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satisfied, impalement of the water and gas phases may still occur

at high pressures8–10, but we will exclude such cases here.

For vanishing contact angles θ Y
ow = 0◦ or θ Y

og = 0◦, it is possible

that a thin oil layer will completely cover the surface roughness.

Provided the wicking criteria are satisfied, we can identify four

relevant thermodynamic wetting states2. As illustrated in Fig.

1(b-e) these states depend on the presence and absence of a thin

oil film between the water and/or gas phases and the solid sur-

face. The presence of a thin oil film prevents a direct contact

between the water/gas phase and the solid. It has been proposed

to explain the smooth displacement of contact lines on liquid in-

fused surfaces17, as opposed to stick-slip commonly observed on

other surfaces18.

While thermodynamics arguments are sufficient to predict the

presence of different wetting states on LIS, to date there is no

theory for computing the corresponding values of the contact an-

gle and contact angle hysteresis, despite their relevance as key

design parameters for any application. For example, low contact

angle and low contact angle hysteresis are preferred for efficient

heat transfer13,19, while high contact angle and low contact angle

hysteresis are desirable for high droplet mobility20.

For standard wetting scenarios, the Young’s equation deter-

mines how the contact angle depends on the three independent

(solid-liquid, solid-gas and liquid-gas) surface tensions. In con-

trast, there are six independent surface tensions for LIS, and an

equivalent relation for the contact angle as a function of these

surface tensions is, to date, not yet available. We will derive such

a relation in this paper. Furthermore, an oil ridge is drawn to

the oil-water-gas three-phase contact line in LIS system due to

capillary action, as depicted in Fig. 1(a). It is unclear how the

shape and size of this ridge can be controlled, and correspond-

ingly what might be the consequences. Indeed, a distinguishing

feature of LIS we will show here is that both the apparent con-

tact angle and contact angle hysteresis are not uniquely defined

by material parameters; instead, they also have a strong depen-

dence on the size of the oil ridge relative to the droplet, which in

return can be manipulated by tuning the oil pressure.

This paper is organised as follows. In section 2, we will list

the essential physical assumptions for the theoretical model and

describe the computational method we employ to calculate drop

morphologies on liquid infused surfaces. We will derive a closed

form expression for the contact angle in the limit of vanishing oil

ridge in section 3. In section 4, supported by numerical calcula-

tions, we will address the influence of oil pressure on the apparent

contact angle. In section 5, we will discuss how the theoretical re-

sults in sections 3 and 4 can be extended to predict contact angle

hysteresis generated by contact line pinning at the edges of the

surface corrugations. Finally, we will conclude and describe fu-

ture works in section 6.

2 Physical model and numerical method

2.1 Physical model

For concreteness, let us consider a typical LIS system consisting of

a water droplet (w) deposited on a porous/rough solid substrate

(s) infused by an oil liquid (o), and immersed in a surrounding

gas phase (g) as shown in Fig. 1. Our theory is valid, without

any loss of generality, if other fluids are used instead of water, oil

and gas. Let us also define γwg, γow and γog as the surface ten-

sions between the water–gas, oil–water and oil–gas components

respectively. We further assume that the typical length scales in

the problem (the droplet size, the oil ridge, and the surface cor-

rugation) are smaller than the capillary length, such that we can

neglect gravity. For water and most oils, the capillary length is of

the order of a few millimetres.

The total energy Eb has several different contributions. First,

this energy contains two terms that depend on the volumes of

the water droplet Vw and infusing oil Vo, and on the pressure

differences ∆Pwg between the water droplet and the surrounding

gas, and ∆Pog between the oil and the surrounding gas. It is also

convenient to define ∆Pow as the pressure difference between oil

and water. Second, each fluid-fluid interface contributes with a

term proportional to γαβ Aαβ . The subscripts α,β correspond to

the water, oil and gas phases. Third, if any of the phases is in

contact with a portion of the solid substrate, it also contributes

with a term γαsAαs, where s indicates the solid surface. Thus, the

total energy is given by:

Eb = ∆PwgVw +∆PogVo + ∑
α 6=β

γαβ Aαβ +∑
α

γαsAαs. (2)

Let us now discuss the suitable ensemble for the water and oil

phases. Usually the volume of the water droplet is fixed in exper-

iments. As such, in our calculations the pressure difference ∆Pwg

acts as a Lagrange multiplier to the droplet volume. For the oil

phase, instead it is appropriate to assume the pressure ensemble

due to the presence of a large amount of oil infused in between

the surface corrugations, which to a good approximation can be

considered as an infinite reservoir. In this context, the definition

of Vo in Eq. (2) corresponds to the amount of oil drawn from the

reservoir into the ridge. The oil which fills the surface roughness

is not included in the computation of Vo.

In equilibrium, the Laplace pressures of the fluid-fluid inter-

faces determine their mean curvatures κ through the Laplace law

∆Pαβ = 2καβ γαβ . (3)

As before, the subscripts α,β correspond to the water, oil and

gas phases. At the triple point junction, where the three fluid

interfaces meet, the stresses are balanced

~γow +~γog +~γwg = 0. (4)

As shown in Fig. 1(a), Eq. (4) leads to the Neumann angles21,

θo, θw and θg, where

γow

sinθg
=

γwg

sinθo
=

γog

sinθw
, (5)

and θo +θw +θg = 2π. It is worth noting that, for γwg > γow + γog,

the water droplet is encapsulated by a thin layer of oil, and Eq.

(5) is ill-defined. In this work, we will exclude such a case, and

assume that the Neumann angles can be computed according to

Eq. (5) for a given set of water–gas, oil–gas, and water–oil surface

tensions.
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The interaction between the ternary fluids (water–oil–gas) with

the (smooth) solid surface can be characterised by three material

contact angles, θ Y
wg, θ Y

ow and θ Y
og, given by the Young’s relation

cosθ Y
αβ =

γβ s − γαs

γαβ
, (6)

where once again the subscripts α,β correspond to the water, oil

and gas phases. For liquid infused surfaces, the solid surface is

not smooth. In fact, the surface roughness is key for maintaining

the infusing oil. As shown in Fig. 1, a typical substrate can be

modelled as a composite between solid and oil. If pinning effects

and the related energy barriers are negligible, the contact angles

can be described by weighted averages as proposed by Cassie and

Baxter22,

cosθ CB
αβ = f cosθ Y

αβ +(1− f ), (7)

where α represents the oil phase, β is either the water or gas

phase, and f is the fraction of the projected solid area exposed

to the water or gas phase. We will explicitly consider pinning

phenomena at the sharp edges of the surface roughness in section

5, where we address the emergence of contact angle hysteresis on

LIS. Formally the weighted average will enter the total energy Eb

by redefining the surface energy of the composite substrate γαs →
f γαs + (1− f ), where α represents the water or gas phase. For

the Cassie-Baxter equation to be valid, the water droplet needs to

cover a sufficiently large number (e.g. several tens) of posts.

As it is not the aim of this work to resolve the liquid morphol-

ogy down to the molecular scale, we will not specifically model

a thin oil film on top of the roughness, because the effect of a

thin microscopic film on the equilibrium shape of a macroscopic

droplet is negligible. Its presence, however, will affect the choice

of θ Y
ow and θ Y

og. Typically it is convenient to assume the value of

0◦ when a thin wetting oil film is present, though in general a

thin oil film does not necessarily lead to vanishing contact angles,

depending on the effective interfacial potentials describing the

intermolecular forces acting between the substrate and the water

and oil molecules23,24.

2.2 Numerical method

In our calculations we assume the distortion induced by the un-

derlying pattern geometry to be negligible and the drop to retain

an axial symmetry. We will numerically compute droplet config-

urations by employing a finite element approach based on the

free software SURFACE EVOLVER25. Eq. (2) will be minimized

according to standard minimisation algorithms. Without losing

generality, we will set the reference pressure of the gas phase to

zero, while the pressures of the water and oil phases will cor-

respond to the Laplace pressures of the water–gas and oil–gas

interfaces. The oil phase will be controlled by its pressure ∆Pog,

by including the corresponding term in the total energy in Eq.

(2), while the volume Vw of the water droplet will be imposed by

a global constraint. The Laplace Pressure ∆Pwg is the Lagrange

multiplier to the constant droplet volume constraint.
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Fig. 2 Sketch illustrating the derivation of the closed form expression for

θ S
app. In the limit of small oil ridge the water-gas interface is flat in

proximity of the Neumann triangle, while the oil-water and oil-gas

interfaces can be approximated by circular arcs. The surface

corrugation is not explicitly depicted in this sketch. However, its effect is

accounted by using the Cassie-Baxter’s rather than the Young’s angles

for the oil-water and oi-gas interfaces.

3 The limit of vanishing oil ridge

In the most general case, the shapes of fluid-fluid interfaces with

constant mean curvature and an axial symmetry must belong to

the family of Delaunay surfaces26. In our problem, the water-gas

interface will be a portion of sphere, while the oil-water and oil-

gas interfaces can be described either by nodoids or unduloids,

depending on the boundary conditions (wetting contact angles).

In this section we are interested in the case where the size of the

oil ridge is infinitely small compared to the water drop. For most

liquid infused surfaces, this limit is equivalent to the condition

of large and negative oil pressure in comparison to the Laplace

pressure in the water droplet, −∆Pwg/∆Pog → 0, since ∆Pog < 0

is the regime of physical interest. In section 4, we will com-

ment on the implications related to the case of ∆Pog > 0. In the

−∆Pwg/∆Pog → 0 limit, the geometry near the oil ridge can be sim-

plified. The water-gas interface is effectively flat. The curvature

in the x− y plane for the oil-water and oil-gas interfaces can be

neglected. Their profiles in the x− z plane are circular arcs to an

excellent approximation.

Referring to the sketch shown in Fig. 2, we introduce two auxil-

iary angles ϕ and ψ for the water-oil and oil-gas interfaces. These

interfaces respectively have radii of curvature row and rog. The oil-

water and oil-gas interfaces approach the substrate with contact

angles θ CB
ow and θ CB

og . Since −∆Pwg/∆Pog → 0, we can deduce that

−∆Pow =
γow

row
=−∆Pog =

γog

rog
, (8)

which, combined with Eq. (5), leads to

row

rog
=

γow

γog
=

sinθg

sinθw
. (9)

In Fig. 2, we can identify a triangle with interior angles given by

ϕ +θ CB
ow , ψ +θ CB

og and θo. Imposing their sum to be π, we have a

1–10 | 3
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trigonometrical relation

ϕ +θ CB
ow +ψ +θ CB

og +θo = π. (10)

Similarly we can derive geometrical relations for the apparent

contact angle θ S
app:

θ S
app = θw −θ CB

ow −ϕ = π −θg +θ CB
og +ψ. (11)

Here we have used the superscript S to denote the limiting case

of vanishing oil volume. To complete the set of equations and

express θ S
app in terms of the remaining material parameters, we

can deduce one more equation by comparing the expressions for

the height h given by both menisci,

h = rog

[

cosθ CB
og − cos(ψ +θ CB

og )
]

= row

[

cosθ CB
ow − cos(ϕ +θ CB

ow )
]

. (12)

Substituting Eqs. (9), (10) and (11) into Eq. (12), we obtain

sinθw

[

cosθ CB
og + cos(θ S

app +θg)
]

=

sinθg

[

cosθ CB
ow − cos(θw −θ S

app)
]

. (13)

Eq. (13) can be inverted to express θ S
app only in terms of the

Neumann, oil-water and oil-gas contact angles:

cosθ S
app =

(

cosθ CB
ow sinθg − cosθ CB

og sinθw

cosθg sinθw + cosθw sinθg

)

. (14)

Note that the specific value of the Laplace pressures for the oil-

water and oil-gas interface do not appear in Eq. (14).

It is convenient to express the apparent contact angle in Eq.

(14) in terms of the fluid-fluid surface tensions and the oil-water

and oil-gas contact angles. This is the form in which the material

properties are most commonly reported and tabulated. To do this,

we observe that the denominator in Eq. (14) can be simplified as

sin(θg +θw) = sin(2π −θo) = −sin(θo). Taking further advantage

of Eq. (5), we obtain

cosθ S
app =−cosθ CB

ow

γow

γwg
+ cosθ CB

og

γog

γwg
, (15)

or alternatively

cosθ S
app = cosθ CB

wo

γow

γwg
+ cosθ CB

og

γog

γwg
, (16)

where we have used cosθ CB
wo =−cosθ CB

ow .

In general Eq. (15) can be interpreted as a ‘weighted sum’ be-

tween the oil-water and oil-gas contact angles, where the weight-

ing coefficients are given by ratios of the fluid-fluid surface ten-

sions. Several limiting cases are worth being pointed out: (i)

When the oil-gas surface tension is very small, such that γog → 0

and γow → γwg, we recover cosθ S
app = −cosθ CB

ow = cosθ CB
wo . This is

the Cassie-Baxter contact angle for a water droplet on a compos-

ite solid-oil substrate; (ii) Similarly, in the limit of γow → 0 and

γog → γwg, we recover the Cassie-Baxter angle, cosθ S
app = cosθ CB

og ;

(iii) For θ CB
ow → 0 and θ CB

og → 0, we recover a condition equivalent

�app

�'app

Fig. 3 Sketch of a drop with finite oil ridge displaying two possible

definitions for the apparent angle: θapp at the triple junction of the fluid

phases and θ ′
app at the virtual contact line where the interpolated

water-gas interface meets the solid substrate.

to the Young’s equation, cosθ S
app = (γog − γow)/γwg, correspond-

ing to a water droplet spreading on a flat substrate made of oil;

(iv) The apparent contact angle approaches θ S
app ∼ 90◦ if the oil-

gas and oil-water interfaces have ‘symmetric’ properties, γog ∼ γow

and θ CB
ow ∼ θ CB

og , irrespective of their actual values.

4 Role of the Laplace pressures

In the previous section we derived an analytical expression for

the apparent contact angle θ S
app in the limit of small oil ridge,

assuming a vanishing Laplace pressure for the water-gas inter-

face. In this section we will extend our analysis to the general

case, explicitly accounting for the role of finite Laplace pressures

for the three interfaces. In particular we will show that θapp is not

uniquely determined by the material parameters, but it is affected

by the relative size of the oil ridge relative to the size of the water

drop.

To illustrate the role of the Laplace pressures, we have numeri-

cally computed ternary drop morphologies for representative sys-

tems typical of an oil with low surface tension, choosing θo = 30◦

and symmetrically θw = θg = 165◦ (see Fig. 4). We consider two

different combinations of wetting angles for the oil phase, given

by (i) θ CB
ow = 0◦, θ CB

og = 15◦ and (ii) θ CB
ow = 30◦, θ CB

og = 0◦. We then

vary the oil pressure while keeping the water volume constant. In

our calculations the specific value of the volume is not relevant,

as it simply sets the length scale of the system.

In the presence of finite Laplace pressures it is necessary to

adapt the definition of θapp as the water-gas interface is no longer

represented by a straight line. Two meaningful geometric choices

are possible as shown in Fig. 3, either (i) as the slope of the

water-gas interface at the triple junction θapp, or (ii) as the slope

of the virtual water-gas interface as it is extrapolated down to the

solid substrate θ ′
app. The water-gas interface assumes a spheri-

cal cap geometry and the extrapolation procedure is unique. We

find θ ′
app > θapp. In the limit of vanishing oil ridge, both defini-

tions converge to the same value corresponding to Eq. 16, which

describes the energy balance at the contact line. The deviation

grows larger with increasing size of the ridge.

In this work we favour the apparent contact angle definition

at the triple junction, θapp, for two main reasons: (a) the angle at

the Neumann triangle can be easily identified from the kink in the

drop profile, and it can be directly measured both in simulations

and experiments, and (b) it represents a direct measure of the
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Fig. 4 Numerical results for a water droplet placed on liquid infused

surfaces. The Neumann angles for the oil, water and gas phases are

respectively θo = 30◦ and θw = θg = 165◦. Two sets of wetting angles are

considered: (i) θ CB
ow = 0◦ and θ CB

og = 15◦, and (ii) θ CB
ow = 30◦ and θ CB

og = 0◦.
a) Variation of the apparent contact angle as a function of −∆Pwg/∆Pog.

The results for both definitions of apparent contact angles are shown,

θapp (points) and θ ′
app (straight lines). The insets illustrate how the

Neumann triangles rotate as the oil pressure is varied. b-d) Snapshots

of numerically evaluated ternary drop configurations.

rigid rotation of the Neumann triangle with respect to the solid

surface. In contrast, θ ′
app describes the slope of a portion of an

interface that is only virtual, and cannot be measured directly.

The sequence of morphologies reported in Fig. 4(b-d) shows

the impact of increasing −∆Pwg/∆Pog to the growth of the oil

ridge. As depicted in Fig. 4(a), for the chosen sets of parame-

ters, this is accompanied with a decrease in θapp, as consequence

of the rigid rotation of the Neumann triangle (see the insets).

For the two specific examples we have shown here, the variation

in the apparent contact angle between −∆Pwg/∆Pog → 0 (small

ridge) and −∆Pwg/∆Pog → ∞ (large ridge) is above 30◦. Similarly

θ ′
app also decreases with increasing −∆Pwg/∆Pog but its variation

is considerably smaller, limited to a few degrees. It is worth not-

ing that our definition for the apparent contact angle is intended

to characterise not just the water droplet shape, but instead the

combined water droplet-oil ridge configuration, which spreads

out as −∆Pwg/∆Pog increases. In this context, θapp captures this

behaviour better than θ ′
app. From here on, we will only focus on

θapp.

One aspect differentiating the two combinations of angles re-

ported in Fig. 4 is worth discussing further. In both cases the limit

−∆Pwg/∆Pog → ∞ (i.e. ∆Pog → 0) implies that the oil-gas ridge

approaches a catenoid shape. However, while for finite contact

angle θ CB
og the oil ridge has a finite size, in the case of θ CB

og = 0◦
the radius of the oil ridge is diverging. The latter corresponds to a

liquid lens configuration, where the Neumann triangle is oriented

such that the oil-gas interface is flat and lies parallel to the solid

substrate.

For small but finite −∆Pwg/∆Pog, we are also able to derive a

closed form expression for the apparent contact angle θapp. To

proceed, we note that the profiles of the oil-gas and oil-water

interfaces can be still be assumed to be circular arcs in the x− z

plane, as shown in Fig. 2. The curvature in the x− y plane can

also be neglected for the oil-gas and oil-water interfaces. Taking

into account the Laplace pressure difference (or the curvature) of

the water-gas interface, we can write

∆Pwg =
γow

row
− γog

rog
. (17)

A straightforward manipulation invoking Eq. (3) leads to the fol-

lowing equation,

rog

row
=

γog

γow

(

1− ∆Pwg

∆Pog

)

. (18)

Following the same route leading to Eq. (13) in the previous

section, we can write down an equivalent relation with a correc-

tion term due to finite −∆Pwg/∆Pog,

sinθg

[

cosθ CB
ow − cos(θw −θapp)

]

sinθw

[

cosθ CB
og + cos(θapp +θg)

] =

(

1− ∆Pwg

∆Pog

)

. (19)

This relation can be inverted for the apparent contact angle, and

it is given by

cosθapp =
AC+B

√
A2 +B2 −C2

A2 +B2
, (20)

where

A = sinθg cosθw +
(

1− ∆Pwg

∆Pog

)

sinθw cosθg, (21)

B = sinθg sinθw

(

∆Pwg

∆Pog

)

, (22)

C = sinθg cosθ CB
ow −

(

1− ∆Pwg

∆Pog

)

sinθw cosθ CB
og . (23)

As we can observe in Fig. 5, the analytical expression compares

well with the full numerical results for −∆Pwg/∆Pog < 1. For larger

−∆Pwg/∆Pog, the model departs from the numerical solution, as

the circular arc approximation for the oil-water and oil-gas inter-

faces breaks down.

Furthermore, it is useful to extract a linear correction to the ap-

parent contact angle due to the parameter −∆Pwg/∆Pog, given by

cosθapp = cosθ S
app −Λ

(

∆Pwg

∆Pog

)

+O

(

∆Pwg

∆Pog

)2

, (24)
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with

Λ =
sinθg sinθw

(

cosθg cosθ CB
ow + cosθ CB

og cosθw +
√

sin(θg +θw)2 − (cosθ CB
ow sinθg − cosθ CB

og sinθw)2
)

sin(θg +θw)2
. (25)

0 1 2 3 4 5

0.5

0.4

0.3

0.2

0.1

0

ow=30o, og=0o

ow=0o, og=15oCB CB

CB CB

c
o
s
 

a
p
p
 

- Pwg/ Pog

Fig. 5 Comparison between numerical results (dots), Eq. (20) (full

lines), and Eq. (26) (dashed lines). The analytical expressions are valid

for small −∆Pwg/∆Pog. The system parameters are the same as those

reported in Fig. 4.

In experiments, the pressure difference between the oil and gas

phases is usually kept constant. The Laplace pressure of the water

droplet is given by ∆Pwg = 2γwg/rwg ≃ 2γwg sinθ S
app/R, where R ≃

rwg sinθ S
app is the effective contact radius, taken at the Neumann’s

triple junction between the water, oil and gas phases. Since we

are only interested in the first order correction here, we have also

approximated θapp ≃ θ S
app. As such, Eq. (24) can be written as

cosθapp = cosθ S
app −

2Λγwg sinθ S
app

∆Pog
× 1

R
, (26)

This equation has a familiar interpretation in the literature of

wetting phenomena: it is reminiscent to the correction term in

Young’s angle due to line tension27,28, with an effective line ten-

sion given by

τ =
2Λγ2

wg sinθ S
app

∆Pog
. (27)

The linear approximation in Eq. (26) is also shown in Fig.

5. It is in good agreement with the full numerical results for

−∆Pwg/∆Pog < 0.5.

The coefficient Λ in Eq. (25) can in principle assume both

positive and negative values. It can be shown that Λ < 0 if

θw + θg > π + θow + θog. Using the fact that θw + θg + θo = 2π,

we obtain π > θo +θow +θog, which has a simple geometrical in-

terpretation. From Fig. 6 it is clear that when θo +θow +θog = π

the three angles of the oil ridge form a triangle. When Λ < 0 the

sum of these angles is smaller than π, and the oil ridge is stable

only if ∆Pog < 0 and ∆Pow < 0. In contrast, if Λ > 0, the sum of

the three angles is larger than π, and the ridge is stable only if

∆Pog > 0 and ∆Pow > 0. Λ < 0 and ∆Pog < 0 represent the most

relevant physical regime for liquid infused surfaces. The case of

Λ > 0 implies larger oil-water and oil-gas wetting angles, which

are often in conflict with the wicking criterion in Eq. (1). Ad-

a) b)
<0

Pog<0

>0

Pog>0

o

ow og

o

ow og

Fig. 6 Sketch illustrating the stable shapes of the oil ridge depending on

the sign of Λ: a) the common case, with Λ < 0 and ∆Pog < 0; and b) the

chimera case, with Λ > 0 and ∆Pog > 0

70o

a) b)

Fig. 7 a) Experimental image of a water droplet on an OTS surface

infused by BMIm as the lubricant, taken from Smith et al. 2. The

observed apparent contact angle θapp ≃ 70◦±2◦ is in excellent

agreement with the prediction of Eq. 15 θ S
app = 70.9◦. b) The surface

pattern used in the experiment, again taken from Smith et al. 2. From

panel b), we estimate that the projected solid fraction exposed to the

water and gas phases is f = 0.44.

ditionally, for ∆Pog > 0, the fluid configuration could be unstable

against non-axisymmetric perturbations29.

Taking advantage of Eqs. (15) and (27), we have computed the

apparent contact angles and effective line tensions for several LIS

systems reported in the literature2,3,30 in Table 1. In Fig. 7, we

have also shown one experimental drop morphology from Smith

et al.2. Here the oil ridge is small in comparison to the droplet

size, and as such, we expect Eq. 15 to provide an excellent ap-

proximation. Indeed the measured contact angle is in agreement

with the theoretical prediction, assuming f = 0.44.

To compute the effective line tension in Table 1, we have as-

sumed a typical Laplace pressure |∆Pog| = 103 Pa for the oil–gas

ridge, corresponding to a radius of curvature of rog ∼ 100 µm. The

computed effective line tension values are comparable to those

measured for gas-liquid-solid contact line tensions31. Noticeably,

liquid infused surfaces always have negative effective line ten-

sions since the signs of Λ and ∆Pog are always the opposite for the

system to be stable. Thus, the apparent contact angle of a wa-

ter droplet on a liquid infused surface increases with increasing

droplet volume. Our analytical expressions are readily applicable

to other solid surfaces and fluids (both for the droplet and the

lubricant) for cases where γwg < γow + γog.
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Source Solid droplet (w) lubricant (o) γwg γog γwo θw θo θg θow θog θ S
app Λ τ

Ref. 6 inv. opal H2O decanol 30 28.5 8.6 108.3 88.4 163.3 0 0 48.4 −0.14 −1.9×10−7

Ref. 2 OTS H2O BMIm 42 34 13 135.4 60.2 164.4 37 64 70.9 −0.15 −4.9×10−7

Ref. 3 S.Epoxy H2O FC-70 72.4 17.1 56.0 175.6 18.8 165.6 36.5 14.1 118.2 −0.29 −2.7×10−6

Ref. 3 Epoxy H2O FC-70 72.4 17.1 56.0 175.6 18.8 165.6 71.7 33.5 108.7 −0.24 −2.3×10−6

Ref. 3 Silicon C16 H34 H2O 27.2 72.4 51.1 47.2 164.0 48.8 5.6 13.1 28.8 0.028 −2.0×10−8

Table 1 Theoretical prediction for the apparent contact angle θ S
app for several LIS systems reported in the literature 2,3,30, as given by Eq. (15). For the

Cassie-Baxter contact angles, we have assumed rough surfaces with projected solid area fraction f = 0.44. The surface tensions are expressed in the

unit of mN/m, the line tension τ is in Newton (N), and the angles are in degrees (◦). Λ is the dimensionless parameter needed for computing the line

tension as defined in Eq. (25). For the computation of the line tension in Eq. (27), we have assumed a typical Laplace pressure ∆Pog = 103 Pa for the

oil–gas ridge, corresponding to a radius of curvature, rog ∼ 100 µm.
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Fig. 8 Contact angle hysteresis on liquid infused surfaces arises due to

the pinning of oil-water and oil-gas contact lines by the surface

corrugations. Sketches illustrating the configurations of the oil ridge for

(a) an advancing and (b) a receding water droplet.

5 Contact Angle Hysteresis

In the previous sections we computed the apparent contact angles

in thermodynamic equilibrium, by introducing the Cassie-Baxter

contact angles on the composite substrate. In this section we will

address how pinning of the oil-water and oil-gas contact lines

give rise to contact angle hysteresis on liquid infused surfaces. In

general contact line pinning can be generated either by chemical

heterogeneities or surface topographies32–36. Here we will focus

on the latter. Following the Gibbs condition37, a pinned contact

line does not exhibit a unique contact angle, instead it can take a

range of values.

There are four wetting states on liquid infused surfaces: (i)

When θ CB
ow = θ CB

og = 0◦, we expect the contact angle hysteresis to

be negligible; (ii) In contrast, for θ CB
ow > 0◦ and θ CB

og > 0◦, the oil-

water and oil-gas contact lines can both be pinned. As illustrated

in Fig. 8, for a droplet to advance on a liquid infused surface,

the oil-water contact line has to recede and the oil-gas contact

line has to advance. Similarly, a receding droplet requires the

oil-water contact line to advance and the oil-gas contact line to

recede; (iii) For θ CB
ow > 0◦ and θ CB

og = 0◦, contact line pinning only

occurs at the oil-water contact line, while (iv) for θ CB
ow = 0◦ and

θ CB
og > 0◦, pinning only takes place for the oil-gas contact line.

In our model the contact angles are defined with respect to the

oil phase, and are required to be small to guarantee the validity of

the hemi-wicking criterion, Eq. (1). The complementary angles,

defined with respect to the water and gas phases are therefore

large, and the analogy to superhydrohobic materials is appropri-

ate.

A large body of work on contact angle hysteresis on superhy-

drophobic materials leads to the surprisingly simple result that

�
�
 [

d
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g
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-�Pwg/�Pog
10
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10
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Fig. 9 Contact angle hysteresis (∆θ ) of a water droplet on a liquid

infused surface with θo = 30◦, θw = θg = 165◦, θ CB
ow = 30◦ and θ CB

og = 15◦.
For this set of parameters, the two sets of data shown in Fig. 4(a) in fact

correspond to the advancing (θ R
ow = 0◦, θ A

og = 15◦) and receding

(θ A
ow = 30◦, θ R

og = 0◦) contact angles. We only focus on the definition of

the apparent contact angle as defined at the triple junction, θapp.

the liquid (e.g. water) advancing contact angle occurs for θ A
wg =

180◦ 32,38, where deviations reported in literature are most likely

due to experimental difficulties of measuring very large angles.

The estimate for the receding angle is more debated, and several

models have been proposed in the literature. These include (i)

the sparse defect model proposed by Joanny and DeGennes39,

and experimentally tested by Reyssat and Quere40, which sug-

gests the receding contact angle has a logarithmic dependence

with respect to the pillar spacing; (ii) thermodynamic approaches

based on a linear average of the contact angle along the contact

line41, and (iii) the Cassie-Baxter model based on the area aver-

age42. It is not in the scope of this work to assess the accuracy of

such models in general, but we remark that the thermodynamic

Cassie-Baxter approach is more aligned with the approximations

assumed here. The sparse defect model is not consistent with the

requirement of dense patterns, while the linear averaging model

implies a strong effect of the orientation of the contact line on the

global shape of a drop, which appears negligible in the currently

available experimental data17,38.

Contact angle hysteresis is usually evaluated employing two al-

ternative experimental approaches. The first one relies on apply-

ing a body force to the droplet43, and the advancing and receding

angles are measured at the front and back of the droplet just be-

fore it starts to move. To aid the discussion, let us now consider a

specific example where the oil-water and oil-gas (Cassie-Baxter)

contact angles are respectively θ CB
ow = 30◦ and θ CB

og = 15◦. The
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Fig. 10 A typical contact angle hysteresis loop for a water droplet on a liquid infused surface. Here θo = 30◦, θw = θg = 165◦, θ CB

ow = 30◦ and θ CB
og = 15◦.

Panel (a) shows the apparent contact angle of the droplet as a function of its volume, while panel (b) shows the radii of the oil-water and oil-gas

contact lines. The oil pressure, ∆Pog =−2γog/Ro, is kept constant in these calculations, where Ro is the radius of curvature of the oil-gas interface. We

use Ro to normalise the droplet volume and the contact line radii. (c-h) Drop morphologies as indicated in panels (a) and (b).

Neumann angles are chosen to be θo = 30◦ and θw = θg = 165◦.
Based on our discussion in the previous paragraph, the conditions

for an advancing contact line are θ R
ow = 0◦ and θ A

og = θ CB
og = 15◦,

while for a receding contact line we have θ A
ow = θ CB

ow = 30◦ and

θ R
og = 0◦. As such, the curves in Fig. 4 represent the advancing

and receding apparent contact angles for a water drop on a liquid

infused substrate with the aforementioned Cassie-Baxter contact

angles, parametrized by the pressure ratio −∆Pwg/∆Pog. The con-

tact angle hysteresis is defined as the difference between the ad-

vancing and receding contact angles, ∆θapp = θ A
app −θ R

app, and it is

shown in Fig. 9 as a function of −∆Pwg/∆Pog. The contact angle

hysteresis shows a strong dependence on the pressure ratio (or

equivalently the size of the oil ridge relative to the water droplet).

It increases logarithmically in the limit of −∆Pwg/∆Pog → 0, and

it approaches a constant value as −∆Pwg/∆Pog → ∞. Interestingly,

the curve is also non monotonic, and exhibits a shallow minimum

close to −∆Pwg/∆Pog = 0.2. This is in contrast with binary systems

(e.g. water-gas on a solid surface), where the advancing and re-

ceding angles (correspondingly, contact angle hysteresis) can be

regarded as constant material parameters.

The analytical expressions in Eqs. (15), (20) and (26) can be

modified to predict advancing and receding contact angles in the

limit of small oil ridge, with the following replacement: θ R
ow = 0◦,

θ A
ow = θ CB

ow , θ A
og = θ CB

og , θ R
og = 0◦. In the limit of −∆Pwg/∆Pog → 0,

we obtain

cosθ
S,A
app =− γow

γwg
+ cosθ CB

og

γog

γwg
, (28)

and

cosθ
S,R
app =−cosθ CB

ow

γow

γwg
+

γog

γwg
. (29)

Furthermore, the resisting force due to contact angle hysteresis is

given by

F = 2Rγwg∆cosθ , (30)

where R is the contact radius and ∆cosθ = cosθ R−cosθ A. We can

straightforwardly obtain the expression for ∆cosθ S
app = cosθ

S,A
app −

cosθ
S,R
app by combining Eqs. (28) and (29). Here we assume the

action of the body force does not significantly deform the droplet.

The resulting closed form expression once again can be inter-

preted as a ’weighted sum’ of the contact angle hysteresis for

the oil–water and oil–gas contact lines. Similar expressions for

∆cosθapp can also be obtained for small but finite −∆Pwg/∆Pog by

exploiting Eqs. (20) or (26).

The second approach to measure contact angle hysteresis is by

varying the volume of the water droplet44. It is important to

keep in mind that this protocol, unlike the previous one, involves

measurements at different pressure ratio −∆Pwg/∆Pog. To eluci-

date the relevance of −∆Pwg/∆Pog, we report in Fig. 10, a typical

hysteresis loop. As before, we consider θ CB
ow = 30◦, θ CB

og = 15◦,
θo = 30◦ and θw = θg = 165◦, such that the data shown in Fig.4(a)

are the advancing and receding apparent contact angles as func-

tion of the pressure ratio for this set of parameters.

Let us begin with the drop configuration shown in panel (c) of

Fig. 10. When the drop volume is increased, the apparent con-

tact angle also increases. Here both the oil-water and oil-gas con-

tact lines are pinned. At (d), the oil-water contact angle locally

reaches 0◦, and as a result, its contact line depins. With increas-

ing the droplet volume, the oil-water contact line slides while the

oil-gas one remains pinned. From configuration (e), both contact

lines reach their corresponding advancing and receding contact

angles, and become free to move. Correspondingly we observe a

clear change of slope in the volume-contact angle relation. Once

reaching (f), we reverse the process and decrease the droplet vol-
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ume. Similar to the advancing scenario, initially both contact

lines are pinned. As before, the depinning of the oil–water and

oil–gas contact lines are not simultaneous, and occur at (g) for

the oil–water contact line and at (h) for the oil–gas contact line.

Both contact lines move freely from (h) to (c), which is our start-

ing configuration.

6 Discussion

In this work we have theoretically investigated the apparent con-

tact angle and contact angle hysteresis of a droplet on liquid in-

fused surfaces (LIS). We derived a closed form expression for the

apparent contact angle in the limit of vanishing oil ridge that cap-

tures the energy balance of the three fluid phases in contact with

the solid substrate. Moreover, we computed the first order correc-

tion to the contact angle accounting for the influence of a small

but finite oil wetting ridge surrounding the droplet, and showed

that the correction term can be interpreted as a negative line ten-

sion. We also employed numerical calculations to explore the

full range of negative oil-gas Laplace pressures, showing that the

apparent contact angles indeed vary as a function of pressure.

Unlike usual wetting scenarios involving two fluids (e.g. water–

gas), the apparent contact angle for LIS cannot be regarded as

a constant material property. We further note that our analytical

expressions are in excellent agreement with the numerical results.

By introducing appropriate models for pinning and depinning

of the oil–water and oil–gas contact lines, we showed how the an-

alytical expression for the apparent contact angles can be readily

manipulated to predict contact angle hysteresis on liquid infused

surfaces. We presented a typical contact angle hysteresis loop,

where we demonstrated that the depinning of the oil–water and

oil–gas contact lines are in general not simultaneous. Contact

angle hysteresis on LIS also depends on the oil pressure, or al-

ternatively the relative size of the oil wetting ridge to the water

droplet. Numerical calculations indicate that the contact angle

hysteresis is smaller for large and negative oil pressure (small

ridge), compared to small and negative oil pressure (large ridge).

This finding provides a useful design principle for LIS, suggesting

that the contact angle hysteresis can be tuned by the oil pressure,

which can be achieved for example by under-filling/over-filling

the substrate with oil.

Our results so far are limited to equilibrium morphologies. A

full characterisation of wetting dynamics on liquid infused sur-

faces is an important and open problem. To this end, we recently

developed a ternary free energy Lattice Boltzmann approach45,

well suited for handling the fluid dynamics of the water droplet

and infusing oil, and for taking into account the Neumann an-

gles and wetting contact angles involved in the problem. Another

important direction for future work is to investigate the possible

presence of thin oil film coating the surface corrugations and/or

the water droplet2, including the molecular mechanism that de-

termines the film thickness and its influence to the shape of the

water droplet when their length scales are comparable. When the

infusing oil cloaks the droplet, the water-gas surface tension is

not the appropriate variable to use in Eqs. (4), (15) and (26).

Instead, it should be replaced by a composite water-oil and oil

water interfaces, γwg → γow + γog −∆(e), where the binding po-

tential ∆(e) is a function of the oil film thickness, and its form

depends on the intermolecular interactions of the fluids. We will

explore this case in more details in future works.
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The	apparent	contact	angle	and	contact	angle	hysteresis	of	a	droplet	on	liquid	
infused	surfaces	have	strong	dependence	on	the	relative	size	between	the	
droplet	and	its	surrounding	wetting	ridge.	
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