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Charged colloidal particles trapped at an air–water interface are well known to form an ordered crystal, stabilized by a long

ranged repulsion; the details of this repulsion remain something of a mystery, but all experiments performed to date have con-

firmed a dipolar-repulsion, at least at dilute concentrations. More complex arrangements are often observed, especially at higher

concentration, and these seem to be incompatible with a purely repulsive potential. In addition to electrostatic repulsion, inter-

facial particles may also interact via deformation of the surface: so-called capillary effects. Pair-wise capillary interactions are

well understood, and are known to be too small (for these colloidal particles) to overcome thermal effects. Here we show that

collective effects may significantly modify the simple pair-wise interactions and become important at higher density, though we

remain well below close packing throughout. In particular, we show that the interaction of many interfacial particles can cause

much larger interfacial deformations than do isolated particles, and show that the energy of interaction per particle due to this

“collective sinking” grows as the number of interacting particles grows. Though some of the parameters in our simple model

are unknown, the scaling behaviour is entirely consistent with experimental data, strongly indicating that estimating interaction

energy based solely on pair-wise potentials may be too simplistic for surface particle layers.

1 Introduction

Since first being observed by Pieranski in 19801, the self-

assembly of colloidal particles at a liquid–fluid interface has

sparked considerable interest as both a system in which to

study the nature of phase transitions in two-dimensions2,3 and

as a useful tool for designing regular arrays at small scales4. A

particularly striking feature of these self-assembled colloidal

crystals is that the constituent colloids maintain an equilib-

rium separation that can be several times larger than the par-

ticle diameter5: this feature is particularly useful in particle

lithography since it allows the fabrication of patterns without

particle–particle contact, which can cause cross-talk in various

applications4. At a fundamental level, this separation clearly

indicates that the particles are repulsive; detailed studies show

that the charge on the particles is, in fact, separated so that the

colloids behave as electrical dipoles6,7 or even quadrupoles8,9.

Pieranski1 believed the interaction between particles to be

purely repulsive: he attributed the regular spacing of colloids

to be due to the geometrical confinement of the system. How-

ever, isolated clusters of particles have been observed exper-

imentally10–13, suggesting that this geometrical confinement

is not necessary for the formation of a well-ordered crystal.
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To form such a bound state requires a long-ranged attractive

force to overcome the electrostatic repulsion. The existence of

such an attraction was also suggested from the inversion of the

pair-correlation function14 and could be at the origin of stable

clusters studied by Nikolaides et al.15. However, the question

of what provides the attractive interaction that balances this

repulsion remains open.

At first sight, it is natural to assume that this attraction could

result from the well-known attraction between floating par-

ticles that is mediated by meniscus deformation16–18, some-

times called the ‘Cheerios effect’19. However, it is also well-

known that for pairwise interactions, the interaction energy

of these flotation forces17 becomes on the order of the ther-

mal energy, kBT , for particles of radius smaller than around

10 µm,17 which is precisely the scale at which these colloidal

crystals are observed. Nevertheless, an attractive force persists

and so the question remains: what is the basic mechanism be-

hind the attractive force?

Several different mechanisms have been proposed as the

origin of the attractive force, including undulations due to a

rough contact line13 and/or enhanced normal forces of electri-

cal origins9,15,20 — an electro-dipping force. However, none

of these explanations are able to satisfactorily explain all ex-

perimental observations: particle roughnesses of the size sug-

gested by Stamou et al.13 were not observed experimentally21

while observations with imposed electrical fields to vary the

strength of the electro-dipping force did not produce the ex-

pected variation in particle spacing7. We are not able to re-

solve these disagreements here, or to propose a new electro-
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static mechanism. Instead, we revisit the tacit assumption that

the interaction energy between a pair of particles is a useful

way of estimating the typical interaction energy for a large

number of interfacial particles.

The qualitative change to the flotation of particles caused by

other nearby objects is now well documented22–24. At macro-

scopic scales, rafts of dense objects float significantly deeper

in the liquid than they do in isolation. This is because the prox-

imity of other particles in the raft constrains the menisci to be

more horizontal than they would be for an isolated particle:

the particles thus sink deeper into the liquid so that hydrostatic

pressure can make up for the loss of supporting force from sur-

face tension. Indeed, this effect can be so dramatic that dense

particles that are able to float in isolation may actually sink in

the proximity of enough other floating particles22,23. While

the dramatic loss of floating stability is unlikely to be relevant

at the very small scales of colloidal particles, the observation

that their vertical force balance may be affected by the pres-

ence of other particles is likely to be robust. The question

we address in the remainder of this paper is how any alter-

ation to the vertical force balance manifests itself in the hor-

izontal force balance condition — is the effective interaction

energy between particles substantially modified from the two-

body case? This question has been addressed previously using

mean-field, or coarse-grained approaches25–31; here, we study

this problem by considering in detail the meniscus deforma-

tions caused by individual particles and the collective effect of

this deformation.

We begin by considering a two-dimensional model problem

in §2, which allows us to obtain numerical results for large as-

semblies of particles. These results can be understood quan-

titatively using a scaling analysis, which is then extended to

the three-dimensional problem of most interest in §4. We then

conclude in §5 by discussing the possible significance of our

theoretical results for the spontaneous formation of colloidal

islands.

2 Two-dimensional formulation

Here we consider a two-dimensional configuration in detail.

With this simplification, we are then able to consider a point-

like particle (corresponding to a line in 3D), facilitating our

analysis. We aim to gain physical understanding here, that

can then be used to inform an understanding of the fully three-

dimensional problem.

2.1 Key ingredients of the model

We are interested in understanding in detail the flotation of

a series of objects; to be able to form the crystals that are

observed, we expect that these objects should be subject to

fluid
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Fig. 1 Geometry of floating line charges at the interface between a

liquid and a fluid. (a) The general formulation of the problem for

many charges, showing the geometrical and force balance aspects as

insets. (b) The specialization to the two-body problem. Note that, in

each case, the angles of the interface to the horizontal are defined

positive above the horizontal.

both attractive and repulsive interactions. The question of in-

terest is then really can an ordinarily small pairwise interac-

tion be amplified in a many-body interaction? The simplest

purely repulsive interaction in 2D is that between line charges

(rather than dipoles, which can become attractive depending

on their orientation). By ‘line charge’ here, we mean the two-

dimensional analogue of a point charge: charge exists along

a line perpendicular to the plane of figure 1. We therefore

consider a collection of N identical line charges floating at the

interface between a liquid, of density ρl , and a fluid, of density

ρ f < ρl ; the interfacial tension is γ . Each line charge has an

electric charge +q per unit length (so that electrostatic interac-

tions are purely repulsive) as well as a weight per unit length

mg. A sketch of the setup is shown in figure 1.

In this simple model, the point-like particles deform the in-

terface purely due to their weight: there are no wetting ef-

fects to be considered. We envisage that this weight-induced

deformation will be small since the particles of interest are

themselves small and easily supported by surface tension. As

a consequence, the attractive interaction due to the weight-

induced meniscus deformation between a pair of these parti-

cles should also be small, leading to a relatively large equi-

librium separation at which capillary attraction balances elec-

trostatic repulsion. Equivalently, we expect the typical inter-

action energy between a pair of such particles (N = 2) to be

2 | 1–11
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very small (compared to the thermal energy). To understand

the balance between deformation-induced attraction and elec-

trostatic repulsion, we first consider the two-body problem in

some detail.

2.2 The two-body problem

The interaction between two identical line charges will clarify

the various dimensionless parameters that control the problem.

We orientate our axes so that the two particles are located at

x =±d/2 with d the distance that separates them (see fig. 1b).

The meniscus y = h(x) must satisfy the Laplace–Young equa-

tion

γ
h′′

[

1+(h′)2
]3/2

= (ρl −ρ f )gh, (1)

with primes denoting differentiation with respect to x. Eqn

(1) is to be solved subject to a symmetry condition, h′(0) = 0,

and the meniscus decay condition, h(±∞) = 0. However, the

meniscus may have a discontinuity in slope at each particle

(indeed this discontinuity is what leads to a horizontal force

between particles in this line-particle limit).

2.2.1 The linearized problem Under the assumption that

the particles only deform the interface slightly, so that the

slope of interface deformations h′ ≪ 1, the Laplace–Young

equation (1) may be linearized. The deformation of the inter-

face caused by a single line charge at x = xi may then be found

analytically to be

h(x)

ℓc

=−
W

2
exp(−|x− xi|/ℓc) (2)

where x is the horizontal coordinate measured from the mass,

ℓc =

(

γ

(ρl −ρ f )g

)1/2

(3)

is the capillary length and

W = mg/γ (4)

is the dimensionless weight per unit length of the mass. Here,

the prefactor is determined by the vertical force balance on the

mass — the vertical force provided from surface tension must

balance the weight of the line mass.

If two identical masses float with separation d then by linear

superposition32, we have

h(x)

ℓc

≈−W

{

exp(−d/2ℓc)cosh(x/ℓc), |x|< d/2

cosh(d/2ℓc)exp(−|x|/ℓc), |x|> d/2.
(5)

To determine the separation distance at equilibrium, d, we

use the horizontal balance between the (repulsive) electrostatic

force and the (attractive) capillary forces, which reads

γ(cosβ+− cosβ−)+
q2

2πε0d
= 0 (6)

where ε0 is the permittivity of free space and the angles β± are

the interfacial inclinations at the contact point, given in terms

of the meniscus profile by tanβ± = ±h′(d±/2). Using (5) to

determine the leading order behaviour of cosβ+− cosβ− for

W ≪ 1 we find that the equilibrium separation is the solution

of the equation

C2

W 2
=

d

2ℓc

exp(−d/ℓc), (7)

where

C2 =
q2

2πε0γℓc

(8)

is the dimensionless charge parameter, which measures the

strength of electrostatic repulsion at separation d = ℓc in com-

parison to the typical force from surface tension.

A sketch of the RHS in (7) reveals that it is a non-monotonic

function of d/ℓc; in particular, an equilibrium is only possible

for sufficiently weak repulsion, or sufficiently large weight, so

that C2/W 2 ≤ 0.184. For a given value of C2/W 2 ≤ 0.184

there are two equilibria, the smallest of which is stable and the

largest of which is unstable. For d/ℓc ≪ 1, the position of the

stable equilibrium is given by

d

ℓc

≈ 2
C2

W 2
. (9)

The analytical progress allowed by the assumption of a lin-

ear yields key insight. In particular, we see that as C2/W 2

decreases, so does the equilibrium separation between them,

d. As a result of this, the depth at which each particle floats

h∗

ℓc

=−
W

2
[1+ exp(−d/ℓc)] , (10)

increases as C2/W 2 decreases. This sinking is caused by the

presence of nearby objects and so we refer to it as ‘collective

sinking’ here. The fact that the presence of nearby objects

modifies the vertical force balance and hence can cause ob-

jects that would float in isolation to sink, has been observed at

macroscopic scales previously22–24,33. Here, we do not con-

sider this sinking transition, but emphasize the key point that

the presence of a second particle nearby, via its interfacial

deformation, modifies the behaviour of a first particle. This

is similar to the capillary collapse studied recently27–31. We

shall shortly go beyond the mean-field approach adopted in

these previous works by explicitly considering ensembles of

particles accounting for the interface deformation beyond the

linear theory just presented. To see the possible effect of the

nonlinearities, we first reconsider the two-body problem, ac-

counting for nonlinear meniscus deformation.
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2.2.2 The nonlinear problem The above analysis hinged

on the assumption that the slope of the interface, h′ ≪ 1,

so that the Laplace–Young equation (1) could be linearized

and the meniscus deformations caused by each particle super-

posed. While this is a valid assumption for large particle sep-

arations and small particle weights, we now investigate how

the results of the previous sub-section change once nonlinear

interface deformations are considered.

When the meniscus slope is no longer considered to be

small, the Laplace–Young equation must be solved numeri-

cally. In fact, all that is required is to find the angles that the

menisci make with the horizontal, β± in fig. 1. This simplifi-

cation, and the fact that the external menisci extend to infinity,

mean that we may make use of well known34 first integrals of

the Laplace–Young equation (1) which give

sinβ+ =−
h∗

ℓc

[

1−h2
∗/(4ℓ

2
c)
]1/2

(11)

cosβ+ = 1−
h2
∗

2ℓ2
c

. (12)

To determine the angle β−, however, we must resort to a nu-

merical solution of (1) subject to the boundary conditions

h′(0) = 0, sinβ− =W +
h∗

ℓc

[

1−h2
∗/(4ℓ

2
c)
]1/2

. (13)

(These relations express symmetry and vertical force balance,

respectively.) Once β− and h∗ have been determined for a par-

ticular configuration, the horizontal force balance (6) gives the

dimensionless charge C required for flotation at that equilib-

rium separation. The results of this numerical calculation, and

a comparison with the corresponding result for small defor-

mations (7), are shown in fig. 2a. We observe that the trend

is very similar to that observed in the linear theory, although

the nonlinear equilibrium separation at fixed C2/W 2 decreases

as W increases: the nonlinear effect of nearby particles is to

draw those particles closer together than would be supposed

from the linear theory.

2.2.3 The energy of interaction For another perspective

on the problem, we consider the energy of the system, U2,

which is given in dimensional terms by

1
2
U2 = mgh∗ −

q2

4πε0
log(d/ℓc)

+ 1
2

∫ ∞

0

[

(ρl −ρ f )gh2 + γ(h′)2
]

dx.(14)

For the case of linear deformations, this expression may be

evaluated and expressed in dimensionless terms as

U2

γℓc

=−W 2

[

C2

W 2
log(d/ℓc)+

1
2

(

1+ e−d
)

]

. (15)

	B


0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

	C


0 0.05 0.1 0.15 0.2

-1.2

-1.1

-1

-0.9

-0.8

-0.7

Fig. 2 Comparison between the linearized and fully nonlinear

approaches to the two body problem. (a) The equilibrium separation

deqm as a function of the charge-to-weight ratio C2/W 2. The result

of the linear analysis (7) (solid black curve) are shown together with

the result of full nonlinear computations for W = 0.2 (red dotted),

W = 0.4 (orange dashed), W = 0.6 (green dash-dotted) and W = 0.8
(blue dash-double dotted). The black dashed line represents the

asymptotic result (9), valid for C2/W 2 ≪ 1. (b) The combined

energy of the system (compared to that of a flat interface and

infinitely separated charges) at the corresponding equilibrium

separation, deqm. Here the result of the linear analysis (15) (solid

black curve) is shown together with the result of full nonlinear

computations for W = 0.2 (red dotted), W = 0.4 (orange dashed),

W = 0.6 (green dash-dotted) and W = 0.8 (blue dash-double

dotted). Note that two equilibria exist here, but that one corresponds

to a higher energy, and hence is unstable.
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This expression is compared to the fully nonlinear calculations

at the equilibrium separation, deqm, in fig. 2b. From this plot

we observe that as the electrical repulsion parameter C2 in-

creases, the depth of the energy well in which the system sits

actually decreases: increasing the strength of repulsion de-

creases the binding that surface tension and gravity are able

to supply until ultimately the particles disperse, separating to

d = ∞. (This unbinding happens for C2/W 2 & 0.184 in the

linear calculation.) We also note that the small deformation

(linear) theory is able to give a very good qualitative account

of the results of the nonlinear computations provided that the

weight per unit length, W , does not become too large. How-

ever, the general trend is that, once nonlinear deformations are

accounted for, the binding energy is larger (since, as we al-

ready saw, the equilibrium separation is smaller).

3 The 2-D many-body problem

3.1 Governing equations

In the last section, we considered the two-body problem in

some detail. This allowed us to identify the important di-

mensionless parameters as the dimensionless weight per unit

length, W , and the dimensionless repulsion strength, C2. Fur-

thermore, we showed that in the limit of light particles, W ≪ 1,

there is an equilibrium floating arrangement only if the charge-

to-weight ratio C2/W 2 ≤ 0.184. Finally, we found that the

typical energy scale of the interaction in such an equilibrium

floating arrangement is W 2: as we expect the energy of inter-

action is small when the weight of the particles themselves is

small.

We now turn to the many-body problem: does the presence

of many floating objects cause a raft of charged particles to

float deeper in the liquid than would be the case without many-

body interactions? If so, how does this ‘collective sinking’

influence the typical energy well in which each particle sits?

We consider the same setup as for the two-body problem

but with N line charges, i.e. N line charges, each of mass m

and charge q per unit length float at a liquid–fluid interface,

as shown schematically in figure 1. (For simplicity, we shall

consider N = 2n+ 1 odd, which facilitates our calculations;

we do not expect this restriction to have any material effect,

especially for large N.) The position of each particle in this

‘raft’ is determined by the balance of forces in both the vertical

and horizontal directions.

In the horizontal direction force balance requires the net

horizontal force from surface tension on the ith particle,

γ(cosβ+
i − cosβ−

i ), to balance the horizontal component of

the electrical repulsive force arising from every other particle.

In dimensionless terms we have

cosβ+
i − cosβ−

i =C2
n

∑
j=−n
j 6=i

x j − xi

d2
i, j

, (16)

where di, j =
[

(x j−xi)
2+(y j−yi)

2
]1/2

is the distance between

two particles. (Note that the Coulombic repulsion between

line charges ∼ 1/di, j with the additional factor (x j − xi)/di j

coming from resolving the force in the horizontal direction.)

In the vertical direction, the restoring vertical force from

surface tension on the ith particle, γ(sinβ+
i + sinβ−

i ), must

balance both the weight of the particle, mg, and any vertical

component of the repulsion between them. We have in dimen-

sionless terms

sinβ+
i + sinβ−

i =C2
n

∑
j=−n
j 6=i

y j − yi

d2
i, j

+W. (17)

The equations representing force balance give 2N equations

for 4N unknowns (for each particle, we know neither its (xi,yi)
coordinates nor the meniscus angles on either side of it, β±

i ).

To determine additional equations, we must also obtain addi-

tional relationships for the β±
i . In principle, these angles may

be determined by solving the Laplace–Young equation (1)

subject to the boundary conditions h(xi) = yi, h(xi+1) = yi+1.

In practice, this calculation is made simpler by two observa-

tions: firstly, for the menisci that extend to ±∞ we may use

the first integrals (11) and (12). Secondly, for particles that

are close (in comparison to the capillary length ℓc) the menis-

cus may be approximated by the arc of a circle, with radius

of curvature R (see lower right inset of fig. 1a). The radius of

curvature of the meniscus between particles i and i+1, which

we denote Ri,i+1, is then determined by noting that the hydro-

static pressure within the liquid along the interface, which we

estimate as −(ρl −ρ f )g(yi+yi+1)/2, must be balanced by the

capillary pressure drop, γ/Ri,i+1; in dimensionless notation we

therefore have

Ri,i+1 ≈
2

yi + yi+1
. (18)

Elementary geometry then leads to expressions for β+
i and

β−
i+1 in terms of the particle positions and Ri,i+1:

β+
i = sin−1 di,i+1

2Ri,i+1
+ sin−1 yi+1 − yi

di,i+1
(19)

β−
i+1 = sin−1 di,i+1

2Ri,i+1
− sin−1 yi+1 − yi

di,i+1
. (20)

With the geometrical relationships (19)–(20), the pertinent

results from the Laplace–Young equation (11), (12) and (18)

and the two force balance equations (16)–(17), we have a

closed problem. We solve these equations numerically using

1–11 | 5
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Newton’s method: an initial guess for the position of the par-

ticles (xi, yi) is supplied, which is refined by the iteration step

until a convergence criteria for (xi, yi) is met. More details

about the numerical method are discussed in Appendix A.

3.2 Numerical Results

For rafts consisting of identical particles, there are three pa-

rameters that characterize the raft shape: the dimensionless

weight per unit length, W , the dimensionless charge per unit

length, C, and the number of particles in the raft, N. For given

values of these parameters, the theoretical formulation given

in the preceding section allows us to determine numerically

the position of each particle and the properties of the raft.

Our main interest lies in the effect of varying the number of

particles N in a raft, and in understanding how a large number

of particles behave collectively. However, it is also of inter-

est to see how, with a fixed number of particles, a raft be-

haves as the two physical parameters, namely W and C, are

changed. Figure 3a shows how the raft shape changes as W

increases. As should be expected, the particles fall deeper into

the supporting liquid as they grow heavier, becoming more

closely packed as they do so. However, we emphasize that

this process is highly nonlinear: the largest W used in fig. 3a is

within 20% of the smallest value and yet the maximum depth

of the raft increases by almost a factor of 2 and the particles

come significantly closer together. This nonlinearity is a result

of the ‘collective sinking’ of the particles: an increase in W

brings them closer together, decreasing the vertical supporting

force that surface tension is able to provide, causing the parti-

cles to lower themselves further into the liquid to achieve that

supporting force and, in the process, increasing the attractive

force between them.

Figure 3b confirms the important role of this ‘collective

sinking’ in determining the raft shape: as the charge carried

by each particle increases, the distance between those parti-

cles also increases (since the repulsive force increases). This

means that the vertical surface tension force required to sup-

port the particles can be obtained at a lower depth and so the

raft rises out of the lower liquid.

To understand better the role of collective sinking, figure 4

shows the effect of changing just the number of particles con-

tained in the raft. For very small rafts, N = 3 for example,

the interface is barely deformed, and the equilibrium parti-

cle separation is relatively large: this is to be expected since

the weight per unit length used here, W = 0.0602 ≪ 1, does

not lead to a significant lateral capillary force. However, as

more of these lightweight, lightly charged, particles are intro-

duced (i.e. N increases), the particles float significantly lower

in the liquid (fig. 4a) and come much closer together (the

mean separation between neighbours, d, decreases, as shown

in fig. 4b). We see then that the attractive capillary inter-

-1 -0.5 0 0.5 1
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-0.5

0

-2 -1 0 1 2
-1
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	B
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Fig. 3 The effect of changing the physical parameters on the shape

of a raft with a fixed number of point-like particles at an interface

(here N = 31). (a) Increasing the weight per unit length of each

particle, W , causes the raft to sink deeper into the supporting liquid;

points show the position of the particles with C = 0.02 (fixed) and

W = 0.0602 (•), W = 0.063 (�), W = 0.066 (N), W = 0.069 (◭)

and W = 0.0714 (×). (b) Increasing the charge per unit length of

each particle, C, causes the raft to lift out of the supporting liquid

(since the electrical repulsion is stronger, the equilibrium distance is

larger and particles can reach equilibrium without sinking so deep

into the liquid); points show the position of the particles with

W = 0.0602 (fixed) and C = 0.0155 (•), C = 0.0195 (�),

C = 0.0214 (N) and C = 0.0228 (◭). In each case, the interface

shape is shown by the solid black curves.

action between neighbours must be becoming stronger with

increasing N, since the repulsive electrostatic interaction be-

tween neighbours increases as d decreases.

We note that we are not able to find equilibrium cluster

shapes with arbitrary values of the weight per unit length W

or number of particles, N, in a cluster. In particular, for large,

heavy clusters (N and W both large) our algorithm fails to find

equilibrium configurations. We interpret this apparent lack of

equilibrium solutions as a transition from floating to sinking,

as has been observed at macroscopic scales with sufficiently

large, heavy particle rafts22–24. While this is interesting at a

macroscopic scale, we do not study this transition here since

Increasing N
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Fig. 4 The effect of changing just the number of particles at the

interface. With W = 0.0602 and C = 0.02 fixed, we see that as the

raft size grows, particles are not only more closely packed (on

average) but also sink lower into the supporting liquid. (a) Particle

positions for rafts with increasing N: N = 3 (•), 9 (�), 15 (N), 21

(◭), 27 (H), 33 (◮), and 39 (×). (b) Mean distance between

neighbouring particles for rafts with W = 0.0602 and C = 0.02.

Vertical error bars indicate the standard deviation.
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this is extremely unlikely to be pertinent at microscopic scales.

Instead we focus on how the lowering of the cluster in the liq-

uid (but without becoming immersed in the bulk) modifies the

interaction between floating particles. To understand how this

‘collective sinking’ can enhance the strength of lateral capil-

lary interactions, we turn to some scaling considerations.

3.3 Scaling analysis and typical energy of interaction

To understand how collective effects can enhance lateral in-

teractions, we study the total energy of the system in scaling

terms. This energy consists of gravitational energy (of dis-

placed liquid and particles), interfacial energy and the electro-

static energy of the particles. In scaling terms, the lateral ex-

tent of the raft L ∼ dN; as found in the simulations presented

in figs 3 and 4 we shall assume that L ≪ 1 (i.e. that the raft

is small compared to the capillary length). The gravitational

and interfacial energy of the liquid displaced by the raft itself

and the outer meniscus ∼ H2(1+Nd), where H is the depth

of the edge of the raft and ‘∼’ means “scales as”. The grav-

itational energy of the particles themselves ∼ NWH. Finally,

the electrical potential energy ∼ −C2N2 logd since there are

N particles, each of which interacts with N −1 other particles

(and where we neglect terms like N2 logN since they do not

vary with d). The total energy is then

UN ∼ H2(1+Nd)+WNH −C2N2 logd, (21)

which may be minimized by varying H and d simultaneously.

This minimization gives that d ∼ NC2/H2 and H ∼ NW/(1+

dN) ∼ NW , since Nd ≪ 1, so that d ∼ C2

W 2 N−1. Comparing

this to the corresponding result from the two-body problem,

(9), and assuming that the prefactor might be such that this

result holds all the way down to N = 2, we then hypothesize

that

d ≈
C2

W 2

4

N
. (22)

This prediction is compared with our numerical data in fig-

ure 5a. The comparison shows that numerical data collapse as

C, W and N are varied independently; furthermore the scaling

and, to a certain extent, the prefactor predicted in (22) are as

predicted. (Note that strictly speaking the above scaling anal-

ysis applied only to large numbers of particles, N ≫ 1, and so

the prefactor in (22) is meant to be indicative.)

The total energy of interaction of the system in this equi-

librium, UN , is also of interest. Using the equilibrium value d

from (22), we find that

UN ∼ N2
[

W 2 +C2(1+ logN)
]

∼ N2W 2, (23)

for C/W ≪ 1. The key observation about this energy is that

it is quadratic in N, which means that the binding energy per

particle, UN/N ∼N increases with the number of particles: the
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Fig. 5 The (a) mean particle separation and (b) energy change per

particle as a result of collective sinking. Results are shown for rafts

with different numbers of particles, N, and different weights per unit

length, W . Colour is used to show the number of particles in the raft

from dark red (N = 3) to blue (N = 39) while the symbol indicates

different values of W : squares show numerical results with

W = 0.0602 and N varying while triangles show individual values of

N (coded by colour) with W varying in the range

0.0602 ≤W ≤ 0.66. Here C = 0.02 throughout and the solid lines

represent the predictions (a) (22) and (b) (24), which are based on

our scaling analysis and comparison with the two-particle problem.
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collective sinking of particles into the liquid increases their

binding energy. Put another way, an estimate of the binding

energy that focuses only on the energy of pairwise interactions

is qualitatively incorrect as the size of the raft increases.

Comparing the scaling in (23) with the exact result for N =
2, (15), and assuming that the prefactor is such that the former

scaling with N = 2 reduces to (15) we find that

UN

N
≈ 1

4
NW 2. (24)

Figure 5b shows a plot of the binding energy (per particle) de-

termined numerically as the physical parameters of the system

are varied. Again, we see that the data collapse using the scal-

ing suggested by (24), and that the binding energy per particle

exhibits a similar scaling to that expected from (24), which is

shown as the solid line in figure 5b. As expected, therefore, we

see that collective sinking can cause an increase in the ‘energy

well’ in which floating particles find themselves.

We emphasize that the pair-wise calculation, which led to

(15), would predict an energy per particle ∼ W 2. Collec-

tive sinking (and also the linear superposition of capillary

collapse27,28) leads to an additional multiplicative factor N,

which clearly becomes more important as the size of the clus-

ter, N, increases. In particular, while the scaling in (23) holds,

the binding energy per particle can become arbitrarily large as

a result of collective sinking.

4 The 3-D case

4.1 Scaling analysis

In the three-dimensional case of interacting dipoles that moti-

vated this study it is difficult to perform full numerical calcula-

tions: these would involve determining the three-dimensional

meniscus shape surrounding many objects and resolving a

contact line that is not in general circular, even for floating

spheres35. While such an investigation remains a possibility

for the future, here we focus on the understanding we have

gained from our detailed consideration of the two-dimensional

problem to understand the 3D problem using scaling argu-

ments.

We consider N dipoles, each of mass m. Assuming that

the dipoles are aligned by an external field so that they are

repulsive, not attractive, the pairwise interaction energy may

be written U ∼ A/d3, where A is a constant that will depend

on the nature of the dipolar interaction, e.g. A = µ0|~pmag|
2 for

magnetic dipoles or A = |~pelec|
2/ε0 for electrical dipoles. The

scaling behaviour of the dipolar energy of this assembly de-

serves careful discussion: in the 2D case the sum of pairwise

interaction energies meant that the total energy scaled like N2.

For dipoles in 3D, however, the scaling is more subtle since the

energy of an individual dipole surrounded by an infinite, pla-

nar cloud of dipoles with mean nearest-neighbour spacing d is

found by summing over the interaction energies of an infinite

series of rings of radius Ri = id (i = 1,2,3, ...), each contain-

ing approximately 2πi other dipoles. We therefore find that

U .∑
∞
i=1 2πi×A/(id)3 = 2πζ (2)A/d

3
, and that the energy of

the system due to these dipolar interactions is Udipole ∼NA/d
3
.

The gravitational energy of the particles is Uparticles ∼ NmgH,

while the gravitational (and interfacial) energy of the liquid

due to the deformation is Uliquid ∼ ∆ρgH2
[

N1/2dℓc +Nd
2]

,

where we have included the displaced liquid from the aggre-

gate itself as well as the external meniscus around the perime-

ter and ∆ρ = ρl −ρ f .

Minimizing over H, we find that

H ∼−
Nm

∆ρ
[

N1/2dℓc +Nd
2]

(25)

while minimizing over d gives

NA

d
4
∼ ∆ρgH2

[

N1/2ℓc +Nd
]

∼
N3/2m2g

∆ρd
2[
ℓc +N1/2d

]

. (26)

Solving for d gives

d ≈ αN−1/4 A1/2ℓ
1/2
c ∆ρ1/2

mg1/2
, (27)

assuming that N1/2d ≪ ℓc and introducing an unknown pref-

actor α . Note that as in the 2D monopole case, the mean sep-

aration decreases as the aggregate grows larger.

We emphasize that this result only holds for large clusters,

where each dipole effectively has infinitely many other dipoles

with which it could interact; the interaction energy is then cut

off by the decay of the dipolar potential, rather than the num-

ber of neighbours. With smaller clusters, the dipole–dipole

interaction energy is instead limited by the number of avail-

able dipoles, which are a typical distance r away. In this case,

Udipole ∼ AN2/r3. Assuming that r ∼ N1/2d, we have that

Udipole ∼ AN1/2/d
3
. To progress further, we assume that small

clusters are approximately spherical36, with radius of curva-

ture ∼ r so that the surface energy ∼ γNd
2
; equating with the

dipole–dipole energy, we find that d ∼ N−1/10.

4.2 Macroscopic analogue experiments

We are not aware of experimental data at a microscopic

scale that would allow the scaling law in (27) to be tested.

However, recent experiments on macroscopic paramagnetic

spheres floating at an air–water interface showed that these

spheres do form a raft of the form considered in this paper37.
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Fig. 6 Aggregates of dipolar particles at a liquid–fluid interface. (a)

N = 94 paramagnetic spheres of radius a = 200 µm in an externally

applied field of 50 G form a closed aggregate at an air–water

interface (image taken from Vandewalle et al.37). Note in particular

that the particles near the edge are more spaced than those at the

centre where, since the interfacial deflection is larger, the capillary

attraction is larger too. (b) The average distance d between

paramagnetic particles floating at the air–water interface (data taken

from Vandewalle et al.37). The dashed line shows the best fit from

the prediction (27) — a scaling that is tested further in the inset. (c)

PS particles of radius a = 1 µm at the interface between decane and

a 0.1 M aqueous NaCl solution. Again, we note that near the edge of

the cluster the particle spacing becomes larger than it is away from

the edge — an observation that is quantified in (d) by plotting the

variation of particle density along a normal to the edge of the

aggregate (highlighted by the red lines in (c)).

By digitizing the images presented in figure 2 of Vandewalle

et al.37, we were able to compute the mean particle separa-

tion (measured only between nearest neighbours) from these

experiments on aggregates with varying numbers of particles,

N. We expect to see the particle separation decreasing with

increasing N, and more specifically, according to (27), that

d ∼ N−1/4. This scaling is confirmed by the results presented

in figure 6b with the prefactor for this scaling corresponding

to α ≈ 3. We also note that while for small cluster sizes,

N . 40, the data presented in fig. 6b appear to flatten out

slightly, this is not as much as might be expected on the basis

of the d ∼ N−1/10 scaling discussed above for this limit.

4.3 Relevance to microscopic scenarios

Having seen that the scaling law in (27) is able to predict

the increased clustering of macroscopic dipolar particles as

the size of the aggregate increases, we now extrapolate this

scaling law to the microscopic scale that motivated this work:

colloidal particles at a liquid–fluid interface. In this setting,

the key question is how the typical energy of interaction per

particle,

Udipole

N
∼

A

d
3
∼

N3/4

α3

1

A1/2

m3g3/2

ℓ
3/2
c ∆ρ3/2

, (28)

compares with the thermal energy, kBT . Based on this scaling

law, we see that for this particle-level interaction energy to be

larger than the thermal energy, we must have N & Nc where

Nc ∼ α4(kBT )4/3A2/3 ℓ
2
c∆ρ2

m4g2
. (29)

To make further progress, we need to estimate the size of

the various terms in (29). From detailed studies of the pair-

correlation function for colloidal layers of PS particles (of ra-

dius a = 1 µm and density ρPS = 1050 kgm−3) it has been

suggested5 that A ≈ 3× 105kBT µm3. It is very difficult to

be certain of the value of the constant of proportionality α
from the analogue magnetic experiment (which is likely to

depend on, among other things, the wetting properties of the

particles), and we see that the scalings above vary sensitively

with α . Therefore we take 0.1 . α . 1 for now, and note

the typical ranges of the parameters based on this. We also

note that the real experiments of interest occur at an oil–water

interface with ρoil = 730 kgm−3, ρwater = 1000 kgm−3 and

γ = 52 mNm−1 (see Zeppieri et al.38, for example); as such,

we expect that the driving mass will be m = 4π
3
(ρPS −ρoil)a

3

while the appropriate capillary length ℓc = [γ/∆ρg]1/2 with

∆ρ = ρwater −ρoil ≈ 270 kgm−3.

Using the values above, we find with α = 0.1 that Nc ≈ 3×
104, i.e. an aggregate around 100 particles in each direction

should be stable to thermal noise. While large, this number

of particles is not infeasible. If instead α = 1 then the critical

number of particles in an aggregate is Nc ≈ 3×108, which is

so large as to be very difficult to observe.

Another test of the scaling laws is the values predicted for

the two spatial scales of the aggregate: the mean inter-particle

separation, d, and the typical depth of sinking, H. By con-

struction, the value of d at N = Nc is d ∼ (A/kBT )1/3 ∼
70 µm; this is the distance at which the typical electrostatic

interaction becomes on the same order as the thermal energy,

and so in real aggregates the particle separation is likely to be

considerably smaller. More interesting is the prediction from

(25) that around N = Nc ≈ 3×104 the depth of the aggregate

H ∼ 3 nm (using the prefactor α = 0.1 in (27)); with α = 1

we find H ∼ 300 nm. These depths are significantly smaller

than the O(10 µm) depths predicted from a previous mean-

field model25 and, as yet, not detected. The cluster depths we

predict are too small to be directly imaged in microscopy, but
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should be amenable to optical interferometry or FreSCa cryo-

SEM39.

While the importance of collective sinking in aggregates of

interfacial colloids remains purely speculative, we can com-

pare the phenomenology of our own experiments with what

would be expected on the basis of the collective sinking hy-

pothesis. In particular, the collective sinking hypothesis sug-

gests that isolated clusters of colloids can form and, further,

that when they do the particles near the edge of the clus-

ter/aggregate should be more widely spaced than those near

the centre of the aggregate. (This is observed both in our nu-

merical simulations, see for example fig. 4a, and in experi-

ments on macroscopic paramagnetic particles floating at the

interface37, fig. 6a.) Similarly, we are able to see a simi-

lar phenomenology in aggregates of PS particles trapped at

the interface between decane and aqueous salt solutions (see

fig. 6c). These experiments follow the methods of Parolini et

al.5 for purification of reagents. After long periods of equili-

bration (sometimes overnight or even after a few days) regions

of crystalline arrangements coexist with completely empty re-

gions see fig. 6c. Here, we highlight the clear edge of the

cluster (the red line in fig. 6c) and plot the variation of density

with distance normal to this interface at isolated points (high-

lighted in fig. 6c). This analysis reveals (fig. 6d) that there is a

more than two-fold decrease in particle density from the bulk

of the crystal to the edge. We are not aware of any other ex-

planation for either the existence of a well-defined edge of a

cluster or for this spacing, and will explore this phenomenon

in detail in a separate work.

5 Conclusions

In this paper, we have presented a toy model of the interac-

tion between repulsive particles at an interface. This model

allowed us to consider the interaction of large numbers of

particles at an interface and to show that as the number of

particles increases the particles actually become more closely

bound together. This effect is due to the collective sinking of

the particles into the liquid: the proximity of other interfacial

particles means that the interface is less curved locally than it

would otherwise be and so particles sink lower into the liquid.

This in turn increases the magnitude of the attractive interac-

tion between them; while this is qualitatively similar to the

capillary collapse studied previously, our detailed calculations

with two particles showed that this collective sinking provides

a binding energy that is quantitatively stronger than would be

predicted by using a linear superposition argument27,28. Cru-

cially, we expect that the importance of this collective sinking,

and the additional binding provided by it, increases as the size

of the cluster increases.

We presented detailed numerical results for the flotation of

line charges. This allowed us to readily perform detailed nu-

merical simulations of the problem, and to gain understanding

that could be translated into a scaling argument and thence into

scaling arguments for the problem of several dipolar spheres

interacting. To make our models more realistic would require

detailed simulations of the meniscus around an array of spher-

ical particles. While this would be an involved procedure, we

believe that it may soon be feasible computationally35,40 and,

further, may yield new insight beyond existing mean-field the-

ories25–28. In particular, these mean-field theories use a lin-

ear superposition of the far-field, small deflection meniscus

around an axisymmetric object, h(r)∼ K0(r/ℓc), even though

close to small axisymmetric objects a subtly different menis-

cus form is more appropriate41. This subtlety arises from a

balance between the nonlinear curvature terms and suggests

further that the linear superposition approach may not be valid

here, particularly when the particles approach one another on

a scale comparable to their radius. At still closer approach,

the effects of the particle roughness may become important13;

we do not expect roughness to play a major role, however,

since clustering has been observed with particles that are well-

separated compared to the particle roughness scale21.

For simplicity, our model did not include the electro-

dipping force that is believed to be important in at least some

observations of colloidal self-assembly. As a result, our the-

oretical predictions are unlikely to be directly applicable to

colloidal self-assembly. Nevertheless, the mechanism that we

have investigated here should be important regardless of what

causes the force normal to the interface. In particular, while

the gravitational contribution discussed here may not be domi-

nant in all situations of interest, a similar effect will exist with

an electro-dipping force. We hope that our calculations and

scaling arguments will motivate further detailed study of this

possibility.
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Appendix A: Numerical method

To solve the equations of vertical and horizontal force

balance, (16) and (17), we used Newton’s method.

We firstly arrange the equations to take the form:

F(X) = [ f1, f2, . . . , f N+1
2
,g1,g2, . . . ,g N+1

2
]T , where
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X = [x1,x2, . . . ,x N+1
2
,y1,y2, . . . ,y N+1

2
]T is the vector of

particle positions for half of the raft (using symmetry). The

set of particle positions, X∗, that solves the vector function

F(X∗) = 0 is obtained by starting from an initial guess, X (0)

and repeating the iteration scheme

X (n+1) = X (n)− J−1F(X (n)) (30)

where J is the Jacobian matrix of F(X), i.e. Ji j = ∂Fi/∂x j.

This iteration continues until the maximal element of F(X (n))
(in absolute terms) is below some residual, which we set to be

ε = 10−13 here.
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