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Abstract 

Assessment of compounds cytotoxicity is an important part of the drug discovery process. Accurate 

predictions of cytotoxicity have the potential to expedite decision making and save considerable 

time and effort. In this work we apply class conditional conformal prediction to model the 

cytotoxicity of compounds based on 16 high throughput cytotoxicity assays from PubChem. The 

data spans 16 cell lines and comprises of more than 440,000 unique compounds. The data sets are 

heavily imbalanced with only 0.8 % of the tested compounds being cytotoxic. We trained one 

classification model for each cell line and validated the performance with respect to validity and 

accuracy. The generated models deliver high quality predictions for both toxic and non-toxic 

compounds despite the imbalance between the two classes. On external data collected from the 

same assay provider as one of the investigated cell lines the model had a sensitivity of 74 % and a 

specificity of 65 % at the 80 % confidence level among the compounds assigned to a single class. 

Compared to previous approached for large scale cytotoxicity modelling this represents a balanced 

performance in the prediction of the toxic and non-toxic classes. The conformal prediction 

framework also allows the modeller to control the error frequency of the predictions, allowing 

predictions of cytotoxicity outcomes with confidence. 
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Introduction 

Cytotoxicity is often one of the earliest toxicity tests conducted in the drug discovery process. 

These tests are important as cytotoxicity is a highly undesired feature in drug candidates and 

results from cytotoxicity screening are used both to remove toxic compounds and to help interpret 

the results of subsequent assays.1 It has also been shown that cytotoxicity can be linked to 

organism level toxicities2,3, raising the hopes that it will be possible to replace in vivo acute toxicity 

studies with predictive in vitro cytotoxicity testing.4 However, experimental screening for 

cytotoxicity not only requires that compounds are available in sufficient quantities but the running 

of the assay screens costs both time and resources. Prioritising what compounds to test by means 

of in silico methods has the potential to save considerable amounts of time and money.5 

 

Cell death can occur through a multitude of mechanisms, either through acute structural 

breakdown or through stress that triggers a cellular apparatus leading to regulated cell death.6 

However, many assays cannot distinguish between different mechanisms behind cell death or 

growth arrest. For an in depth understanding of the cytotoxic properties of a compound it is 

therefore important to investigate the underlying mechanisms. 

 

For predictive methods to be useful for cytotoxicity assessment it is important to know under 

which circumstances the predictions are likely to be accurate. Conformal prediction is a modelling 

framework that outputs predictions with a guaranteed error rate.7 The controlled error rate makes 

conformal prediction attractive for important decision steps as the domain expert can adjust the 

confidence level to suit the particular problem at hand and be guaranteed the corresponding level 

of correct predictions. The application of this has recently been demonstrated for problems in 

QSAR and predictive modeling.8–12 Eklund at al. describe the application of conformal prediction 

on AstraZeneca preclinical drug development data and show that conformal prediction greatly 
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improves the predictions compared to traditional QSAR methods.10,11 Norinder et al. demonstrate 

how conformal prediction can serve as a more transparent alternative to tradition applicability 

domain determination.8,9 

 

An additional advantage of conformal prediction is that the framework can be extended to each 

outcome class. Such a class conditional conformal predictor is guaranteed to be valid for each 

class.13 This means that for imbalanced data, the error rate for the minority class can be controlled, 

offering a solution to many of the problems14 associated with modelling imbalanced data.12,15 This 

feature has the potential to make conditional conformal predictions a useful approach when 

building models on data from screening assays since this type of data often is highly imbalanced, 

i.e. a large number of compounds have been screened to find a few active (or toxic) compounds. 

 

PubChem is a publicly available repository of chemical compounds and associated assay data.16,17 

Various assays for cell viability and cell proliferation inhibition (in this study collectively referred to 

as cytotoxicity) have been made available through this service. The deposited assays include high 

throughput screens, qHTSs, and smaller dose-response assays. 

 

Several machine learning approaches have been applied for the prediction of compound 

cytotoxicity based on in vitro data.18–24 These approaches includes neural networks18, random 

forests (RF)19, decision trees20, linear regression20, and Bayesian learning21. Different techniques to 

handle the data imbalance have also been applied, including undersampling19, oversampling22, and 

Bayesian learning21. The main source used for obtaining cytotoxicity data for modelling has been 

PubChem, but Langdon et al. also used internal data from assays carried out at Pfizer.21 The 

investigation by Molnár et al.
 18 using neural networks on some 12000 compounds, with a toxic to 

non-toxic ratio of 1:1.5, divided into a training set (8298 compounds) and 2, equally sized, test sets 
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(2000 compounds) resulted in predicted accuracies of 77.6%, 73.4% and 73.4% for the 3 sets, 

respectively. The Guha and Schürer19 study using RF included 13 smaller datasets of 1300 – 1400 

compounds with toxic to non-toxic ratios between 1:7 and 1:22. The reported predicted accuracies 

from the derived models were between 56 – 80% with a large variation on how well the minority 

class, i e. the toxic class, was correctly classified. The investigation by Chang et al.
22, where 

oversampling of the toxic compounds was employed, resulted in some models for the training set 

where the internally validated accuracy, sensitivity and specificity was satisfactory and in the 80% 

range. However, the corresponding results for the test set was, for the most part, disappointing 

with values for accuracy, sensitivity or specificity in the 25 – 65 % range. Thus, despite the previous 

efforts, modelling of highly imbalanced cytotoxicity assay data is still challenging, especially in 

regards to generating models with a balanced performance between the toxic and non-toxic 

compounds. There is therefore a need for further research on how to best address this problem. 

 

In this study we introduce conformal prediction as a tool for predictive toxicology. Conformal 

predictors are used to generate predictive models for highly imbalanced cytotoxicity data from 

sixteen PubChem assays. The models are shown to deliver accurate predictions of compound 

cytotoxicity as well as being valid with respect to each individual class according to the set 

confidence level. Thus, allowing for predictions with the level of confidence required for making 

important decisions in early stage compound toxicity assessments. 

 

Methods 

Data collection and characterization 

The PubChem BioAssay database was manually queried for cytotoxicity screens with more than 

20,000 tested compounds (Table 1). The selected datasets were downloaded and the structures 

were neutralised and salts removed using corina25. Structure standardization was performed using 
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the IMI eTOX project standardizer26 in combination with the MolVS standardizer27 for tautomer 

standardization where defined SMARTS patterns are used for these operations. Activity was 

assigned to compounds based on the PubChem outcome annotation and records with missing or 

conflicting annotations were removed. 

 

The collected data sets were highly imbalanced with a fraction of toxic compounds spanning from 

0.13 to 6.03 % with an average of 0.8 %. Many of the tested compounds are shared between the 

assays, and in total the data includes 441,396 unique PubChem compound identifiers (CIDs). A 

total of 16,228 unique CIDs were toxic in at least one assays with just 3,967 CIDs being toxic in 

more than one (see Supporting Information Table S4). To assess the chemical diversity within the 

collected data sets the number of Bemis-Murcko scaffolds28 was counted using the RDKit29 

MurckoScaffold function. 

 

The PubChem data set AID 364, that served as an external test set for AID 463 as it was deposited 

by the same assay provider and run using the same protocol, was also downloaded and prepared 

in the same way. After processing the AID 364 data set contained 3,247 non-toxic and 48 toxic 

compounds. 

 

 
All the screens were carried out at major NIH screening centres but used different cell lines, 

primarily human cancer cell lines but also two cell lines from rodents (AID 1825 and 1486). The 

detection method in most assays was a luminescence30 readout but AID 430, 620, and 504648 

utilised fluorescence. Also, the concentration and incubation time varied between the assays and 

they used different cut-offs for outcome assignment. For details regarding a specific assay the 

reader is referred to the PubChem entry for that AID. 
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Descriptor calculation 

97 different physiochemical descriptors were calculated using RDKit (complete list in Supporting 

Information). Molprint2D fingerprints31,32 were calculated using Canvas applying Mol2 atom types 

and a maximum path length of two.33,34 In order to limit the memory usage in the random forest 

(RF) algorithm only bits present in at least 0.1 % of the molecules were used. 

 

Model generation 

A conformal predictor will make valid predictions according to a user defined confidence level. For 

a classification problem this is achieved by assigning a set of class labels to new instances 

(compounds) through comparison to a calibration set with known labels. If the prediction outcome 

for a new instance (compound) is similar enough (higher than the set cut-off) to the prediction 

outcomes on the calibration set instances (compounds) with a certain label, the new instance 

(compound) is assigned that class label. This process is then repeated for each label (class) in the 

data. Consequently, for a binary classification problem there are four possible outcomes. A new 

instance can be labelled with either of the two classes or it could be assigned both labels (both 

classification) or neither one (empty classification). For an illustrative example of how conformal 

prediction is carried out we refer the reader to reference 8. 

 

The performance of a conformal predictor is often measured by its validity. A conformal predictor 

is said to be valid if the frequency of errors does not exceed the set confidence level. Towards this 

end, a prediction is considered correct if it includes the correct class label, meaning that both 

predictions are always correct and empty predictions never are (i.e always erroneous). The trade 

off in conformal prediction is that between the validity of the model and the efficiency. In other 

words, between correctness and the number of single class predictions. 
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We used RF35 as the underlying model in our predictors. RF has been shown to deliver robust 

results even without case specific calibration.36  However, it is not the primary objective of this 

study to present the optimal model and settings but rather to introduce the framework of 

conformal prediction and its usefulness for predictive toxicology. 

 

Models were developed using Python, Scikit-learn37 version 0.17, and the nonconformist package38 

version 1.2.5. Binary classification models were built based on RF using the Scikit-learn 

RandomForestClassifier with 500 trees and all other options set at default. Conformal predictions 

were performed using the ProbEstClassifierNC and IcpClassifier functions in the nonconformist 

package with options for class conditional conformal predictions enabled. 

 

Model validation 

We applied the aggregated conformal prediction method described by Carlsson et al.
39 Each data 

set was randomly divided in training (80 %) and test set (20 %). The training set was then further 

divided in proper training set and calibration set using 70 % and 30 % of the training data, 

respectively. The size of the calibration set, important for the performance of conformal prediction 

in terms of validity, was chosen within the recommended range previously investigated and 

identified for conformal prediction in combination with RF by Linusson et al.
40 This whole process 

was repeated 100 times, each time storing the predictions on the test set. The median predicted 

probability for each compound was then calculated and used for class assignment in accordance 

with the set confidence levels.  

 

We also performed further evaluation by randomly selecting 20 % of each data set as a fixed 

external test set, train 100 models on the remaining training data for each data set (with new 

random splits for proper training and calibration set each iteration) and then use these to predict 
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the external test sets. Also, for the model built on the data from AID 463 we applied AID 364 as 

external test set. 

 

Results and discussion 

Dataset description 

Even though many compounds were tested in several assays, most toxic compounds were not toxic 

in more than one of the assays. This highlights the fact that cytotoxic effects quite often are cell-

type specific.41 Structurally the toxic compounds are quite diverse as illustrated by the number of 

unique Bemis-Murcko scaffolds among them (Table 1). The lowest fraction of unique Bemis-

Murcko scaffolds was observed for AID 903 where the ratio of scaffolds to compounds was 0.62. 

 

To further characterize the data we investigated the correlation between the physiochemical 

descriptors calculated using RDKit and the assay outcome (see Supporting Information for top 

correlated features and correlation coefficients). Although no single feature was strongly correlated 

(highest Pearson correlation was 0.155) to the outcome MolLogP, MolMR, number of aromatic 

rings, and number of aromatic carbocycles were the most frequently appearing features over all 

the data sets, being among the top ten correlated features 12, 10, 9 and 9 times respectively. 

These are features known to often correlate with toxicity.42 

 

Modelling results 

For each of the sixteen cell lines one model was constructed. The validities of the models using 

RDKit descriptors are shown in Table 2. The validity corresponds to the set confidence level both 

for the toxic and non-toxic class, showing that the conditional conformal predictors are valid for 

our data sets despite the strong imbalances existing between the two classes. 
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Figure 1 shows how the number of single class predictions is affected by the confidence level. At 

higher confidence levels a large portion of compounds are classified in the both class. For example 

at the 90 % confidence level the median number of single class predictions across all data sets is 

49.7 % with all the other predictions being both. When the confidence level is decreased the 

number of both predictions also decreases but instead the number of empty class predictions 

increase. The highest number of single class predictions for our data is therefore observed at the 

75 % confidence level where the median number of single class predictions is 95 %.  

 
Ultimately, what confidence level to use is dependent on the aim of the modelling. For a general 

model of assay outcome a lower confidence level can give good predictions for most compounds 

where as a more confident model might be useful to select cytotoxic molecules with a low number 

of false positives. Since our aim was to construct predictive models of the assay outcomes further 

analysis was focused on the lower confidence levels in order to generate single class predictions for 

a majority of compounds. 

 

The coverage (fraction single class predictions) and the accuracy of these single class predictions at 

70 and 80 % confidence levels are shown in Table 3. Both the majority and the minority class are 

well predicted in our models despite the large imbalance in the ratio of toxic to non-toxic 

compounds. For the toxic class the average coverage at the 80 % confidence level is 87 % and the 

average accuracy for the single predictions 80 %. At the same confidence level the non-toxic class is 

also well predicted with an average coverage of 83 % and average accuracy of 78 %. 

 

Overall the models showed good performance on the investigated data sets, with a high efficiency 

and accuracy. However, the models built for AID 847 have clearly worse performance than the 

models for any of the other data sets with both fewer single class predictions and lower accuracy 
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within these single class predictions. This is surprising since the data set contains largely the same 

pool of compounds as several other successfully modelled data sets used in this study. The results 

could be due to high levels of noise in the screening data making confident predictions impossible 

or failure of the chosen representation of the compounds to capture the effects important to 

separate the two classes. 

 

Models using Molprint2D fingerprints 

In order to investigate the impact of the chosen descriptors on the model performance we also 

conducted the modelling using Molprint2D fingerprint as compound descriptors. (Supporting 

Information) The average accuracy at the 70 % confidence level was 79 % for the non-toxic class 

and 79 % for the toxic class. At the same confidence level the models built using RDKit had an 

average accuracy of 79 % and 78 % for the non-toxic and toxic classes respectively. Also at the 80 % 

confidence level the average accuracy is similar with values of 75 % and 83 % for the non-toxic and 

toxic classes using Molprint2D and 78 %, and 81 % for the non-toxic and toxic classes using RDKit. 

The results are similar with respect to performance which indicates that the models are not 

sensitive to the choice of descriptor. 

 

Since the Molprint2D models had a similar performance to the ones built using RDKit descriptors 

but with a much higher computational cost due to the high number of features we chose to do the 

additional analyses using only the RDKit descriptors. 

 

Performance on external data 

When the models were trained on 80 % of the data with the remaining 20 % kept as a fixed test set 

the results in Table 4 were obtained. The average accuracy for the toxic compounds in the test set 

and the training set, using the same internal validation as described before, were in both cases 80 
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%. The same close correspondence can be seen for the non-toxic class where the average accuracy 

from internal validation and on the test set in both cases were 78 %. These results indicate that the 

internal validation procedure from the aggregated conformal predictors gives accurate estimates of 

the performance of the models also for new data. 

 

For AID 463 we also used the additional assay AID 364 as an external test set. The screening of AID 

364 was performed by the same PubChem depositor using the same assay protocol as AID 463 and 

should thus constitute a suitable way to evaluate model performance. The predictions made on 

the external set AID 364 and the internal validation of the model built on AID 463 are shown in 

Table 5. The validity slightly drops for the completely external test set, from 84 % to 77 % for the 

toxic class and from 82 % to 73 % for the non toxic class. Also the accuracy drops for the external 

data, for the toxic class from 80 % to 74 % and for the non-toxic class from 76 % to 65 %. The 

coverage on the other hand remained practically unchanged for the non-toxic class but increased 

for the toxic class from 80 % to 88 %. 

 
 
On AID 364 we are able to compare model performance to previous models which were also based 

on data from the Jurkat cell line. Guha and Schürer19 report a model built on PubChem dose 

response data with a sensitivity of 56 % and a specificity of 80 %, Langdon et al.
21 use PubChem 

percent inhibition data to develop a model with a sensitivity of 82 % and specificity of 35 %, and 

Chang et al.
22 report a sensitivity of 41 % and a specificity of 77 % for predictions on data from AID 

364 and AID 464. Although a direct comparison is not possible due to the different methods, 

descriptors, and data used, the results from previous studies show the difficulties in generating 

balanced models with similar predictive power for both the toxic and the non-toxic class, 

respectively. 
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The performance of cytotoxicity modelling has to be measured in relation to the noise often 

present in this kind of data potentially limiting the accuracy of the results.43 A further source of 

uncertainty in this study is that the compounds are classified to be either toxic or non-toxic by a 

hard cut-off, usually at around three times the assay standard deviation. However, the potential 

toxicity of a compound scoring just below the cut-off is not necessarily less than one scoring just 

above. 

 

Aside from the good predictive performance on these datasets, conformal prediction offers a 

number of advantages over traditional predictive models. Foremost, and mentioned above, is that 

the predictions have a guaranteed error rate, allowing for predictions to be made with confidence. 

Furthermore, the predictions can also serve to guide further experiments. Screening of additional 

compounds in the both category can increase the separation of the two classes and screening of 

compounds from the empty category can serve to expand the model. In our study random forest 

was used as the underlying machine learning algorithm but the conformal prediction framework 

allows any machine learning technique to be applied as long as it is paired with a suitable 

conformity function. This allows already validated modelling workflows to be rapidly converted 

into a conformal prediction framework as well, underlining the versatility of the method presented 

here. 

 

 
Conclusions 

In this study we report the prediction of compound cytotoxicity against 16 different cell lines. The 

data was obtained from high throughput screens deposited in PubChem. Despite a large imbalance 

between the number of toxic and non-toxic compounds the models built using conformal 

prediction with random forest were predictive for both classes. The internal validation of the 
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models was also shown to be indicative of the model performance on external data, aiding in the 

evaluation of the constructed models.  

 

Overall, our results show that conditional conformal prediction can be a useful tool for modelling 

the outcomes of large scale imbalanced cytotoxicity assays. The conditional conformal prediction 

framework combines two much desired features for this kind of modelling: the reliability of the 

results can be chosen to suit the needs of the decision making process, and highly imbalanced data 

is handled without additional considerations such as over- or undersampling that may cause 

modelling complications. Conformal prediction can also be used as a valuable guide to what 

compounds to screen next in order to improve the model. 
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Table 1. The studied cytotoxicity bioassay records from PubChem. Number of unique Bemis-

Murcko scaffolds for the toxic compounds in parenthesis. 

AID Tested compoundsa Toxic compoundsa Cell line Depositor 

463 56,465 706 (538) Jurkat Scripps Research Institute 
Molecular Screening Center 

1486 217,851 2,408 (1,672) Ba/F3 Scripps Research Institute 
Molecular Screening Center 

1825 290,605 2,259 (1,468) IEC-6 Scripps Research Institute 
Molecular Screening Center 

598 85,162 5,139 (3,694) H69AR Southern Research Molecular 
Libraries Screening Center 

648 86,121 924 (735) HUVEC Southern Research Molecular 
Libraries Screening Center 

719 84,841 937 (748) LL47 Southern Research Molecular 
Libraries Screening Center 

847 41,152 194 (184) SK-BR-3 Southern Research Molecular 
Libraries Screening Center 

903 52,783 338 (209) H1299 NIH Chemical Genomics Center 
504648 367,995 600 (499) A549 NIH Chemical Genomics Center 
588856 404,016 3,018 (2,183) HEPG2 NIH Chemical Genomics Center 
624418 386,360 524 (441) HEK293 NIH Chemical Genomics Center 
430 62,627 1,121 (920) HPDE-C7 Burnham Center for Chemical 

Genomics 
620 86,701 364 (287) HT1080 Burnham Center for Chemical 

Genomics 
602141 359,040 1,302 (956) KKLEB Burnham Center for Chemical 

Genomics 
2275 29,938 193 (145) BJeLR Broad Institute 
2717 299,957 3,181 (2,248) HMLE_sh_Ecad Broad Institute 
a Number of compounds after processing. 
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Table 2. Validity for models built using RDKit descriptors at different confidence levels. It can be 

seen that the predictions are valid for both the toxic and the non-toxic class. 

Conf. 
level 

 
70 

 
75 

 
80 

 
85 

 
90 

AID Toxic Non- 
toxic 

Toxic Non- 
toxic 

Toxic Non- 
toxic 

Toxic Non-
toxic 

Toxic Non-
toxic 

463 73.2 71.4 79.3 76.5 83.6 81.6 88.8 86.6 93.2 91.5 
1486 71.9 72.6 76.9 77.7 82.0 82.5 87.6 87.2 92.9 91.7 
1825 73.0 72.1 78.4 77.2 83.6 82.2 89.1 87.0 93.7 91.6 
598 72.1 70.5 76.9 75.4 82.3 80.6 87.0 85.7 91.5 90.4 
648 74.2 71.3 78.4 76.3 82.9 81.3 87.4 86.0 92.6 90.8 
719 71.8 71.4 78.4 76.5 82.5 81.5 87.7 86.2 92.0 91.0 
847 74.7 73.4 83.0 78.2 90.2 82.9 95.9 87.5 99.5 92.0 
903 71.9 72.6 75.7 77.4 79.9 82.3 86.4 86.8 93.5 91.2 
504648 71.7 77.1 77.5 81.1 83.5 85.8 89.5 89.1 97.2 92.7 
588856 72.2 72.3 77.2 77.2 82.1 82.0 88.1 86.7 93.0 91.2 
624418 71.8 77.2 78.1 81.9 84.0 86.5 92.9 89.8 98.9 93.2 
430 72.4 70.9 77.7 76.1 82.9 81.1 88.3 85.9 92.0 90.8 
620 73.9 73.4 79.1 78.1 84.9 82.9 89.0 87.5 94.2 91.9 
602141 72.1 73.4 78.3 78.2 83.1 82.5 88.9 87.1 93.9 91.5 
2275 68.4 70.9 78.2 76.4 81.9 81.5 87.6 86.4 92.2 91.2 
2717 72.3 71.3 77.0 76.3 82.7 81.2 87.3 86.0 91.9 90.7 
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Table 3. Coverage and accuracy per class at 70 and 80 % confidence levels. The accuracy is similar 

for the toxic and the non toxic classes. 

 70 %    80 %    

AID 
Accuracy 
non-toxic 

Coverage 
non-toxic 

Accuracy 
toxic 

Coverage 
toxic 

Accuracy 
non-toxic 

Coverage 
non-toxic 

Accuracy 
toxic 

Coverage 
toxic 

463 71.6 98.3 73.8 97.9 75.6 75.5 79.5 80.3 
1486 72.1 97.6 71.5 98.3 74.6 69.0 77.7 80.6 
1825 79.7 90.5 78.9 92.5 79.1 85.2 81.6 88.9 

598 75.6 93.2 77.0 93.7 77.4 85.8 79.4 85.9 
648 83.4 85.5 83.8 88.6 80.1 93.9 82.0 95.2 
719 77.0 92.8 77.6 92.5 78.0 84.3 79.9 87.0 
847 61.2 68.5 64.7 71.6 56.6 39.4 79.1 46.9 
903 84.1 86.3 76.7 93.8 79.7 87.2 78.7 94.4 

504648 88.7 86.9 82.9 86.5 84.9 93.9 82.7 94.7 
588856 79.2 91.3 77.9 92.7 78.8 85.1 79.9 89.4 
624418 84.2 91.7 79.7 90.1 84.1 84.9 81.6 87.0 

430 77.2 91.9 78.4 92.4 78.0 86.2 80.5 87.7 
620 73.6 97.0 73.9 97.0 76.9 74.0 80.6 77.7 

602141 85.6 85.8 84.7 85.2 81.6 95.0 82.4 95.5 
2275 88.5 80.1 86.8 78.8 82.0 97.5 81.8 96.9 
2717 85.8 83.2 86.8 83.3 81.1 98.8 82.5 98.7 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Page 23 of 27 Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



24 

 

 
Table 4. Accuracy of the single class predictions and coverage on randomly assigned test sets as 

well as from internal validation of the training data at the 80 % confidence level. The performance 

on the training data closely reflects the performance obtained for the test set. 

 Test data    Training Data 

AID 
Accuracy 
non-toxic 

Coverage 
non-toxic 

Accurac
y toxic 

Coverag
e toxic 

Accuracy 
non-toxic 

Coverage 
non-toxic 

Accuracy 
toxic 

Coverage 
toxic 

463 75.1 75.3 86.7 77.2 74.6 72.6 79.2 74.4 
1486 74.3 69.3 77.5 80.9 73.4 66.1 77.8 78.5 
1825 79.0 85.0 77.6 88.1 78.4 82.3 81.3 86.6 

598 77.3 85.9 79.2 87.0 76.9 84.2 78.4 84.8 
648 80.3 94.3 81.2 95.7 79.6 92.3 81.8 93.4 
719 76.9 84.3 76.5 87.4 77.9 84.1 80.1 84.6 
847 59.5 44.7 61.5 41.9 60.9 43.8 74.4 52.8 
903 78.6 85.9 77.8 92.6 79.1 85.5 80.8 92.6 

504648 84.8 92.9 87.6 90.5 84.3 91.1 82.2 90.5 
588856 78.9 86.1 77.6 90.6 78.7 84.5 79.5 88.5 
624418 84.4 85.0 86.3 88.0 83.4 80.9 82.0 85.3 

430 77.2 87.0 81.9 85.0 77.5 84.2 79.8 85.7 
620 76.7 75.2 75.5 79.0 75.6 70.2 78.7 76.2 

602141 81.9 95.4 83.3 92.7 81.2 92.8 82.3 93.3 
2275 80.9 99.1 85.0 100 81.6 97.2 80.4 96.7 
2717 80.9 99.7 79.1 99.2 80.8 98.4 82.2 98.9 
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Table 5. Results for AID 463 internal validation and prediction on external test set (AID 364) at the 

80 % confidence level. The performance drops slightly for the external data compared to the 

training data. 

AID Validity non-
toxic 

Validity Toxic Accuracy 
non-toxic 

Coverage 
non-toxic 

Accuracy 
toxic 

Coverage 
toxic 

463 
(internal) 81.6 83.6 75.6 75.5 79.5 80.3 

364 
(external) 73.2 77.1 64.5 75.6 73.8 87.5 
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Figure 1. Box plot showing the fraction of single class predictions for all the datasets at five 

different confidence levels. Whiskers extends up to 1.5 inter quartile range. The number of single 

class predictions is highest at the 75 % confidence level. 
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