hyperuniform.26–28 Also, as

T decreases, the system is increasingly accessing lower en-

ergy states, in parallel with hard-core systems evolving to-

wards lower enthalpy jammed states. As mentioned above, as

hard-particle systems are driven towards jammed states, they

tend to become hyperuniform.23–25

Last, we note that the configurations generated in our com-

puter simulations could potentially be realized in experiments

by depositing colloids onto solid substrates or at fluid in-

terfaces39–41 and allowing them to self-organize. Promising

candidate colloids include polystyrene particles, proteins, and

other macromolecules42–45. Note also that the hard-core com-

ponent of our interactions can be experimentally modeled by

grafting polymer chains to the surface of colloidal particles,

minimizing the effect of attractive interactions46. In this con-

nection, the set of parameters κ and εi j defining our inter-

action model can be approximately transformed into exper-

imentally accessible/measurable quantities using the DLVO

theory.43,47 For instance, a binary mixture of colloids with

ZS = 150, ZL = 367, DS = 300nm, and DL = 450nm (ZS,

ZL, DS, and DL are charges and diameters of the small and

large colloids, respectively) in an aqueous solution at 300K,

with its corresponding counter-ions and no other electrolytes

present, roughly leads to kBT/εSS ≈ 0.04 and κDS ≈ 0.96,

and this system is predicted to be effectively hyperuniform.

Once an experimental realization of the colloidal system on

solid substrates or at fluid interfaces is obtained, snapshots of

the configurations can then be taken by means of video op-

tical microscopy, which can be further analyzed to check for

hyperuniformity. Interested readers are referred to the work

by Dreyfus and coworkers48 for more detailed information on

these issues. In addition, although in this work we focused

on generating disordered hyperuniform materials in two di-

mensions through the self-structuring of binary mixture of col-

loids in suspension, we expect that similar procedures can be

applied to their three-dimensional counterparts, which might

even have greater practical relevance.

Fig. 4 Structural phase diagram of the “hyperuniformity index” in

terms of the temperature T and inverse screening length κ

constructed from 50 equilibrated systems of 5000 small and 5000

large charged colloids in a suspension with a small to large colloid

diameter ratio α = 2/3 and a packing fraction φ of 0.21. H is on the

order of 10−2 ∼ 10−3 when kBT/εSS ≤ 0.05 and κDS ≤ 1.0,

indicating that the corresponding systems are effectively

hyperuniform. Moreover, as T and κ decrease, H decreases,

implying the increasing level of hyperuniformity for the

corresponding system.

Conclusions and Discussion

In this work we proposed an approach to synthesize in silico

two-dimensional disordered hyperuniform materials through

the self-structuring (self-assembly) process of binary mix-

tures of charged colloids. Specifically, we systematically stud-

ied the small-wavenumber volume-fraction fluctuation behav-

ior of a relatively large number of samples, probing the κ-T

parameter space in search for effective hyperuniformity. In

this way we have constructed a structural “phase diagram” of

the “hyperuniformity index”, H, in terms of T and κ. We

have found that H reaches the order of 10−2 ∼ 10−3 when

kBT/εSS ≤ 0.05 and κDS ≤ 1.0, implying that the correspond-

ing systems are effectively hyperuniform. Moreover, as tem-

perature and inverse screening length decrease (i.e. the con-

centration of counterions is lowered or the solvent’s dielectric

constant rises), H decreases, implying that the degree of hy-

peruniformity is augmented.

Our models could be translated into large laboratory sam-

ples at room temperature without resorting to the use of high

pressures. As a comparison, a reduced pressure P/(ρkBT ) as

high as 1011 is required to synthesize hyperuniform jammed

systems, where P, ρ, and T are the pressure, number density,

and temperature of the system, respectively.25 Our findings

provide a promising alternative to fabricate large samples of

disordered hyperuniform two-phase systems for photonic and

other other applications.
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In addition, we note that in the limit κ → 0 and rC → ∞, the

interaction in (3) becomes a bare Coulomb. From the findings

of Lomba, Weis, and Torquato,28 we know that in the limit

our system will not reach strict multihyperuniformity, since it

does not fulfill the required condition εi j 6=
√

εiiε j j, ∀i 6= j. In

this work, we have shown that the system is also not multi-

hyperuniform for non-zero κ. Finally, we note that while the

present work focused on binary mixtures of charged colloids,

it is straightforward to extend the analysis to charged mixtures

with arbitrary size distributions and compositions.
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