This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
1-Butyl-1-methylpyrrolidinium bis{trifluoromethylsulfonyl}imide (PYR$_{14}$TFSI) + Methyl Cellulose (MC)

$\tau_{0} = 0.37$

Conductivity (σ) = 3×10^{-4} S/cm
“Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators”

Parameswara Rao Chinnam1, Vijay Chatare1, Sumanth Chereddy1, Ramya Mantravadi1, Michael Gau1, Joe Schwab2 and Stephanie L. Wunder*
1Department of Chemistry, Temple University, Philadelphia, PA 19122
2Hybrid Plastics, Hattiesburg, MS 39401

Abstract

Solid ion-gel separators for lithium or lithium ion batteries have been prepared with high lithium ion transference numbers ($t_{\text{Li}^+} = 0.36$), high room temperature ionic conductivities ($\sigma \rightarrow 10^{-3}$ S/cm), and moduli in the MPa range. These were formed from the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR$_{14}$TFSI), a polysilsesquioxane multi-ionic lithium salt that contains four phenyl groups and four pendent LiTFSI (4mer-(LiTFSI)$_4$) on a SiO$_{1.5}$ ring, and methyl cellulose (MC). After co-dissolution in dimethylsulfoxamide (DMSO) and evaporation of the DMSO, ion-gels were formed at different PYR$_{14}$TFSI/MC ratios but at constant 0.25 M 4mer-(LiTFSI)$_4$. Conductivity decreased but t_{Li^+} increased with increased MC content. Differential scanning calorimetry, dynamical mechanical analysis and X-ray diffraction data indicated that the PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ ion gels were micro-phase separated into a conductive PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ phase and one in which the MC was swollen with PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$. The high t_{Li^+} was attributed to the large size of the anion, its decreased ability as the result of its rigid structure to form ion aggregates, hydrophobic/hydrogen bonding interactions of the 4mer-(TFSI)$_4$ anion with MC, and participation of the MC hydroxyl groups in the solvation sphere of Li$^+$, weakening its interaction with the 4mer-(TFSI)$_4$ and TFSI anions. The high moduli were the result of the preserved semi-crystalline, high glass transition (T_g), fibrillar structure of MC in the ion gels.

Introduction

Room temperature ionic liquids (RTILs) have recently been investigated for lithium and lithium ion battery (LIB) applications due to their nonvolatility and thus lack of (or much reduced) flammability and increased safety2,5. RTILs can have ionic conductivities of 10^{-2} S/cm6. Since in LIBs the only electroactive species is the Li$^+$ ion, which is transported between the anode and the cathode, a lithium salt, LiX (X^- = anion), at 0.25- 1.2 M concentrations is added to the RTIL to form the electrolyte. Both LiX and the RTIL typically have the same anion, since the amount of dissolvable lithium is higher than in mixtures with dissimilar anions2. Disadvantages of RTILs and RTIL/LiXs include higher viscosities7,9 and thus lower ionic conductivities9 compared with commonly used aprotic electrolytes, with conductivity decreasing as the LiX concentration increases in the RTIL9. Further, RTIL/LiXs have low lithium ion transference numbers (t_{Li^+}), the fraction of the charge carried by the electroactive Li$^+$ ions. In LIBs, high values of t_{Li^+} are desirable to increase the power density of LIBs, while low values result in polarization in the electrolyte, and this gradient in ionic concentration can cause large internal resistances. Slow Li$^+$ diffusion has been attributed to the strong coordination of the small Li$^+$ cation to the anions, resulting in [Li(X)$_n$]$^{(n+1)-}$ aggregates$^{11-15}$, with diffusion occurring not by a vehicular mechanism (where the Li$^+$ ion moves with the whole coordination shell, in clusters of [Li(TFSI)$_n$]$^{(n-1)}$), but by a structure-diffusion mechanism (with disruption and formation of the coordination shells of Li$^+$ with TFSI anions15.

Page 2 of 19
and exchange of TFSI ligands believed to be only in the first coordination shell of Li$^+$)11, so that the lithium ion transference number (t_{Li^+}) is low. Diffusion coefficients, measured by pulse field gradient NMR, of ionic liquid anions, cations, and Li$^+$ cations all decrease as the mole fraction (x) of LiX increases, consistent with the conductivity decreases with increasing LiX10. Further, for LiX/RTIL mixtures, the diffusion coefficients decrease in the order $D_{\text{cation}} > D_{\text{anion}} > D_{Li^+}$7, 15, 18, 19. There have been several approaches to increasing t_{Li^+} in LiX/RTIL pairs, in particular by (i) decreasing the diffusion coefficients of the anions or cations of the RTIL; (ii) Increasing the number density of Li$^+$ ions; although increasing the mole fraction of LiX salt in the RTIL increases t_{Li^+} (to values of about 0.3)7, 10, 18-21, the concentration of the LiX salt in the RTILs is limited by their solubility and tendency of the mixtures to crystallize at high LiX concentrations19; (iii) addition of a third component, typically solvents with electronegative oxygens22-24, to RTIL/LiX solutions, in order to disrupt the coordination of Li$^+$ and the anion of the RTIL, resulting in increased Li$^+$ mobility and overall conductivity.

Nevertheless, the ionic conductivities of LiX/RTILs are still greater than those of solid polymer electrolytes (SPEs) ($< 10^{-5}$ S/cm), and lithium ion transference numbers in polymers such as polyethylene oxide (PEO)/LiX are also low ($t_{Li^+} \sim 0.2$). Further, compared with liquid electrolytes, SPEs have advantages such as processibility, ability to form thin, flexible films, and elimination of heavy containment materials that decrease gravimetric energy density. Therefore, when used in LIBs, it is preferable to incorporate the LiX/RTILs in the form of polymeric ion gels, with a view towards increasing the ionic conductivity of the polymer, maintaining sufficient mechanical strength to form flexible, thin membranes, but still retaining the safety advantages of SPEs when the liquid is a RTIL. Since a liquid is incorporated into the polymer, they are referred to as gel electrolytes, and when the liquid is a RTIL, they are often referred to as ion gels. The polymers in the RTIL/polymer/LiX systems that have been investigated include polyethylene oxide (PEO)25-28 and polyvinylidene fluoride (PVdF) or copolymers with hexafluoropropylene (PVdF-HFP)29, 30. Ion gels have also been prepared by solvent-free in situ polymerization of (3-aminopropyl)triethoxysilane (APTES) in PEO/RTIL/LiX31, by UV crosslinking32, and using functionalized silica nanoparticles33. Other methods include bicontinuous nanostructured polymer electrolyte membranes prepared by polymerization induced phase separation with components consisting of interpenetration and interpercolating bicontinuous domains of polyethylene oxide swollen with the RTIL/LiX, and highly cross-linked polystyrene34.

In this paper, we have synthesized a new multi-ionic lithium salt (Figure 1), all cis\{[(Ph$_4$Si)$_4$O$_4$]$_3$OR$_4$\}, R = Si(CH$_3$)$_2$(CH$_2$)$_3$NHSO$_2$CF$_3$, referred to here as 4mer-(LiTFSI)$_4$, and incorporated it into an ion gel composed of the RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR$_{14}$TFSI) and methyl cellulose (MC) as the gelator, with a view towards increasing t_{Li^+} and maintaining both high ionic conductivity and good mechanical properties in a solid electrolyte. These ion gels have been prepared using a method developed in our laboratory, in which gels are first formed using MC, N,N-dimethyl formamide (DMF) and a RTIL (PYR$_{14}$TFSI). After removal of the DMF, solid ion gels remain that contain as little as 3 wt% MC, with the MC in the form of semicrystalline nano-fibils that span the PYR$_{14}$TFSI liquid, possible linked by MC chains that link two or more fibrils1.

Here ion gels were prepared using dimethylsulfoxide (DMSO) as the cosolvent, since the 4mer-(LiTFSI)$_4$ is not soluble in DMF. The PYR$_{14}$TFSI was selected as the RTIL since: (i) it has a stability window of about 6V, sufficient for use in LIBs8; (ii) an imide anion, [N(CF$_3$SO$_2$)$_2$$_2$], that is most effective at the
formation of a solid electrolyte interface (SEI) layer; (iii) inhibits dendrite growth on Li metal35 and (iv) has the highest ionic conductivity when paired with the pyrrolidinium cation (PYR\textsubscript{14})36, due to the highly electron-with-drawing nature of the trifluoromethyl substituents and delocalization of the negative charge37. The large mass of the silsesquioxane moiety (MW 4mer-(LiTFSI)\textsubscript{4} = 1564 g/mol), with four of these pendant anions, is expected to have reduced mobility compared with the single TFSI- anion, thus decreasing its contribution to the conductivity, and increasing the contribution of the Li+ cation. Further, hydrophobic as well as hydrogen bonding interactions between MC, 4mer-(LiTFSI)\textsubscript{4} and TFSI- are expected to make more Li+ cations available for conduction.

![Figure 1. Two views of the single crystal structure of Si\textsubscript{8}S\textsubscript{4}O\textsubscript{16}N\textsubscript{4}F\textsubscript{12}C\textsubscript{48}H\textsubscript{72} = PhSi\textsubscript{4}O\textsubscript{4}[(Si(CH\textsubscript{3})\textsubscript{2}-R)]\textsubscript{4}, with R = -CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}NHSO\textsubscript{2}CF\textsubscript{3}, presented as a thermal ellipsoid plot. Ellipsoids are shown at 30\% probability. C atoms are shown as ball and stick models. C-H hydrogen atoms omitted for clarity.](image)

Experimental Section

Materials

The 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (C\textsubscript{11}H\textsubscript{20}F\textsubscript{6}N\textsubscript{2}O\textsubscript{4}S\textsubscript{2}, MW 422.41, CAS Number 223437-11-4), was used as received (Alfa Aesar). This compound will be referred to here as PYR\textsubscript{14}TFSI. In the literature, 1-butyl-1-methylpyrrolidinium is also referred to as PYR\textsubscript{14}, P\textsubscript{14} (where subscripts describe number of carbons in each alkyl substituent38), [BuMePy]+, [BMP], and [bmpyr]; and bis(trifluoromethylsulfonyl)imide is referred to as TFSI, TFSA, and [NTf\textsubscript{2}]. Methyl cellulose (MC) (Sigma-Aldrich, primary supplier DOW, METHOCEL A), average molecular weight of 86,000, 27.5-31.5 wt\% methoxy and a degree of substitution of 1.6-1.9 mol methoxy per mol cellulose (as specified by manufacturer) was dried at 70°C in vacuum before use. Bis(trifluoromethane)sulfonamide lithium salt (LiTFSI), anhydrous dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) were purchased from Sigma Aldrich and the DMSO and DMF further dried over molecular sieves before use. Lithium metal (0.75mm thick × 19mm wide) was purchased from Alfa-Aesar and stored in a desiccator inside an argon purged glove box.

\[\text{Figure 1. Two views of the single crystal structure of Si}_{8}\text{Si} (*)_{4}\text{O} (*)_{16}\text{N} (*)_{4}\text{F} (*)_{12}\text{C} (*)_{48}\text{H} (*)_{72} = \text{PhSi} (*)_{4}\text{O} (*)_{4}\text{[(Si(CH}_{3})_{2} (*)_{-}\text{R}] (*)_{4}, with R = -\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{NHSO} (*)_{2}\text{CF}_{3}, present as a thermal ellipsoid plot. Ellipsoida are shown at 30\% probability. C atoms are shown as ball and stick models. C-H hydrogen atoms omitted for clarity.}\]

- carbon; oxygen; fluorine; sulfur; nitrogen; silicon
Characterization

Differential scanning calorimetry (DSC) was obtained on a TA Instruments Hi-Res DSC 2920 at 10°C/min under N₂. Except as noted, samples were scanned from 25 °C to 100 °C, 100 °C to -100 °C, and -100 °C to 100 °C, with the second heating scans reported. The glass transition temperature, T_g, was taken as the midpoint of the heat capacity (C_p) versus temperature plots. **Thermogravimetric analysis (TGA)** data was obtained on a TA Instruments 2950 (TA Instruments, New Castle, DE), scanned from 25 to 800 °C at a rate of 10 °C/min under N₂. **Wide angle x-ray scattering (WAXS)** data was collected using a Bruker AXS D8 Discover X-ray diffractometer under N₂ purge. **Dynamic Mechanical Analysis (DMA)** of the blends was obtained with a TA Instruments DMA Q800 under N₂ purge. A pre-load force of 2.0 mN, a constant frequency of 1 Hz and a 15 µm amplitude were applied. Samples, ~ 12 mm length x 6.3 mm width x (0.013 - 0.1 mm) thickness, were equilibrated at 3100 °C for 10 minutes. Measurements were taken from -100 °C to 250 °C with a heating rate of 2 °C/min. **Electrochemical Measurements**: Ionic conductivities were measured by AC impedance spectroscopy using a Gamry potentiostat/galvanostat/ZRA (model interface 1000) in the frequency range from 0.01 to 1 MHz. Control of the equipment was through Gamry framework software and data was analyzed with Gamry Echem analysis software purchased from Gamry. Temperature dependent conductivities were obtained in a homemade electrochemical cell (1 cm² stainless steel blocking electrodes) that was thermostatted in the oven of a cryogenic liquid N₂ gas chromatograph (GC). The electrochemical cell was placed in the oven of a GC and annealed overnight at 90°C. Conductivity measurements were made on the cooling cycle and heating cycles (the resistances on the heating and cooling cycles were very close) and the heating cycles are reported. At each temperature above RT, the sample was equilibrated for about 30 minutes. Conductivities, σ (mS/cm), were obtained using σ = (l /A)·(1/R), where l is the separator thickness in cm, A is the separator cross-sectional area in cm² and R is the bulk resistance in mΩ. **Interfacial resistance and lithium ion transport numbers (t_{Li}^+)** were obtained using the appropriate electrolyte film with symmetric nonblocking lithium electrodes at 60 °C. The interfacial resistance was measured under open circuit potential. The lithium ion transference number was obtained using the modified d.c./a.c., steady-state current method, which contains corrections for slow diffusion coefficients of the ionic species, slow electrode kinetics and passivation films formed on the electrodes: 10

\[
t_{Li}^+ = I_{ss} (\Delta V - I_s R_o)/I_s (\Delta V - I_s R_{ss})
\]

or the same but multiplied by R_{ss}/R_o (however, R_{ss} ~ R_o). A DC pulse (DV) of 10 mV was used to polarize the cell, and the initial current, I_o, resistance, R_o and final, steady state, I_{ss}, R_{ss} values measured. I_s originates from the migration of both the anions and cations, while I_{ss} is due to the migration of only the cations. Data was fit to the appropriate equivalent circuits using Echem analyst software. **Linear sweep voltammetry** was used to determine the electrochemical stability window of PYR14TFSI/MC/4mer-(LiTFSI)₄ = 80/20/0.20M at 60 °C using a stainless steel working electrode and a lithium counter/reference electrode, and the voltage was swept from 0.7 to 7.0 V at a rate of 1 mV s⁻¹.

Materials and Methods

Synthesis of 4mer-(LiTFSI)₄ = PhSi₃O₄[(Si(CH₃)₂-R)]₄ with **R** = -CH₂CH₂CH₃NLiSO₂CF₃

The synthesis of the PhSi₃O₄[(Si(CH₃)₂-H)]₄ (4mer-(SiH)₄) has been described previously. The synthesis of PhSi₃O₄[(Si(CH₃)₂-R)]₄, R = -CH₂CH₂CH₃NLiSO₂CF₃ is presented in Scheme I. The details of the synthesis of allyltrifluoromethylsulfonamide (1), the hydrosilylation of allyltrifluoromethylsulfonamide with 4mer-(SiH)₄ to form PhSi₃O₄[(Si(CH₃)₂-R)]₄, R = -CH₂CH₂CH₃NLiSO₂CF₃ (2), and the conversion to the lithium salt (3) are presented in the SI and Figures S1-S4.
Preparation of PYR\textsubscript{14}TFSI/MC/4mer-(LiTFSI)\textsubscript{4} and PYR\textsubscript{14}TFSI/MC/LiTFSI ion gels

Sample preparation and storage were in a N\textsubscript{2} or argon purged M Braun glove box. To prepare the PYR\textsubscript{14}TFSI/MC/4mer-(LiTFSI)\textsubscript{4} ion-gels, calculated amounts of MC (2 wt/v %), 4mer-(LiTFSI)\textsubscript{4} and PYR\textsubscript{14}TFSI were co-dissolved in DMSO at room temperature (RT). This solution was left stirring overnight in the glove box and the viscous solution cast on Teflon™ plates. The DMSO was evaporated first at room temperature, then on a hot plate inside the glove box and finally in a vacuum oven at 110-120 °C for ~ 48h to remove residual DMSO; confirmation of removal of residual DMSO was by TGA. The solutions did not gel as observed when DMF was used as the solvent \footnote{Reaction Scheme I}. Instead, the films only became more viscous as the DMSO was removed, until they finally solidified upon complete removal of DMSO. Films with PYR\textsubscript{14}TFSI/MC/4mer-(LiTFSI)\textsubscript{4} = 60/40/0, 70/30/0, 80/20/0, 90/10/0, 60/40/0.20, 70/30/0.20, 80/20/0.20 and 90/10/0.20 were prepared.

For comparison, PYR\textsubscript{14}TFSI/MC/LiTFSI = 90/10/0.20M ion-gels were prepared by co-dissolution of the constituents in DMF at 90 °C. The liquid solution was cast onto Teflon™ plates in the glove box, which gelled upon cooling \footnote{Reaction Scheme I}, and the DMF was evacuated at room temperature (RT), followed by heat treatment in vacuum at 90 °C to remove residual DMF. The labile proton on DMF did not displace Li+ in LiTFSI,
but did so with the 4mer-(LiTFSI)$_d$, so DMF could not be used to prepare PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_d$ ion-gels.

Results and Discussion

Characterization of 4mer-(LiTFSI)$_d$

It was not possible to obtain a single crystal of the 4mer-(LiTFSI)$_d$ (Product 3), which remained amorphous (Figure S3). However, the precursor amide (Product 2), although initially a viscous liquid, crystallized after storage in the refrigerator. Both single crystal and powder x-ray diffraction data were obtained (which were distinct from the starting material and did not contain any LiTFSI). The generated powder pattern from the single crystal data agreed well with the experimental powder pattern (Figure S4). The images (Figure 1) show that the phenyl groups are preferentially on one side of a pancake like structure, held apart by the SiO$_{1.5}$ ring, with the NH(SO$_2$)-CF$_3$ groups as far away from each other as possible.

Thermal Analysis: TGA and DSC

Maximum degradation temperatures (T_d^{max}) obtained from the DTGA (Figure 2, TGA in Figure S5) are summarized in Table 1. The TGA data indicate that the degradation temperatures of the ion gels are all $> 300 \, ^\circ\text{C}$ and are determined by the MC component, which has a considerably lower T_d^{max} than the PYR$_{14}$TFSI. The major degradation peak for the 4mer-(LiTFSI)$_d$ ($T_d = 266 \, ^\circ\text{C}$) is lower than for LiTFSI ($T_d = 400 \, ^\circ\text{C}$), and its pattern of thermal degradation is more complex compared with the single degradation peak for the LiTFSI, and is not completely decomposed due to pyrolysis and residual ash of the phenyl groups and SiO$_{1.5}$. (Figure S6).

Addition of 0.20M 4mer-(LiTFSI)$_d$ to PYR$_{14}$TFSI eliminates the T_d^{max} of pure 4mer-(LiTFSI)$_d$ and increases T_d^{max} of PYR$_{14}$TFSI by 23$^\circ$C (from 452 to 475 $^\circ$C), indicating that the dissolution of the 4mer-(LiTFSI)$_d$ in PYR$_{14}$TFSI prevents its degradation at lower temperatures. Increasing addition of MC to PYR$_{14}$TFSI decreases T_d^{max} of PYR$_{14}$TFSI by 10 $^\circ$C (from 452 to 442 $^\circ$C); this small change is consistent with the immiscibility of MC in PYR$_{14}$TFSI. Addition of MC to PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ decreases T_d^{max} of PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ by 33 $^\circ$C (from 475 $^\circ$C to 442 $^\circ$C). These results suggest that the 4mer-(LiTFSI)$_d$ makes the MC and PYR$_{14}$TFSI more compatible. The effect on the degradation of MC is that its T_d^{max} decreases by an average of 29 $^\circ$C when mixed with PYR$_{14}$TFSI, and by an average of 12.5 $^\circ$C when mixed with PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ (Note: this lower decrease occurs because PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ has a higher initial T_d^{max} than PYR$_{14}$TFSI by 23 $^\circ$C). As discussed below, DSC, DMA and x-ray data suggest that PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_d$ is micro-phase separated into regions composed predominantly of PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ and regions where the MC fibrils are swollen with PYR$_{14}$TFSI or PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$. The swelling of the MC with PYR$_{14}$TFSI or PYR$_{14}$TFSI/4mer-(LiTFSI)$_d$ may make the MC more accessible to degradation.
Figure 2. Thermal analysis and X-ray diffraction data for 4mer-(LiTFSI)$_4$, PYR$_{14}$TFSI/MC and PYR$_{14}$TFSI/MC/0.25M: (i) TGA and DTGA thermograms; (ii) DSC traces of PYR$_{14}$TFSI during heating and cooling and upon addition of MC and MC/0.25M 4mer-(LiTFSI)$_4$; 80/20 PYR$_{14}$TFSI/MC/0.25M 4mer-(LiTFSI)$_4$ expanded 200% to show slight crystallization; (iii) X-ray diffraction data of neat MC, PYR$_{14}$TFSI, 4mer-(LiTFSI)$_4$ and blends of PYR$_{14}$TFSI/MC/0.25M 4mer-(LiTFSI)$_4$ at -173 °C.
Table 1. T_d^{max}, T_g and X-ray Diffraction Peaks for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$

<table>
<thead>
<tr>
<th>Sample</th>
<th>T_d^{max} ($^\circ$C)</th>
<th>T_g</th>
<th>Peak 1 ($^\circ$)</th>
<th>Peak 2 ($^\circ$)</th>
<th>Peak 3 ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4mer-(LiTFSI)4 MC PYR${14}$TFSI PYR$_{14}$TFSI MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYR$_{14}$TFSI/MC/4merLiTFSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0/0.20M</td>
<td>266</td>
<td></td>
<td>4.61*</td>
<td>8.91*</td>
<td>19.01*</td>
</tr>
<tr>
<td>100/0/0</td>
<td>-</td>
<td>452</td>
<td>-86.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0/100/0</td>
<td>-</td>
<td>353</td>
<td>-63†</td>
<td>201</td>
<td>8.57</td>
</tr>
<tr>
<td>100/0/0.20M</td>
<td>-</td>
<td>475</td>
<td>-83.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>90/10/0</td>
<td>-</td>
<td>325</td>
<td>452</td>
<td>-85.5</td>
<td>172</td>
</tr>
<tr>
<td>80/20/0</td>
<td>-</td>
<td>316</td>
<td>448</td>
<td>-84.5</td>
<td>-75</td>
</tr>
<tr>
<td>70/30/0</td>
<td>-</td>
<td>330</td>
<td>444</td>
<td>-85.2</td>
<td>-69</td>
</tr>
<tr>
<td>60/40/0</td>
<td>-</td>
<td>325</td>
<td>442</td>
<td>-86.0</td>
<td>-73</td>
</tr>
<tr>
<td>100/0/0.20M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/10/0.20M</td>
<td>-</td>
<td>336</td>
<td>465</td>
<td>-83.2</td>
<td>165</td>
</tr>
<tr>
<td>80/20/0.20M</td>
<td>-</td>
<td>342</td>
<td>460</td>
<td>-84.2</td>
<td>-71</td>
</tr>
<tr>
<td>70/30/0.20M</td>
<td>-</td>
<td>344</td>
<td>456</td>
<td>-85.8</td>
<td>-70</td>
</tr>
<tr>
<td>60/40/0.20M</td>
<td>-</td>
<td>340</td>
<td>453</td>
<td>-85.4</td>
<td>-75</td>
</tr>
</tbody>
</table>

*These are the peaks for 4merLiTFSI; †secondary transition of MC

DSC data (Figure 2) indicate, as previously observed\cite{41}, that the neat PYR$_{14}$TFSI supercools, and thus crystallizes and remelts upon heating. Addition of 0.20 M 4mer-(LiTFSI)$_4$ suppresses the crystallization and almost completely suppresses the melt endotherm of PYR$_{14}$TFSI. When compared with previously reported PYR$_{14}$TFSI/LiTFSI data\cite{41}, and similar data obtained here (SI Figure 7), the 4mer-(LiTFSI)$_4$ is more effective at suppressing the PYR$_{14}$TFSI melt endotherm. Addition of increasing amounts of MC to PYR$_{14}$TFSI/0.20M 4mer-(LiTFSI)$_4$ almost completely suppress crystallization at PYR$_{14}$TFSI/MC < 80/20 (there is a very small crystallization peak in the 80/20 sample shown as an insert). MC by itself is less effective at the suppression than 4mer-(LiTFSI)$_4$. In fact, comparison of PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ = 100/0/0.20M with 90/10/0.20M shows that the suppression of crystallinity is more effective without the MC. This suggests that there may be competition/sharing of the 4mer-(LiTFSI)$_4$ between the MC and PYR$_{14}$TFSI, so that in the mixed (90/10/0.20M) system there is less 4mer-(LiTFSI)$_4$ to disrupt PYR$_{14}$TFSI crystallization.
The expanded DSC data at low temperature (Figure S8 and Table 1) show that T_g of the PYR$_{14}$TFSI increases from -86.6 °C to -83.6 °C with addition of 0.20M 4mer-(LiTFSI)$_4$, and that separate addition of MC to PYR$_{14}$TFSI increases the T_g by a smaller amount (~ 1 °C), to an average of -85.3 °C. Addition of both MC and 0.20 M 4mer-(LiTFSI)$_4$ increases T_g monotonically to -85.4 °C. Although these T_g effects are small, they indicate that the 4mer-(LiTFSI)$_4$ has a greater interaction with the PYR$_{14}$TFSI than does the MC, as might be expected, since the 4mer-(LiTFSI)$_4$ is actually dissolved in the PYR$_{14}$TFSI, while MC and PYR$_{14}$TFSI are not miscible.

X-ray diffraction

X-ray diffraction data (Figure 2, Table 1) indicate that PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ ion gels are phase separated. The 4mer-(LiTFSI)$_4$ is incorporated at such low concentration (0.20 M) that its x-ray signature (amorphous, since it is dissolved) could not be observed in the blends. The MC has two diffraction peaks at 8.57° and 21.09° (vertical lines --- are guides to the eye)1. The 8.57° peak is separate from the PYR$_{14}$TFSI peak and thus can be used to observe the persistence of the MC semi-crystalline regions for all the compositions, with and without 4mer-(LiTFSI)$_4$, although with decreasing intensity as its percentage in the blends decreases. PYR$_{14}$TFSI exhibits two broad peaks at 12.6° and 20.9° (vertical •••• lines are guides to the eye). The 12.6° peak is isolated from any MC peaks and its relative intensity increases compared with the 8.57° peak of MC as its percentage in the blends increases. Although the 21.09° and 20.9° peaks of MC and PYR$_{14}$TFSI are close, there is a shift in the peak maxima towards 21.09° upon increased MC content in the blends. The persistence of the separate MC and PYR$_{14}$TFSI (with or without 0.20M 4mer-(LiTFSI)$_4$) peaks in the x-ray diffraction data indicate that there is phase separation in the PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ ion-gels. This is confirmed by x-ray diffraction data for samples cooled to -100 °C, heated to -40 °C (Figure S9), so that the PYR$_{14}$TFSI crystallinity is maintained and observed clearly as a separate phase in the ion-gels.

Mechanical Property Data

Tan δ data (Figure 3, Table 1) show that the low temperature glass transition for PYR$_{14}$TFSI or PYR$_{14}$TFSI/0.20M 4mer-(LiTFSI)$_4$ in the blends with MC occurs at < -72 °C> for samples with and without 4mer-(LiTFSI)$_4$, which is not unexpected since there was very little shift observed by DSC (Table 1, Figure S8, T_g ~ - 85 °C). This strongly suggests that the PYR$_{14}$TFSI and PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ is phase separated in these ion-gels. Previously, we prepared PYR$_{14}$TFSI/MC ion-gels from DMF, which gelled upon cooling, and where the DMF was removed from the gel at RT. In that work, T_g of the PYR$_{14}$TFSI also did not shift from its neat value1. The T_g of MC in the ion-gel was also the same as the T_g of neat MC1. However, in the PYR$_{14}$TFSI/MC blends cast from DMSO (which did not gel upon cooling) the T_g of MC decreases from its value of 201 °C to lower values that decrease with increasing PYR$_{14}$TFSI content. This shift to lower temperatures is slightly greater in the PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ blends, suggesting that the 4mer-(LiTFSI)$_4$ increases the compatibility/interactions of the components. Thus, although the bulk of the PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ is in a separate phase (as observed by the separate T_g of the PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ in the DSC and tan δ data (Table 1), the MC is affected by the presence of PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ as manifest by its reduced T_g. We suggest that this results from swelling of the MC fibrils12 with the PYR$_{14}$TFSI or PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$. As
discussed below, the presence of lithium salt can increase the compatibility of the MC and PYR$_{14}$TFSI (and thus lower the T_g of the MC).

![Figure 3](image)

Figure 3. Tan δ and storage modulus data. For the 80/20 composition, the crystallization and melt of the 4mer-(LiTFSI)$_4$ (as also seen in the DSC, **Figure 2**) can be observed. The peak at –63 °C may be due to a secondary relaxation in MC1.

Storage moduli data (**Figure 3**) for the blends show as expected that addition of increasing amounts of the PYR$_{14}$TFSI ionic liquid to the MC decreases the moduli of the blends. When 0.20 M 4mer-(LiTFSI)$_4$ is added (seen more clearly in the 60/40 and 7/30 compositions), the moduli with salt are decreased compared with the blends without 4mer-(LiTFSI)$_4$. Since the moduli are determined by the MC component, the swelling of the MC fibrils (as observed by the decreased MC T_g when 0.20 M 4mer-(LiTFSI)$_4$ was added to the PYR$_{14}$TFSI) also accounts for the drop in moduli with added salt. For all compositions, there is a drop-off in the storage moduli at T_g of the MC. However, the moduli remain in the MPa range to temperatures of 150 °C as tabulated in **Table 2**. This is in contrast with the rubbery mechanical properties found for many ion gels, e.g. RTILs gelled with silica NPs33.

Table 2. Conductivity (σ), modulus (E’) and lithium ion transference number (t_{Li^+}) as a function to PYR_{14}TFSI/MC/4mer-(LiTFSI)$_4$ composition

<table>
<thead>
<tr>
<th>Sample</th>
<th>σ mS/cm 30°C</th>
<th>E’ MPa 30°C</th>
<th>σ mS/cm 60°C</th>
<th>t_{Li^+}</th>
<th>E’ MPa 60°C</th>
<th>σ mS/cm 90°C</th>
<th>E’ MPa 90°C</th>
<th>E’ MPa 150 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/100/0</td>
<td>7973</td>
<td>7298</td>
<td>6446</td>
<td>4213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60/40/0</td>
<td>0.04</td>
<td>3027</td>
<td>0.14</td>
<td>2398</td>
<td>0.45</td>
<td>1888</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>70/30/0</td>
<td>0.12</td>
<td>975</td>
<td>0.3</td>
<td>740</td>
<td>0.57</td>
<td>579</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>80/20/0</td>
<td>1.0</td>
<td>654</td>
<td>1.6</td>
<td>533</td>
<td>2.9</td>
<td>414</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>90/10/0</td>
<td>1.3</td>
<td>109</td>
<td>3.2</td>
<td>81</td>
<td>5.6</td>
<td>69</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>100/0/0</td>
<td>4.3</td>
<td>9.8</td>
<td></td>
<td></td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60/40/0.20M</td>
<td>0.005</td>
<td>1884</td>
<td>0.006</td>
<td>0.39</td>
<td>1568</td>
<td>0.008</td>
<td>1283</td>
<td>464</td>
</tr>
<tr>
<td>70/30/0.20M</td>
<td>0.09</td>
<td>590</td>
<td>0.19</td>
<td>0.36</td>
<td>447</td>
<td>0.33</td>
<td>367</td>
<td>128</td>
</tr>
<tr>
<td>80/20/0.20M</td>
<td>0.3</td>
<td>570</td>
<td>0.7</td>
<td>0.35</td>
<td>1107</td>
<td>1.4</td>
<td>985</td>
<td>312</td>
</tr>
<tr>
<td>90/10/0.20M</td>
<td>0.6</td>
<td>198</td>
<td>1.3</td>
<td>0.19</td>
<td>115</td>
<td>1.9</td>
<td>76</td>
<td>17</td>
</tr>
<tr>
<td>100/0/0.20</td>
<td>3.3</td>
<td>7.5</td>
<td>0.09</td>
<td></td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrochemical Data

Conductivity data (Figure 4 and Table 2) show, as previously observed, that the conductivity decreases with addition of lithium salt (here 4mer-(LiTFSI)$_4$) and with increasing amount of MC in the blends1. Addition of 0.20M 4mer-(LiTFSI)$_4$ to pure PYR$_{14}$TFSI has minimal effect on the conductivity. This has been attributed, in other LiX/RTILs, to the small contribution of the LiX ions to the total number of ions in the solution43. Addition of MC to PYR$_{14}$TFSI or MC to PYR$_{14}$TFSI/0.20M 4mer-(LiTFSI)$_4$ results in much greater reductions (by > 1 order of magnitude) in conductivity compared with addition of 0.20M 4mer-(LiTFSI)$_4$ to PYR$_{14}$TFSI.

Mixtures of PYR$_{14}$TFSI/MC/LiTFSI and PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ at the same molarity (0.20 M Li$^+$) and MC composition have similar ionic conductivity (Figure S10). In single ion conductors (SICs), low ionic conductivities have been attributed to ion aggregation, much greater than observed in the case of the corresponding LiX anions. Here, the similar conductivities for LiTFSI and 4mer-(LiTFSI)$_4$ in the ion gels indicate that whatever ion pairing occurs is the same for both salts. Unlike SICs in which the pendant anion is attached to a flexible polymer backbone, so that ionic aggregation can occur, here the anions are attached to a rigid SiO$_{1.5}$ structure (Figure 1) that inhibits this type of association.

The stability window (Figure 4), measured for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ = 80/20/0.20M using a stainless steel working electrode and lithium as the counter and reference electrodes was 0.8V to 5V, with a threshold current of 50 µamperes/cm2. This is above the 4V stability range necessary in practical LIBs, although less than previously reported for battery grade PYR$_{14}$TFSI (~ 6V)6, with little degradation observed due to the MC or 4mer-(LiTFSI)$_4$. The interfacial resistance (Figure 4) increases for the first 36 hours, decreases until 89 hours and then stabilizes at 89 hours, which was further confirmed at 160 hours (not shown). These trends are often observed as the SEI layer on Li metal is formed, partially dissolves and stabilizes; no attempt was made to investigate the composition of the SEI.
Lithium ion transference numbers (Table 2) were similar for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ ($t_{\text{Li}}^+ = 0.09$) and PYR$_{14}$TFSI/LiTFSI ($t_{\text{Li}}^+ = 0.1$) (Table S1) at 0.20M LiX. The value of t_{Li}^+ obtained for 0.20M LiTFSI in PYR$_{14}$TFSI was slightly higher than that measured by PFG-NMR ($t_{\text{Li}}^+ \approx 0.07$)18. Reported values of t_{Li}^+ for RTIL/LiX pairs, from PFG-NMR (where the individual self-diffusion coefficients of the anions and cations are measured)$^7, 10, 12, 18$ or dc polarization$^{21, 30, 44}$ (using Li metal as non-blocking electrodes$^{45, 46}$) methods are in the range of $t_{\text{Li}}^+ = 0.023$ to 0.132$^7, 10, 12, 18$. Larger anions with greater charge delocalization such as 4mer-(TFSI)$_4$ or TFSI$^+$ enhance t_{Li}^+ by decreasing ion pairs and aggregates,

![Figure 4. Conductivity versus 1000/T (K$^{-1}$) for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ as a function of composition; Electrochemical stability window and interfacial resistance (at 60 °C) for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ = 80/20/0.25M](image)
thus leading to higher lithium ion diffusivities. Although increased molarity of LiX in RTILs can increase t_{Li}^+, this was not possible for PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$, since solubility problems were observed at 0.5M 4mer-(LiTFSI)$_4$.

With addition of MC, t_{Li}^+ increased and levelled off at $t_{\text{Li}}^+ \approx 0.36$ for PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ = 80/20/0.20M. In the case of PYR$_{14}$TFSI/MC/LiTFSI = 80/20/0.20M, $t_{\text{Li}}^+ = 0.18$, half that of the 4mer-(LiTFSI)$_4$ (Table S1). Since the t_{Li}^+ values were similar in the neat liquids, this suggests that the interactions of 4mer-(TFSI)$_4$ anions or the TFSI$^-$ anions of PYR$_{14}$TFSI with the MC play a role in retarding migration of the anions, effectively increasing t_{Li}^+, and further that the interaction is greater for the 4mer-(TFSI)$_4$. Polymers have previously been observed to increase t_{Li}^+ by interacting with the anions, slowing their motions, and decreasing anion interactions with the Li ions, thus increasing the number of free Li$^+$ available for conduction. For the PYR$_{14}$TFSI/0.20M LiTFSI investigated here, indirect evidence of interactions between the components is suggested by the DSC, DMA and X-ray diffraction data. In addition, cellulose solubility studies shed some insight on the interactions that occur in these systems.

Studies of cellulose indicate that dissolution depends on the ability of solvents to disrupt the intra- and inter-molecular hydrogen bond network and the hydrophobic interactions between cellulose molecules. Cellulose is regarded as amphiphilic, with the equatorial direction of the D-glucopyranose ring having a hydrophilic character (since all three OH groups are located on the equatorial position of the ring) and the axial direction have a hydrophobic character (since the C-H hydrogens are located on the axial positions of the ring). Further, dimethyl acetamide/LiCl (DMAc/LiCl) is a well-known mixed inorganic/organic solvent for cellulose. The mechanism of solubility of cellulose in LiCl/DMAc is not fully understood, but it is believed that the lithium ions are linked with the carbonyl of DMAc. The Cl$^-$ anion (due to its basicity) then interferes with the inter- and intra-hydrogen bonds in cellulose, possibly complexing three OH groups of cellulose, and resulting in an anionically charged polymer, with [Li-DMAc] as the counterion, followed by the exchange of DMAc in the lithium coordination sphere by cellulose hydroxyl groups. This polyelectrolyte effect is also observed in the tetra-n-butylammonium fluoride (TBAF)/DMSO system, where F- binds to the cellulose and expands the chain due to charge repulsion and NMR evidence indicates that the F$^-$ act as hydrogen bond acceptors of the cellulose OH groups. In general, small, strong polarizing cations (e.g. Li$^+$) and large polarizable anions are found to interact strongly with cellulose. 7Li NMR evidence supports the direct interaction between Li and cellulose hydroxyl groups, while large polarizable anions are effectively hydrophobic and are enriched at the hydrophobic surface of cellulose.

Although these results have been obtained for cellulose, analogies can be made with MC, since the axial plane is still “hydrophobic” and the equatorial plane contains fewer OH groups and thus less intra- and inter-molecular hydrogen bonding (1.6-1.9 of the (equatorial) OH are substituted with methyl groups). In the case of PYR$_{14}$TFSI/MC/4mer-(LiTFSI)$_4$ in DMSO, by analogy with the LiCl/DMAc, the Li$^+$ would initially be bound with the carbonyl of DMSO, leaving the large, polarizable 4mer-(TFSI)$_4$ or TFSI$^-$ anions to hydrogen bond with any free OH groups on MC or interact with them by hydrophobic association. Lewis acid-base interactions between surface (OH) sites on inorganic fillers incorporated into RTILs with the X$^-$ anions of the lithium salt have also been shown to increase the fraction of Li$^+$ cations available for conduction, as observed for silica (SiO$_2$)$_{30}$ ($t_{\text{Li}}^+ = 0.1$- 0.27), polyhedral oligomeric silsesquioxanes (POSS) with hydroxyl groups (POSS-OH)$_{55}$ ($t_{\text{Li}}^+ = 0.20$- 0.49), and TiO$_2$ nanotubes (t$_{\text{Li}}^+$...
The large, bulky 1-butyl-1-methylpyrrolidinium (PYR$_{14}^+$) cation will not have easy access (steric restrictions) to the O of the cellulose hydroxyls, as these cations have been shown to only weakly coordinate to the anions due to the steric shielding of the positive charge54. It is worth noting that the pyrrolidinium cation is not one that dissolves cellulose47.

The smaller Li$^+$ ion on the other hand, can have access to the hydroxyls, which become part of the Li$^+$ ion coordination shell with DMSO (which is eventually completely removed), weakening the association of Li$^+$ to 4mer-(TFSI)$_4$ or TFSI. In PEO/PYR$_{14}$TFSI/LiTFSI polymer electrolytes, Raman data suggest that there is mixed Li$^+$ coordination to both PEO and TFSI55 and for the cationic polymeric ionic liquid (PIL), poly(diallyldimethylammonium bis(trifluoromethyl sulfonyl) imide) (PDADMATFSI), the polymer also was shown to interact with the anion coordination shell, reducing Li$^+$ ion-TFSI anion interactions56.

The PYR$_{14}$TFSI/MC/0.20M 4mer-(LiTFSI)$_4$ ion gels thus have both high t_{Li^+} and high ionic conductivities, which is unusual for RTIL ion gels. In the case of PEO/BMPyTFSI/LiTFSI (BMPyTFSI = 1-butyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide), t_{Li^+} was found to decrease and ionic conductivity to increase with increasing mole fraction of the ionic liquid33. While values of t_{Li^+} were high, conductivities (σ) were low, e.g. t_{Li^+} = 0.363, σ = 2.1 x 10$^{-6}$ S/cm to t_{Li^+} = 0.150, σ = 6.9 x 10$^{-5}$ S/cm. In P$_{13}$TFSI/LiTFSI/PVDF-HFP (P$_{13}$TFSI = 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, PVDF-HFP = poly(vinylidene-co-hexafluoropropylene), t_{Li^+} are low (t_{Li^+} = 0.034 at 1M LiTFSI)57. In the case of cationic ILs tethered to ZrO$_2$ nanoparticles, addition of LiTFSI resulted in a large t_{Li^+} of 0.35, possibly due to immobilization of the IL cations by the ZrO$_2$ nanoparticle core, which decreases their contribution to the ionic conduction (as well as increasing the ionic conductivity), but conductivities were again low (10$^{-5}$ S/cm)58.

A final comment is that in single ion conductors (SICs), low ionic conductivities have been attributed to ion aggregation, much greater than observed in the case of the corresponding LiX anions. Here, the conductivities are the same for neat LiTFSI and the 4mer-(LiTFSI)$_4$, indicating that whatever ion pairing occurs is the same for both salts. Unlike SICs in which the pendant anion is attached to a flexible polymer backbone, so that ionic aggregates can occur, here the anions are attached to a rigid structure, the SiO$_{1.5}$ cage (Figure 1) that prevents this type of association.

Conclusions

Blends of 4mer-(LiTFSI)$_4$ can be formulated into ion-gel electrolytes by co-dissolution with MC and PYR$_{14}$TFSI in DMSO and evaporation of the DMSO. The DSC, X-ray diffraction and DMA data suggest that the ion gels are micro-phase separated into a PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ rich phase and a semicrystalline MC phase swollen with PYR$_{14}$TFSI/4mer-(LiTFSI)$_4$ that decreases its T_g. What is interesting about these materials is that both ionic conductivity and lithium ion transference numbers can be simultaneously enhanced while maintaining structurally strong films with moduli in the MPa range. The PYR$_{14}$TFSI/MC/0.20M 4mer-(LiTFSI)$_4$ ion gels had combined high RT ionic conductivities (> 10$^{-4}$ S/cm) and transference numbers (t_{Li^+} = 0.35). At the same Li$^+$ molarity, ion gels prepared with either LiTFSI or 4mer-(LiTFSI)$_4$ have very similar conductivities. Unlike what is sometimes observed in the case of single ion conductors, the conductivity does not decrease as the t_{Li^+} increases. However, the 4mer-(LiTFSI)$_4$, with its large (1242 g/mol) anion, has t_{Li^+}s that are factors of 2 greater than the LiTFSI (t_{Li^+} = 0.295, 0.459).
0.18), so that a greater fraction of the charge is carried by the Li\(^+\) cation rather than the anion. By analogy with cellulose solubility studies, we propose that this is due to hydrophobic/H-bonding interactions of the 4mer-(TFSI)\(_4\) anion with MC as well as hydrogen bonding of Li\(^+\) with the OH of MC and thus participation of the MC in the solvation sphere of Li\(^+\). The separators have high thermal stability, dictated by the degradation temperature of the MC and the selected Li salt, since the thermal decomposition of the PYR\(_14\)TFSI is > 400 °C. They also have excellent mechanical properties, with RT moduli, E’ > 100 MPa for T < 125 °C, which contrasts with the rubbery mechanical properties found for many ion gels.

Acknowledgements

Financial support through NSF grants NSF DMR 1207221 and CBET 1437814 is gratefully acknowledged.

Author Information

Corresponding Author

*E-mail: slwunder@temple.edu

Notes

The authors declare no competing financial interest.

References

