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We experimentally and numerically study the role of geometry for the mechanics of biholar metamaterials,
which are quasi-2D slabs of rubber patterned by circular holes of two alternating sizes. We recently showed
how the response to uniaxial compression of these metamaterials can be programmed by lateral confine-

ment . In particular, there is a range of confining strains &, for which the resistance to compression becomes
non-trivial - non-monotonic or hysteretic - in a range of compressive strains €,. Here we show how the di-
mensionless geometrical parameters ¢ and ), which characterize the the wall thickness and size ratio of the
holes that pattern these metamaterials, can significantly tune these ranges over a wide range. We study the
behavior for the limiting cases where the wall thickness ¢ and the size ratio ¥ become large, and discuss the
new physics that arises there. Away from these extreme limits, the variation of the strain ranges of interest
is smooth with porosity, but the variation with size ratio evidences a cross-over at low x from biholar to
monoholar (equal sized holes) behavior, related to the elastic instabilities in purely monoholar metamateri-
als®. Our study provides precise guidelines for the rational design of programmable biholar metamaterials,
tailored to specific applications, and indicates that the widest range of programmability arises for moderate

values of both # and .

1 Introduction

Mechanical metamaterials derive their unusual properties from
their architecture, rather than from their composition3. The
essentially unlimited design space of architectures therefore
opens up the opportunity for rational design of designer mate-
rials#, functional forms of matter with carefully crafted prop-
erties. Precise geometric design has resulted in metamateri-
als with negative Poisson’s ratio”, negative compressibility ®7,
tunable ratio of shear to bulk modulus®!!" and topological
nontrivial behavior >4, Going beyond linear response, a range
of metamaterials have been developed which harness geomet-
ric nonlinearities and elastic instabilities to obtain novel func-
tionalities, such as pattern switching>!5-1® and sequential shape
changes 1%,

A currently emerging theme is the use of frustration to obtain
more complex behavior, including multistability 21=23. We re-
cently showed how to leverage frustration and pre-stress to ob-
tain a (re)programmable mechanical response!. These meta-
materials are quasi-2D slabs of rubber, patterned with a square
array of circular holes of alternating sizes D and D, (Fig. 1).
By contrast with the highly symmetric monoholar samples
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RA, Leiden, The Netherlands

b FOM Institute AMOLE, Science Park 104, 1098 XG Amsterdam, The Nether-
lands

¥ Electronic supplementary information (ESI) available. See DOI:

(D1 = D2) studied earlier!, the biholar samples (D1 # D2)
lose 90° rotational symmetry, and, as a consequence, the
deformations patterns corresponding to purely horizontal (x)
or vertical (y) compression are distinct. This sets up a com-
petition when the material first is confined in the lateral x-
direction, before uniaxially compressing it in the y-direction
with strain &, and corresponding force Fy. Indeed, we found
that the mechanical response F;(&,) can be tuned qualitatively
by varying the lateral confinement &,. In particular we showed
that depending on &, the material could exhibit a non-monotonic
response, where BgyFy < 0 for a range of vertical strains, as
well as a hysteretic response where F(g,) becomes multi-
valued .

Here we study the generality of these findings by varying the
thickness of the elastic filaments ¢ as well as the degree of bi-
holarity yx, i.e. the size difference between small and large
holes. We start by showing that fully 3D numerical simula-
tions capture the experimental findings, and allow to distin-
guish multistable and hysteretic behavior from minor visco-
elastic effects inevitably present in the polymer samples. We
introduce order parameters to identify and classify the transi-
tions between monotonic, non-monotonic and hysteretic be-
havior, and probe their scaling near the regime transitions.
We then scan the design parameter space and show that pro-
grammable behavior persists for a wide range of the geometri-
cal parameters # and . Moreover, we formulate design strate-
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Fig. 1 (a) Geometry of biholar samples; D and D; denote the hole
diameters, p their distance, and ¢’ the thinnest part of the filaments.
The region of interest is characterized by Ly, Ly and Lys. (b)
Horizontally confined sample. L. denotes the distance between the
confining pins

gies to strongly tune the range of vertical strains where be-
havior of interest, i.e., non-monotonic or hysteretic response
arises. Finally, we explore extreme limits of these design pa-
rameters, and find that most useful behavior occurs for mod-
erate values — the limits of large and small ¢ and ¥ all lead to
new instabilities or singular behavior that hinder functionality.
Our study thus opens a pathway to the rational, geometrical
design of programmable biholar metamaterials, tailored to ex-
hibit non-monotonic or hysteretic behavior for desired strain
ranges.

2 Samples and Experimental Methods

Because large biholar samples are prone to the formation of
inhomogeneities and grain boundaries, we focus on the small-
est experimentally realizable biholar samples (5 x 5 holes) that
capture the essential physical mechanisms. Note that in earlier
work !, we showed that the phenomenology of such samples is
qualitatively similar to that found in numerical simulations of
a single unit cell with periodic boundaries, which represents
an infinite, homogeneous system. Hence, such 5 x 5 samples
are well suited for studying the geometrical parameter depen-
dence of biholar mechanical metamaterials. To fabricate bi-
holar metamaterials, we pour a two component silicone elas-
tomer (Zhermack Elite Double 8, Youngs Modulus E ~ 220
kPa, Poisson’s ratio v ~ 0.5) in a 120 x 65 x 35 mm mold,
where cylinders of diameters Dy > D, are alternately placed
in a 5 x 5 square grid of pitch p = 10 mm (the central cylinder
has diameter D;)!. To slow down cross linking, leaving time
for the material to degas and fill every nook and cranny in the
mold, we cool down these components to —18°C. When the

cross-linking process has finished (after approximately lhr at
room temperature) we remove the material from the mold and
cut the lateral sides. We let the sample rest for one week, after
which the elastic moduli have stopped aging. This results in
samples with a 5 x 5 square array of holes of alternating size,
where the central pore is a large hole, as shown in Fig. 1. All
experiments are carried out for samples of thickness d = 35
mm, to avoid out of plane buckling. We characterize our sam-
ples by their biholarity y := (Dy — D,)/p and dimensionless
thickness t := 1 — (D1 +D,)/(2p) =1'/p.

We glue the flat top and bottom parts of the material to two
acrylic plates that facilitate clamping in our uniaxial compres-
sion device. Under compression, deformations are concen-
trated in the central part of the sample. We focus on this region
of interest, and define the compressive vertical strain as:

2uy, Uy

G = " =

. , , §))
y1 + Lyr + 2t 5p

where (Ly; 4+ Ly, +2t') /2 is the effective size of the vertical
region of interest and u, the imposed deformation (Fig. 1a).
To impose lateral confinement, we glue copper rods of diame-
ter 1.2 mm on the sides of our samples and use laser cut, perfo-
rated acrylic clamps to fix the distance L. between these rods
(Fig. 1b). Note that even and odd rows of our sample have dif-
ferent lateral boundaries, and we only clamp the 2nd and 4th
row (Fig. 1b). The global confining strain is & = 1 — L./Lco,
with L. the distance between the metal rods without clamps.
In our experiments, we measure the force F as function of the
compressive vertical strain &,. We define a dimensionless ef-
fective stress as:

6t'F

S = ﬁAeff _
dE(Ly+2t')2

=4 @

where o, = F /A, A = d(Lx + 2t') denotes the cross section,
L, + 2t is the width of the region of interest, A g = 6t'd de-
notes the effective cross section, and E the Young’s Modulus.
To characterize the spatial configuration, we fit an ellipse to
the shape of the central hole, and define its polarization Q as ’:

Q = £(1 — pa/p1)cos2g,

where p; and p, are the major and minor axes of the ellipse,
and ¢ is the angle between the major and x-axis. We fix the
sign of  such that it is positive for samples that are predomi-
nantly compressed in the y-direction.

To uniaxially compress the sample while probing its response,
we use an Instron 5965 uniaxial testing device. The device
controls the vertical motion of a horizontal cross bar with a
resolution of 4 um. The sample is clamped between a ground
plate and this moving bar, and we measure the compressive
force I with a 100 N load cell with 5 mN resolution. To cal-
ibrate force F' = 0 at &, = 0 and at zero lateral confinement,

3
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we attach the unconfined sample to the top clamps, and then
attach bottom and side clamps.

For each experiment, we perform a strain sweep as follows:
we first the sample to u, = —4 mm, then compress to u, = 8
mm and finally decompress to #, = 0 mm to complete the
sweep. The deformation rate is fixed at 0.1 mm per second:
at this rate, visco-elastic and creep effects are minimal (Fig.
Slaand b, ESI"). A high resolution camera (2048 x 2048 pix-
els, Basler acA2040-25gm) acquires images of the deformed
samples and tracks the positions and shapes of the holes with
a spatial resolution of 0.03 mm in order to determine the po-
larization and the confining strain €,. The image acquisition is
synchronized with the data acquisition of the Instron device,
running at a rate of 2Hz.

3 Numerical Simulations

In parallel, we have performed a full parametric study of the
role of y and ¢ using 3D finite element simulations in
ABAQUS/STANDARD (version 6.13). We performed uni-
axial compression simulations on a laterally confined sample
with the same geometry, clamping and dimensions as in ex-
periments using realistic, boundary conditions at the top and
bottom of the sample. Namely, we impose vertical and lateral
clamping which closely match that of the experiment: (i) the
vertical boundary conditions are homogeneously imposed dis-
placements at the top and bottom surfaces of the sample; (ii)
the horizontal boundary conditions consist in inhomogeneous
clamping by fixing the x-coordinates of an arc of the bound-
ary holes of every even row. A horizontal confining strain is
applied by fixing the x-coordinates of an arc of the bound-
ary holes of every even row, similar to the experiments. The
length of the arc is set constant at S, = 1.1 mm, which closely
matches experimental conditions. (Note that the arc length has
a minor influence on the mechanical response, but does not af-
fect the overall phenomenology, Fig. S2, ESI.)

We model the rubber used in the experiments as a nearly in-
compressible neo-Hookean continuum solid 2425 with a strain
energy density function?%-?7:

W= % (det(F)—%tr(FF"') - 3) + g (det(F) —1)%,  (4)
where u is the shear modulus, K is the bulk modulus and
F = dx/dX is the deformation gradient tensor, with x and X
the deformed and undeformed coordinates. A strictly incom-
pressible material (v = 0.5) can not be modeled with
ABAQUS/STANDARD, and we therefore choose v = 0.4990
and E = 220 kPa, consistent with experiments. We use a
15-node quadratic triangular prism shape elements (ABAQUS
type C3HI5H). As we expect and observe (not shown here)
only small deformations in the out-of-plane directions, we use
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two elements across the depth of the sample. We have per-
formed a systematic mesh refinement study for the in-plane
grid, leading to an optimal mesh size of ¢/ /2.

We perform uniaxial compression tests on our confined sam-
ples. To numerically capture hysteresis, we follow two dif-
ferent paths for compression and decompression. The com-
pression protocol matches the experimental protocol: First the
top and bottom boundaries of the sample are fixed and the
horizontal confining strain €, is applied. Then, an increasing
strain €, is applied. The decompression protocol differs from
the experimental protocol to allow the sample to reach to hys-
teresis related second branch. First, the sample is maximally
compressed in the y-direction. Then, the horizontal confin-
ing strain €, is applied. Finally, the vertical strain is lowered.
These two distinct protocols allow to accurately capture the
behavior on both branches in the case of hysteresis.

4 Experimental and Numerical Results

We perform uniaxial compression tests on 5 x 5 biholar sam-
ples—patterned with a square array of holes of alternating size
where the central hole is a large hole—for a range of hori-
zontal confinements. In parallel we perform 3D realistic nu-
merical simulations using the same geometries, clamping and
boundary conditions. In the following we start by compar-
ing experiments to simulations for a sample with ¢ = 0.15 and
x = 0.2 and identify four qualitatively different mechanical
responses, that we refer to as type ())-(iv) L. Next, we define
order parameters that characterize these different regimes and
allow us to pinpoint their transitions.

4.1 Phenomenology

In Fig. 2 we present the stress-strain curves, S(€,), and polari-
zation-strain curves, Q(ey), for a biholar sample with y = 0.2
and ¢t = 0.15 at four different values of the horizontal confin-
ing strain. We observe a close correspondence between the
numerical and experimental data, without any adjustable pa-
rameters. We distinguish four qualitatively different types of
mechanical response:

(i) For small confinement, both the rescaled stress S and po-
larization Q increase monotonically with strain. In experi-
ments, both the stress and polarization exhibit a tiny amount
of hysteresis. We have determined the experimental rate de-
pendence of this hysteresis, and found that it reaches a broad
minimum for the moderate rates used in the experiments, but
that it increases for both very fast runs and very slow runs —
we attribute the former to viscoelastic effects, and the latter to
creep. Indeed, this residual hysteresis occurs mainly when the
pattern changes rapidly, Fig. Slc and d ESI', and hysteresis
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Fig. 2 (a) Stress-strain curves S(g,) for samples with 5 x 5 holes,

x =0.2 and r = 0.15 (curves are offset for clarity). The horizontal
confining strain & in curves (7)-(iv) equals & = 0.000, 0.158, 0.178
and 0.218. Experimental errorbars on &, are estimated to be 0.0025
and are mainly caused by the manual application of the clamps.
Experimental data is in magenta, and numerical data in black. (b)
Corresponding plots of the polarizations Q.(g,) (curves are offset for
clarity).

is absent in our purely elastic numerical simulations. We con-
clude that non-elastic effects lead to a small hysteresis, and
have adjusted our experimental rate to minimize hysteresis.
(i) For moderate confinement, the rescaled stress S exhibits
a non-monotonic increase with g, thus featuring a range with
negative incremental stiffness. The creep-induced hysteresis
in experimental data is more pronounced than in regime (i),
but again is absent in numerical simulations (black dashed
line). The polarization remains monotonic in &,, with most
of its variation focused in the strain-range of negative incre-
mental stiffness.
(iii) For large confining strains, both the stress-strain curve and
the polarization-strain curve exhibit a clear hysteretic transi-
tion. Away from this true hysteresis loop, the up and down
sweeps are identical in simulations but differ slightly in exper-
iments, due to the same visco-elastic effects discussed above.
‘We note that in the numerics, the hysteretic jump between dif-
ferent branches is very sharp (dotted line in Fig. 2), whereas
in the experiments this jump is smeared out. In the numerics,
the location of the jump reproduces well, but in experiments
we observe appreciable scatter between subsequent runs. We
suggest that close to the jump, the system is very sensitive to
imperfections, and have confirmed, by simulations, that slight
geometric perturbations cause similar scatter (not shown).
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Fig. 3 (a) Numerically obtained S(g,)-curves illustrating the
monotonic to non-monotonic (i-if)-transition, for a sample with

x =0.2 and t = 0.15 (curves offset for clarity). (b) AS clearly shows
power law behavior, and can be fitted as AS ~ A (g, — &;_, )2,
where A = 0.117 and &,,_, =~ 0.143. (c) In regime ii, €" is initially
rapidly increasing and then reaches a maximum around &, = 0.155.
Close to the the (i-ii)-transition, € shows square root behavior:

£~ y(er— &)/, with y~ 0.128 and &,__ ~0.143.

(iv) For very large confinements, the stress increases monoton-
ically with &, similar to regime (i). However, the polarization
is decreasing monotonically with &,, in contrast to regime (7),
and Q becomes increasingly x-polarized under compression.
The two branches that are connected by the hysteresis loop in
regime (#if) are no longer connected in regime (iv): the system
follows a single stable path, up and down sweeps are identi-
cal, and there is no hysteresis observable for curves in regime
(iv). Additional experiments reveal that initial compression in
the y-direction followed by x-confinement brings the material
to a strongly y-polarized state (not shown). Hence, for strong
biaxial confinement there are two stable states, the order of
applying x-confinement and y-compression matters, and once
in the x-polarized state, y-compression is not sufficient to push
the system to the y-polarized state.

We thus observe four distinct mechanical responses in a single
biholar sample, depending on the amount of lateral confine-
ment. In addition, we find very good agreement between ex-
periments and simulations, and in the following, we focus ex-
clusively on numerical data, as simulations do not suffer from
creep and allow for high precision and a wide range of param-
eters.

Page 4 of 9
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Fig. 4 (a) Numerically obtained S(&,)-curves illustrating the

x =0.2 and r = 0.15 (curves offset for clarity). In regime (ii7) the
S(&y)-curve follow a different path for compression and
decompression. The hysteresis is the area between these two paths,

rapidly, with & = 0.163 being the first nonzero value for the
hysteresis, thus indicating the #i — #ii-transition.

4.2 Order Parameters

To study whether the same scenario involving regimes (i — iv)
is also observed for different geometries, and to investigate
how the transitions between these regimes vary with ¢ and %,
we introduce three order parameters that allow the detection
of these regimes and their transitions.

4.2.1 (i-ip)-transition: Depicted in Fig. 3a is a series of

S(&y)-curves illustrating the transition between monotonic and
non-monotonic behavior. In principle the sign of the incre-
mental stiffness 35 / 88y distinguishes between these, but as
the incremental stiffness is a differential quantity, a more ro-
bust measure is produced by the (existence of) local max-
ima and minima, which we use to determine the difference
in stress, AS, and strain, €" (see Fig. 3a).
In Fig. 3b we present AS as a function of the confining strain
&:. Notice that AS rapidly increases with &, in regime (ii) (and
(ifi)). The variation of S(g,) with &, suggest that near the tran-
sition, S(&y, &) can be expanded as: S(gy) ~ ot(&x — &, ,)& +
ﬁe;, where &, , is the critical horizontal strain at the (i-ii)-
transition and ¢ and 3 are constants. We therefore expect that
AS = (& — &, ,)°/%, which is consistent with the data when
we take &, , = 0.143 (Fig. 3b).
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Fig. 5 (a) A series of S(&,)-curves across the hysteretic to
monotonic (iii-iv)-transition, for a sample with y =0.2andt =0.15
(curves offset for clarity). (b) The series of corresponding
Q(g,)-curves, illustrating the izi-iv-transition. Highlighted in red the
linear fit used to calculate the slope €. (c) Across the
(iii-iv)-transition Q' is linearly decreasing from positive values to
negative values. By fitting a linear function we find, rounded off at 3
decimal digits, &,,_, = 0.180.

In Fig. 3c we show the strain range of negative incremental
stiffness, €%, as a function of confining strain &,. Like AS, "
is undefined for monotonic curves, and increases rapidly with
&:. As expected from our expansion of S(g,), close to the (i-
if)-transition, we find power law scaling: " ~ (& — exHi)l/ 2,
with the same estimate for &, , as before, see Fig. 3c. For
larger &, €" is decreasing and eventually becomes negative,
which signals the approach to the hysteretic regime.

of S(&,)-curves to illustrate the transition from nonmonotonic
to hysteretic behavior. As discussed above, to numerically
capture the hysteresis, we use two distinct protocols for com-
pression and decompression. We quantify the amount of hys-
teresis by H, the area of the hysteresis loop. As shown in
Fig. 4b, H increases rapidly with the confining strain, which
allows us to accurately determine the onset of hysteresis, the
first non zero value for H, as &, .. ~ 0.163.

Ii—Iii

4.2.3 (ii-iv)-transition: As shown in Fig. S5a, we are
unable to observe the iii-iv-transition from the S(g,)-curves.
Therefore, we focus on the polarization Q of the central hole
of the sample, see Fig. 5b. We define the transition between
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Fig. 6 Representation of the characteristic strains for a sample with
¥ = 0.2 and r = 0.15. The red circle indicates the "nose’, (sf,sy” 2
which signals the onset of regime (¢7). Non monotonic behavior in
regime (i7) occurs for strains between symi” (closed diamonds) and
&' (open diamonds). We extend these minimum and maximum
into regime (iii) (circles) and regime (iv) (squares). The width
between the two branches £]"** and £t determines the order
parameter €. The transitions between (ii)- (¢ii) and (i) - (iv)
cannot be detected from 8;”" and &]"* alone and we use H to detect
the onset of regime (¢i7) and Q to detect the onset of regime (iv).

regime (iii) and (iv) to occur when the polarization for small
strain &, has a negative slope (€' < 0), see Fig. 5¢. Using a
linear fit we find &,,;, , =~ 0.180. As the (iii-iv)-transition is not
associated with any significant change in S(g,), in the remain-
der we focus on the transitions to nonmonotic and hysteretic
behavior.

Using the order parameters AS, &,, H and €/, we are now in
a position to identify the nature of the mechanical response;
monotonic (7), non-monotonic (i7), hysteretic (iii) or mono-
tonic with decreasing polarization (iv).

5 Parametric Study

In the following we study how the vertical and horizontal strains
where nonmonotonic and hysteretic behavior occurs vary with
the geometrical design parameters y and /. For each value
of these parameters, we can in principle obtain S(gy,€,) and
Q(gy, &), from which we then can determine the strain-ranges
corresponding to regime (i — iv) using the order parameters
defined above. We study this parameter space systematically
using a large number of simulations. To do so, we have sys-
tematically scrutinized the full (&, &) parameter space for 7
values of f in the range 0.025 <t < 0.175 keeping ¥ = 0.2

and 7 values of y within the range 0.125 < ¥ < 0.6 keeping
1 =0.15. For each set of parameters (£, ), we have determined
the relevant range of strains, and performed simulations for
typically 50 values of both &; and g, leading to a total number
of 3 x 10* nonlinear simulations. Note that we have explored
many more values of f and J, in order to identify the boundary
of the parameter space for which the regimes (¢)-(iv) occur.
The snapshots A-D (Fig. 6) correspond to examples of new
behaviors that escape the scenario (i)-(iv) and occur for val-
ues of the parameters (¢,) outside this boundary. Moreover,
for the most interesting regimes (ii — iif) we can calculate the
range of vertical strains* &, where the non-monotonic respec-
tively hysteretic behavior takes place. However, the resulting
deluge of data is difficult to visualize or interpret. In Fig. 6
we show a simple representation which captures the main fea-
tures of the strain ranges of regime (ii — iif), here for fixed ¥

and t. From S(g, &), we determine 8;"“", 8;"’", and H as a

function of &, and plot &** (open symbols) and 8;"’" (closed
symbols) as a function of &, and we use H to distinguish data
points in regime (if) and (iii), and the polarization Q to de-
tect regime (iv). In regime (i), & and 8;"’" are not defined.
The transition to regime (i7) corresponds to the "nose’ (red dot)
of these curves (Fig. 6). The representation in Fig. 6 clearly
shows the increase of the non-monotonic range as & is in-
creased deeper into regime (if). Note that &)™ and 8;"’" Cross
eventually somewhere in regime (iii), see also Fig. 3. As we
will show, the overall trends in 8;"’" and 8;"“" as function of
& are robust, with ¥ and 7 setting the “size” and “location” of
these fish-shaped curves.

In the remainder of this paper, we focus on regime (if),
and in particular on the onset of the non-monotonic behavior
as well as the maximum of £". Note that all of this information
can conveniently be related to the data shown in Fig. 6 — the
onset of non-monotonic behavior corresponds to the “the nose
of the fish” at (& = &;_,,&]), whereas the maximum non-
monotonic range is given by £"™, “the belly of the fish”, at

wmt
e

5.1 Variation of strain ranges with geometric parameters

We have determined " and 8;"’" for fixed y = 0.2 and a
range of thicknesses ¢, as well as for fixed f = 0.15 and a range
of biholarities ), as shown in Fig. 7. In both cases, we can dis-
cern clear trends, as well as interesting limiting cases for large
and small 7 or ¥ - see Fig. 7

As we vary the thickness, we observe that & and & smoothly
decrease towards zero, whereas €' stays finite. Hence, the
characteristic strains vary with ¢, but the size of the strain in-
tervals where non-monotonic behavior occurs remains finite
for small 7. These trends are illustrated in Fig. 8, where we
show the variation of &, ey", €™ and & with t. In good
approximation, & and & vanish linearly with 7. As shown in
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Fig. 7 Strain at the local maximum &;"* (circles) and local minimum symi” (diamonds) for data obtained in regime (i) as a function of
horizontal confinement &, for a samples with different geometries. The red dot indicates the "nose’ of the curves. The nearly horizontal red
dots correspond to ¥ = 0.2 and (from left to right) r = 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175, whereas the diagonally order range of
red dots correspond to r = 0.15 and (top to bottom) ¥ = 0.6,0.5,0.4,0.3,0.2,0.15 and 0.125. The labels A — D indicate to large or small 7 or
limits where new behavior sets in as shown to the right. For large ¥ (A, t = 0.15, ¥ = .8), the deformation patterns become irregular; shown
here are the outcome of simulations for & = 0 and €, = 0, and & = 0.126 and €, = 0, 0.062 and 0.126. For small ¥ (B, r = 0.15, ¥ = 0.1,

& = 0.216, &, = 0), and for large 7 (C,t = 0.2, x = 0.2, & = 0.206, g, = 0), the confining strains required to obtain non-monotonic behavior
become so large, that deformations become localized near the boundary and sulcii develop. Finally, for small # (D, t = 0.025, y = 0.2,

& = 0.020, &, = 0), the characteristic strains and strain ranges become vanishingly small.

Fig. 8c, even though &' also varies strongly with ¢, it appears
to reach a finite limit for t — 0, as further illustrated in the in-
set which shows how g — €7 reaches a finite value at 1 = 0.
Consistent with this, "™ approaches a finite value for t — 0.

The variation with biholarity is more significant and less
simple. First, we observe that for increasing biholarity, both
the vertical and horizontal strain ranges increase significantly.
Second, their typical values have opposite trends; whereas
eg”" and 8§"“" strongly increase, €” and &} decrease. Hence,
tuning the biholarity can be used to favor non-monotonic be-
havior for small &, or for small &, — including at negative
vertical stresses for small values of ¥. Third, the range of
the non-monotonic regime increases strongly with . These
trends are illustrated in Fig. 9, where we show the variation of
&, &/, " and g™ with . This data strongly suggests that
there are two distinct regimes, with a smooth crossover around
X ~ 0.15. We speculate that the value of this crossover is re-
lated to f. Moreover, we suggest that in the small y regime,
the materials mechanics crosses over to that of a monoholar
system>!3-18 where &, and & no longer are in competition
and the materials behavior is difficult to program, consistent

with a very small non-monotonic strain range.

We can now also identify four limiting cases. For large %,
(case A in Fig. 7) we note that the small holes appear to be-
come irrelevant, so that we approach a monocholar system ro-
tated by 45°. In this limit, where vertical strains are large,
sulcii®®?® as well as localization bands appearC. In the limit
of vanishing ¥ (case B) the material approaches a moncholar
material>!>16 and our data suggests that these are difficult
to program, with matching small non-monotonic behavior —
consistent with the absence of the broken 90° symmetry that
underlies the programmability of biholar systems !. For small
but finite ¥, the horizontal strains again become very large and
similar as for large ¢, sulcii develop. For large ¢ (case C), new
behavior must occur — at some point the filaments become
so wide that global buckling of the material occurs before any
appreciable changes in the local pattern®>. What we observe
is that for large ¢ the strains needed to reach non-monotonic
behavior become so large, that some of the filaments develop
sulcii, so that strain localization starts to dominate the behav-
ior — for our systems and y = 0.2, this occurs for f > 0.175.
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Fig. 8 For fixed y = 0.2, we show the variation with 7 of (a)-(b) the
location €] and sy” of the nose which signals the transition to regime
(i), and (c-d) the x-location and value of the maximum difference

between £)"** and 8;”" which indicates the non-monotonic range.
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Fig. 9 For fixed r = 0.15, we show the variation with y of (a)-(b) the
location €y and &/ of the nose which signals the transition to regime
(i), and (c-d) the x-location and value of the maximum difference

between £;"** and 8;”" which indicates the non-monotonic range.

This limits the usefulness of large ¢ systems?. Finally, in the
limit of vanishing ¢ (case D), the mechanics of our system
are expected to be close to the simple mechanism introduced
in!, our numerical simulations closely match those of calcu-

lations in this model®'. However, here both the typical strains
and strain ranges corresponding to nontrivial behavior vanish.
Hence, none of these limits are particularly useful from a prac-
tical or programmability point of view.

6 Conclusion

In this paper we have presented a systematic overview of the
role of the geometrical design of biholar metamaterials for ob-
taining reprogrammable mechanics. First, we have shown that
the four qualitatively different mechanical responses (i — iv)
are a robust feature, and happen for a wide range of values of
the design parameters ) and f. Second, we have identified four
distinct asymptotic cases, where additional instabilities arise.
Hence, programmability is optimal for moderate values of ¢
and x. Our study opens a pathway to the rational, geometrical
design of programmable biholar metamaterials, tailored to ex-
hibit non-monotonic or hysteretic behavior for desired strain
ranges. Important research questions for future work are the
role of inhomogeneities, grain boundaries and finite size ef-
fects. To leverage the phenomenology observed here in larger
systems, we rather imagine coupling multiple smaller systems
together. In addition, open questions for future work are to ex-
tend this frustration based strategy for the programmability of
other mechanical parameters (e.g., Poissons function)>> and
functionalities such as tuneable damping, to smaller length

scales, and to three dimensions>>.
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¥ For each geometry, the resolution in €, is set as follows. We first identify the
minimal range of €, required to observe the extrema of the S(€,,&)-curves.
This range is then divided into at least of 20 incremental static steps with ad-
ditional refinements near the extrema. We then use qubic spline interpolation
on each S(&y, &, )-curve to measure the location of the maximum and minimum
with a resolution better than 2-10~* of the selected strain range.
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