Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

New Biphenyl Iminium Salt Catalysts for Highly Enantioselective Asymmetric Epoxidation: Role of Additional Substitution and Dihedral Angle. ${ }^{\dagger}$

Philip C. Bulman Page,* ${ }^{[a]}$ Christopher J. Bartlett, ${ }^{[a]}$ Yohan Chan, ${ }^{[a]}$ Steven M. Allin, ${ }^{[b]}$ Michael J. McKenzie, ${ }^{[c]}$ Jérôme Lacour, ${ }^{[d]}$ and Garth A. Jones. ${ }^{[a]}$

New biaryl iminium salt catalysts for enantioselective alkene epoxidation containing additional substitution in the heterocyclic ring are reported. The effects upon conformation and enantioselectivity of this additional substitution, and the influence of dihedral angle in these systems, has been investigated using a synthetic approach supported by density functional theory. Enantioselectivities of up to 97% ee were observed.

Introduction

Asymmetric epoxidation of alkenes to generate non-racemic chiral epoxides is an extremely powerful synthetic tool, ${ }^{1}$ and the development of effective organocatalytic systems for epoxidation has received considerable attention. ${ }^{2}$ The most successful organocatalytic methods for epoxidation are those utilizing dioxiranes and those utilizing oxaziridinium salts. Chiral ketones used as precursors to dioxiranes, such as those of Yang, ${ }^{3}$ Denmark, ${ }^{4}$ Armstrong, ${ }^{5}$ and especially Shi, ${ }^{6}$ have achieved high enantioselectivities, with observed enantiomeric excesses exceeding 97\% in the best cases. Oxaziridinium salts, first reported by Lusinchi in 1976,' are also reactive reagents for oxygen transfer to nucleophilic substrates such as sulfides and alkenes, and may be generated catalytically by use of iminium salts in the presence of a stoicheiometric oxidant, typically Oxone. ${ }^{8}$ We have developed a range of catalysts based on biphenylazepinium (e.g. 1), binaphthylazepinium (e.g. 2) and dihydroisoquinolinium (e.g. 3) moieties containing a chiral appendage on the nitrogen atom for epoxidation reactions, with the most successful to date containing the 1,3dioxane motif of (S, S)-acetonamine 4 (Figure 1). ${ }^{9}$ We have also shown that alternative oxidants may be used in iminium saltcatalysed epoxidation reactions such as hydrogen peroxide, ${ }^{10}$ sodium hypochlorite, ${ }^{11}$ and electrochemically-generated oxidants. ${ }^{12}$ Amines have also been used as iminium precursors

[^0]in related epoxidation processes by us ${ }^{13}$ and others. ${ }^{14}$

We reported the first very high enantioselectivities in the asymmetric epoxidation of alkenes using iminium salt catalysts, and we have developed non-aqueous conditions for these processes using tetraphenylphosphonium monoperoxysulfate (TPPP) ${ }^{15}$ as the oxidant. ${ }^{16}$ We have used the process in the syntheses of levcromakalim, ${ }^{17} \quad(-)$-lomatin, $\quad(+)$-trans-khellactone, ${ }^{18}$ and scuteflorin ${ }^{19}$ utilizing catalysts 1 and 3.

We have shown that incorporation of a pseudo-axial substituent at the prochiral carbon atom α - to the nitrogen atom in biaryl systems 1 and 2 affords higher enantioselectivities, with the addition of a methyl group found to have the greatest influence. ${ }^{20}$ It has also been reported that the level of enantiocontrol imparted by biaryl azepinium salt catalysts in the epoxidation of alkenes is in part correlated with the dihedral angle around the biphenyl axis in the iminium species, ${ }^{21}$ suggesting a parallel pattern of dihedral angles between the iminium parents and the putative derived oxaziridinium oxidative intermediates. It was further suggested that this angle is both larger and nearer to the optimum in the octahydrobinaphthyl series than in the parent binaphthyl series.

We were interested to investigate this potential correlation between dihedral angles in the iminium species and in the oxaziridinium oxidative intermediates, and if any correlation might also be observed between dihedral angles and induced
enantioselectivities. Consequently, geometry optimizations were carried out on oxaziridinium intermediates, as well as the iminium species, at the B3LYP/6-31G* level of theory. These calculations indeed suggest that there is little change in dihedral angles between the iminium and oxaziridinium species in the lowest energy conformations (vide infra).

We were interested to learn if related structural modifications would also improve the enantioselectivity of our other biarylcontaining catalysts. We report herein the design and use of new iminium salt catalysts combining both of these modifications (Figure 2).

Results and Discussion.

Synthesis

To begin with, we focused on synthesis of the simpler 6,6'dimethylbiphenyl backbone, with iminium salts $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{5} \boldsymbol{S}_{\mathrm{ax}}$ and $\mathbf{6} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{6} \boldsymbol{S}_{\mathrm{ax}}$ as targets. The synthesis of racemic biscarboxaldehyde $(\pm)-7$ was achieved following literature procedures. ${ }^{21,22}$ Formation of the diazonium salt from 3methylanthranilic acid followed by coupling of the radical generated in situ gave bis-acid (\pm)-8 in 58% yield. High concentration of the diazonium salt and careful temperature control are key factors to obtain an acceptable yield of (\pm)-8, as formation of the corresponding diazo compound, a bright yellow solid, competes with the desired reaction. We first used the racemic bis-acid, ultimately to access both diastereoisomers $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}$ and $\mathbf{5} \boldsymbol{S}_{\mathrm{ax}}$ in order to assess separately their potential as catalysts, in the expectation of finding 'matched' and 'mismatched' systems, and reasoning that separation of the diastereoisomers would be more practical on sufficient scale than resolution of the bis-acid. Reduction of $(\pm)-8$ to the diol (\pm)-9 with lithium aluminium hydride proceeded in 96% yield. Oxidation of the two alcohol moieties of (\pm)-9 using PCC yielded the desired bis-carboxaldehyde (\pm)-7 in 87% yield. Reductive cycloamination of (\pm)-7 with enantiomerically pure (S, S)-acetonamine 4 gave diastereoisomers $\mathbf{1 0} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{1 0 S}_{\mathrm{ax}}$, which were separated using silica gel column chromatography, in 49% and 26% yields respectively (Scheme 1).

Reagents and conditions: (i) $\mathrm{HCl}, \mathrm{NaNO}_{2}$; then $\mathrm{Cu}_{2} \mathrm{SO}_{4}$, $\left(\mathrm{NH}_{4} \mathrm{OH}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{4} \mathrm{OH},<5^{\circ} \mathrm{C}, 58 \%$; (ii) LiAlH_{4} (3 equiv.), $\mathrm{Et}_{2} \mathrm{O}$, r.t., 96\%; (iii) PCC (3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 87\%, (iv) Amine 4 (1 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (2.2 equiv.), $\mathrm{MeOH}, \mathrm{AcOH}$, r.t., $24 \mathrm{~h},\left[\mathbf{1 0 R} \boldsymbol{R}_{\mathrm{ax}}\right.$ 49\%] and [10S ax , 26\%]; (v) quinine, EtOH (90\%), crystallization then b) $3 \mathrm{M} \mathrm{HCl}, 70 \%$.

Scheme 1. Synthesis of 6,6'-dimethylbiphenyl azepines

Resolution of bis-acid (\pm)-8 using quinine following a literature procedure provided us with the means to prepare a single diastereoisomer of $\mathbf{1 0} .^{22}$ By comparison of spectroscopic data and optical rotation, the amine diastereoisomer obtained from $(+)-\mathbf{8} S_{\mathrm{ax}}$ was found to be identical to $\mathbf{1 0} S_{\mathrm{ax}}$, allowing us to attribute the absolute configurations of $\mathbf{1 0} \boldsymbol{R}_{\mathrm{ax}}$ and $\mathbf{1 0} \mathbf{S a x}$.

Oxidation of $\mathbf{1 0} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{1 0 S}_{\mathrm{ax}}$ separately using NBS followed by counter-ion exchange gave the corresponding tetraphenylborate iminium salts $\mathbf{5} \boldsymbol{R}_{\text {ax }}$ and $\mathbf{5} \boldsymbol{S}_{\text {ax }}$ in $\mathbf{6 1 \%}$ and 83% yields respectively. Diastereoselective addition of methyl magnesium bromide gave $\mathbf{1 1} \boldsymbol{R}_{\mathrm{ax}}$ and $\mathbf{1 1 S}_{\mathrm{ax}}$ as single diastereoisomers, the methyl groups being introduced into a pseudo-axial position in each case, as we have previously observed, ${ }^{20}$ controlled by the axial chirality of the biphenyl backbone, and appearing in the ${ }^{1} \mathrm{H}$ NMR spectra at high field ($\mathbf{1 1 R}_{\mathrm{ax}}$: $0.21 \mathrm{ppm} ; 11 S_{\mathrm{ax}}$: 0.14 ppm).

Oxidation of $\mathbf{1 1} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{1 1} S_{\mathrm{ax}}$ and anion exchange gave α methylated iminium salts $\mathbf{6} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{6 S} \boldsymbol{S a x}$ as single diastereo- and regio- isomers in 28% and 32% yields over the three steps, respectively (Scheme 2), resulting from loss of the more accessible single remaining axial hydrogen atom in each case. ${ }^{20,23}$ The yield of the oxidation step was moderated by competing bromination of the methyl groups at the $6,6^{\prime}$ positions.

Reagents and conditions: (i) NBS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ then reflux, 2 h , then NaBPh_{4}, $\mathrm{EtOH}, 5 \mathrm{~min}$; (ii) $\mathrm{MeMgBr}^{(10}$ equiv.), THF, $-78{ }^{\circ} \mathrm{C}$ to r.t.; (iii) NBS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ then reflux, 2 h , then NaBPh_{4}, $\mathrm{EtOH}, 5 \mathrm{~min}$.

Scheme 2. Synthesis of 6,6'-dimethylbiphenyl catalysts
We next turned our attention to the preparation of similar catalysts using the octahydrobinaphthyl backbone, where the iminium salt possesses large dihedral angles. ${ }^{21}$ Octahydrobinaphthyl-2,2'-bis-methanol 12 was obtained following literature procedures (Scheme 3). ${ }^{21,24}(R)$-Binol was hydrogenated to (R)-octahydrobinol 13 using palladium on carbon under hydrogen pressure in 45% yield. Triflation of the phenolic hydroxyl moieties to give 14, followed by palladiumcatalysed carbonylation to give $15,{ }^{25}$ and reduction using lithium aluminium hydride gave (R)-octahydrobinaphthyl-1,1'methanol 12 in 83% yield over the three steps.

Reagents and conditions: (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(3.5 \mathrm{bar}), \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 10$ d, 45\%; (ii) $\mathrm{Tf}_{2} \mathrm{O}$ (3 equiv.), DMAP (0.4 equiv.), 2,6-lutidine (3 equiv.), $-30{ }^{\circ} \mathrm{C}$ to r.t., $16 \mathrm{~h}, 99 \%$; (iii) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.15 equiv.), dppp (0.15 equiv.), MeOH (50 equiv.), DMSO, DIPEA, CO (2 bar), $80^{\circ} \mathrm{C}, 48 \mathrm{~h}, 85 \%$; (iv) LiAlH_{4} (2 equiv.), $\mathrm{Et}_{2} \mathrm{O}, 99 \%$.

Scheme 3. Synthesis of octahydrobinol derivatives

Compound 12 was converted into the corresponding (R)-biscarboxaldehyde 16 in quantitative yield. Tertiary amine 17 was, however, only obtained in 67% yield using the reductive cycloamination protocol. An alternative procedure consisting of displacing two bromide ions using (S, S)-acetonamine 4 was therefore used. Diol 12 was successfully bis-brominated to give 18 using phosphorus tribromide in 90% yield; double displacement with (S, S)-acetonamine 4 gave the desired amine 17 in an excellent 97\% yield (Scheme 4).

Reagents and conditions: (i) PCC (1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h, 99\%; (ii) 4 (1 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (2.2 equiv.), AcOH, r.t., 24 h , 67%; (iii) PBr_{3} (3 equiv.), pyridine (0.1 equiv.), toluene, $60^{\circ} \mathrm{C}, 3$ h, 90\%; (iv) Amine 4 (1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), MeCN, reflux, 16 h, 97\%.

Scheme 4. Synthesis of octahydrobinaphthyl azepine.

Amine 17 was oxidized using NBS to afford iminium salt 19 in 73% yield. The corresponding α-methylated azepinium salt was obtained through a similar sequence to that described above, involving diastereoselective Grignard reagent addition to give 20 followed by oxidation and anion exchange to give $\mathbf{2 1}$ in 56\% yield over the two steps. Again, the α-methylated iminium salt 21 was obtained as a single regio- and diastereo- isomer with a pseudo-axial methyl group (Scheme 5). ${ }^{20}$

Reagents and conditions: (i) NBS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min then $\mathrm{NaBPh}_{4}, \mathrm{EtOH}, 73 \%$; (ii) MeMgBr (10 equiv.), THF, -78 ${ }^{\circ} \mathrm{C}$ to r.t., $16 \mathrm{~h}, 79 \%$; (iii) NBS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min then $\mathrm{NaBPh}_{4}, \mathrm{EtOH}, 71 \%$.

Scheme 5. Synthesis of octahydrobinaphthyl catalysts

Calculations

Geometry optimisations were carried out on a range of these iminium species and their putative derived oxaziridinium ions, at the B3LYP/6-31G* level using Gaussian 09, ${ }^{26}$ to determine the dihedral angles ϕ and θ in the lowest energy conformations. Both possible diastereoisomers were investigated in the case of each oxaziridinium ion. All stationary point structures were characterized by harmonic frequency analysis, and shown to be genuine energy minima (Tables 1 and 2). Cartesian co-ordinates of the optimized structures can be found in SI.

Table 1. Dihedral angles calculated for oxaziridinium species.
Structure

$\phi=38.9$

$\phi=39.4$
$\theta=40.8$

$\phi=-38.7$
$\theta=-39.2$

$\phi=-37.7$
$\theta=-39.7$

$\phi=-58.5$

$\phi=-56.4$
$\theta=-54.0$

$$
\phi=-58.1
$$

$\phi=-56.0$
$\theta=-53.9$

$\phi=-57.8$

$\phi=-56.3$
$\theta=-54.4$

$\phi=56.3$
$\theta=55.0$

$\phi=57.5$
$\theta=54.7$

$\phi=-57.7$

$\phi=-55.6$
$\theta=-54.3$

$\phi=57.2$
$\theta=54.9$

$\phi=57.5$
$\theta=54.3$

$\phi=-63.0$
$\theta=-58.3$

$\phi=-57.3$
$\theta=-54.6$

Table 2. Dihedral angles calculated for iminium species.

$$
\theta=-39.6
$$

$\phi=-52.2$
$\theta=-52.2$

$\phi=-53.1$
$\theta=-53.7$

$\phi=-52.7$
$\theta=-52.5$

$\phi=52.7$
$\theta=53.3$

$\phi=-60.0$
$\theta=-57.3$

For the oxaziridinium ions (Table 1), the calculations demonstrate a clear increase in dihedral angles upon moving from the biphenyl species (around $38-42^{\circ}$) to the $6,6^{\prime}$ dimethylbiphenyl (around 54-58 ${ }^{\circ}$) and the octahydrobinaphthyl (around $55-64^{\circ}$) species. Larger dihedral angles were also observed as expected in the binaphthyl species (around $54-59^{\circ}$).

It is interesting to note that the pair of diastereoisomeric oxaziridinium ions in each case display similar dihedral angles, with the differences varying from 0.3° to 6.8° for ϕ and 0.1° to 3.7° for θ, the larger figures being observed for the octahydro species. Similar calculations carried out on the derived iminium ions suggest that similar dihedral angles also obtain for the iminium and derived oxaziridinium species; the calculations suggest that the dihedral angles differ by no more than 6.3° from those of the corresponding iminium species.
|Manuscript

Incorporation of a methyl substituent at the prochiral carbon atom α - to the nitrogen atom in the heterocyclic ring does not, however, greatly affect the dihedral angles for either the iminium or oxaziridinium species (no more than about 2°). In the biphenyl cases 22 and 23, and the precursor iminium species $\mathbf{1}$ and 30, where interconversion between the atropoisomers is readily possible, the S, S-acetonamine unit induces a preference for the R-axial chirality in the biaryl unit. The methyl substituents in $\mathbf{2 3}$ and $\mathbf{3 0}$ occupy pseudo-axial positions, as is observed in the other methyl-substituted examples.

Epoxidation Reactions

Iminium salts $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{5} \boldsymbol{S}_{\mathrm{ax}}, \mathbf{6} \boldsymbol{R}_{\mathrm{ax}}, \mathbf{6} \boldsymbol{S}_{\mathrm{ax}}$, $\mathbf{1 9}$, and $\mathbf{2 1}$ were used in the asymmetric epoxidation of a number of alkenes under optimized reaction conditions, ${ }^{27}$ and the results compared with known results from species $\mathbf{1}$ and $\mathbf{3 0}$ (Table 3). ${ }^{20} \mathrm{We}$ have previously observed that the related binaphthyl catalysts $\mathbf{2}$ and 31 display somewhat different profiles of reactivity and selectivity from those of the biphenyl series, ${ }^{90,20}$ and these catalysts are therefore not included in this analysis.

Aqueous conditions using Oxone as oxidant and a mixture of acetonitrile and water as solvent gave the highest reactivities and enantioselectivities. Non-aqueous conditions using TPPP as oxidant and acetonitrile as solvent were less successful, however; for example, use of chloroform as solvent gave an ee lower than 5\%. The enantioselectivity observed when 18-crown- 6 and a biphasic system ${ }^{28}$ were used was also poor.

Table 3. Asymmetric epoxidation mediated by iminium salts 1, 5, 7a-b, 8a-b, 9, 10.

Substrate	Cat.	Time	Conv./ $\%^{\text {b }}$	$\begin{aligned} & \text { ee/ } \\ & \%^{\text {c }} \end{aligned}$	Config. ${ }^{\text {d }}$
	$1{ }^{\text {a }}$	5 min	100	$60^{\text {e }}$	(-)-(1S,2S)
	$30^{\text {a }}$	0.5 h	100	$82^{\text {e }}$	(-)-(1S,2S)
	$5 R_{\text {ax }}$	0.8 h	99	$87^{\text {e }}$	(-)-(1S,2S)
	$6 R_{\text {ax }}$	1 h	99	$92^{\text {e }}$	(-)-(1S,2S)
	$5 S_{\text {ax }}$	1.8 h	99	$82^{\text {e }}$	(+)-(1R,2R)
	$6 S_{\text {ax }}$	3 h	99	$82^{\text {e }}$	(+)-(1R,2R)
	19	0.6 h	99	$90^{\text {f }}$	(-)-(1S,2S)
	$19^{\text {a }}$	1 h	99	$80^{\text {f }}$	(-)-(1S,2S)
	$21^{\text {a }}$	1.5 h	99	$96{ }^{\text {f }}$	(-)-(1S,2S)
	$1{ }^{\text {a }}$	3 min	90	41	(+)-(1R,2S)
	$30^{\text {a }}$	0.5 h	100	78	(+)-(1R,2S)
	$5 R_{\text {ax }}$	0.5 h	99	89	(+)-(1R,2S)
	$5 R_{\text {ax }}{ }^{\text {a }}$	0.3 h	98	81	(+)-(1R,2S)
	6R ${ }_{\text {ax }}$	1 h	99	85	(+)-(1R,2S)
	$5 S_{\text {ax }}$	2 h	99	82	(-)-(1S,2R)

	$6 S_{\text {ax }}$	6 h	77	78	(-)-(1S,2R)
	19	0.7 h	99	93	(+)-(1R,2S)
	$19^{\text {a }}$	1.3 h	99	86	(+)-(1R,2S)
	$21^{\text {a }}$	3 h	87	97	(+)-(1R,2S)
	$1^{\text {a }}$	5 min	95	37	(-)-(1S,2S)
	$5 R_{\text {ax }}$	3 h	99	67	(-)-(1S,2S)
	6R ax	3 h	99	73	(-)-(1S,2S)
	${ }_{5} S_{\text {ax }}$	6 h	99	60	(+)-(1R,2R)
	${ }_{6 S}{ }_{\text {ax }}$	6 h	99	48	(+)-(1R,2R)
	19	1 h	99	60	(-)-(1S,2S)
	$19^{\text {a }}$	2 h	99	63	(-)-(1S,2S)
	$21^{\text {a }}$	18 h	80	69	(-)-(1S,2S)
	$1^{\text {a }}$	5 min	95	5	(-)-(1S,2S)
	$5 R_{\text {ax }}$	4.3 h	99	15	(-)-(1S,2S)
	$6 R_{\text {ax }}$	6 h	99	39	(-)-(1S,2S)
	${ }^{5} S_{\text {ax }}$	6 h	99	8	(+)-(1R,2R)
	${ }^{6} S_{\text {ax }}$	6 h	99	10	(+)-(1R,2R)

Conditions: Oxone ${ }^{\circledR}$ (2 equiv.), NaHCO_{3} (5 equiv.), catalyst ($5 \mathrm{~mol} \%$), $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ 10:1, 0 ${ }^{\circ} \mathrm{C}$. (a) Conditions: Oxone ${ }^{\oplus}$ (2 equiv.), NaHCO_{3} (5 equiv.), catalyst ($5 \mathrm{~mol} \%$), $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ $1: 1,0^{\circ} \mathrm{C}$. (b) Conversions were evaluated from the 1 H NMR spectra by integration of the alkene and epoxide signals. (c) ee was determined using CSP HPLC using a Chiralcel OD-H column unless otherwise indicated. (d) Absolute configurations of the major enantiomers were determined by comparison of optical rotation with those reported in the literature. (e) ee was determined using CSP GC using a Chiraldex B-DM column. (f) ee was determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of europium(III) tris [3-(heptafluoropropylhydroxymethylene)-(+)-camphorate] as chiral shift reagent.

From our results, it appears that observed enantioselectivities indeed increase for the trisubstituted alkenes from 37-60\% ee for the simple biphenyl catalyst 1 ($78-82 \%$ ee for the methylated derivative 30), with dihedral angles around $34-40^{\circ}$, to $60-93 \%$ ee for the matched $6,6^{\prime}$-dimethylbiphenyl catalyst $5 \boldsymbol{R}$, with dihedral angles around $52-54^{\circ}$, and the octahydro binaphthyl catalyst 19 , with dihedral angles around $57-60^{\circ}$ (69$97 \%$ ee for the methylated derivatives $\mathbf{6 R}$ and 21 respectively).

For catalysts 5 and 6, the 'matched' diastereoisomers, inducing higher enantioselectivities, are the ($\boldsymbol{R}_{\mathrm{ax}}$) $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}$ and $\mathbf{6} \boldsymbol{R}_{\mathrm{ax}}$, and the 'mismatched' ones are the (S_{ax}) $\mathbf{5} \boldsymbol{S}_{\mathrm{ax}}$ and $\mathbf{6} \boldsymbol{S}_{\mathrm{ax}}$, which are also generally less reactive. It is interesting to note that the relative stereochemistry of diastereoisomers $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}$ and $\mathbf{6} \boldsymbol{R}_{\mathrm{ax}}$ corresponds to that seen in the lowest energy atropoisomer of the simple biphenyl analogue 1.

While the incorporation of a methyl substituent α to the nitrogen atom generally increases the enantiocontrol, it has a detrimental or no effect on the mismatched diastereoisomers $\mathbf{5 S} \mathrm{ax}_{\mathrm{ax}}$ and $\mathbf{6} \boldsymbol{S}_{\mathrm{ax}}$. The sense of stereochemical induction in the epoxidation process is controlled by the configuration of the biaryl backbone. Catalyst $6 \boldsymbol{R}_{\mathrm{ax}}$, with the added methyl group, is in most cases superior to catalyst $\mathbf{5 R} \boldsymbol{R a x}^{\text {. The octahydrobinaphthyl catalyst } \mathbf{2 1} \text {, with an }}$ additional methyl group, provides the highest enantioselectivities that we have seen for the epoxidation of 1-phenylcyclohexene, at 96% ee, and for 1-phenyl dihydronaphthalene, at 97% ee.

Conclusions

The results described herein provide further evidence that addition of additional methyl substituents adjacent to the nitrogen atom in the heterocyclic ring can provide improvements in enantioselectivities in catalysed epoxidation reactions, with the α-methylated octahydrobinaphthyl catalyst 21 giving the best results of this series; particularly noteworthy are the epoxidations of 1-phenylcyclohexene, at 96% ee, and of 1-phenyl dihydronaphthalene, at 97\% ee.

Calculations clearly suggest a parallel pattern of dihedral angles between the iminium parents and the putative derived oxaziridinium oxidative intermediates.

Experimental results also support the conjecture that some correlation may be observed between the dihedral angle found in the biaryl units of these iminium salt catalysts and the induced enantioselectivities in the catalysed epoxidation reactions. The $6,6^{\prime}$-dimethylbiphenyl catalysts 5 and 6 (dihedral angles around $52-54^{\circ}$) are superior to the simpler biphenyl species $\mathbf{1}$ and $\mathbf{3 0}$ (dihedral angles around $34-40^{\circ}$). The octahydrobinaphthyl catalysts 19 and 21 (dihedral angles around $57-60^{\circ}$) induce generally similar enantioselectivities to the $6,6^{\prime}$-dimethylbiphenyl species, perhaps suggesting optimum dihedral angles of around $50-60^{\circ}$ as one factor in the induction of enantioselectivities in the catalysed epoxidation reactions.

Experimental Section

General Procedure for the addition of methyl Grignard reagent to iminium salts
The iminium salt was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}$ per g of iminium salt) under an atmosphere of N_{2}. The solution was cooled to $78{ }^{\circ} \mathrm{C}$. A 3 molar solution of MeMgCl in THF (10 equiv.) was added dropwise over 10 min . After 1 h , cooling was ceased, and the mixture allowed to reach ambient temperature overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL}$ per g of iminium salt) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL per g of iminium salt) were added. The resulting mixture was transferred to a separating funnel, and brine (100 mL) added. The organic layer was collected and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL}$ per g of iminium salt). The combined organic layers were washed with water (2 $\times 100 \mathrm{~mL}$ per g of iminium salt) and brine ($2 \times 100 \mathrm{~mL}$ per g of iminium salt). The organic fraction was dried over MgSO_{4}, and evaporated to dryness under reduced pressure to yield the desired methyl azepines.

General procedure for the synthesis of iminium salts from the corresponding azepines
The azepine substrate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$ per g of azepine), and NBS (1.1 equiv.) added. The resulting bright yellow solution was stirred for 30 min at room temperature, after which time the solvent was switched to EtOH. To the ethanolic solution was added NaBPh_{4} (1.1 equiv.) in the
minimum amount of MeCN with stirring, which caused the iminium salt to precipitate. The solvent was switched to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution transferred to a separating funnel. The organic layer was washed with water ($2 \times 60 \mathrm{~mL}$ per g of azepine) and brine (30 mL per g of azepine). The crude product isolated after the removal of solvents was recrystallized from EtOH . The crystalline product was filtered off and washed with cold EtOH followed by $\mathrm{Et}_{2} \mathrm{O}$ and hexane. The isolated iminium salt was left to dry under reduced pressure in an oven at $60^{\circ} \mathrm{C}$ overnight.

6,6'-Dimethylbiphenyl-2,2'-bis(carboxylic acid) (\pm)-8 ${ }^{4}$
$\mathrm{NaNO}_{2}(7.8 \mathrm{~g}, 0.11 \mathrm{~mol})$ was added in one portion to an ice cold solution of 2-amino-3-methylbenzoic acid ($17.0 \mathrm{~g}, 0.11 \mathrm{~mol}$) in 2.45 M $\mathrm{NaOH}(60 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until it became homogeneous. An ice-cooled 4 M aqueous solution of $\mathrm{HCl}(240 \mathrm{~mL})$ was added to the solution at a rate such that the temperature remained below $5^{\circ} \mathrm{C}$. The resulting orange solution of the diazonium salt was stirred at $0{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~min} . \mathrm{Cu}_{2} \mathrm{SO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}(24.0 \mathrm{~g}, 96 \mathrm{mmol})$ and water (75 mL) were added, and the resulting solution cooled in an ice-bath. When the solution had reached $5{ }^{\circ} \mathrm{C}, 30 \% \mathrm{w} / \mathrm{v} \mathrm{NH}_{4} \mathrm{OH}$ solution (47.5 mL) was added in one portion. A freshly prepared solution of $\mathrm{NH}_{2} \mathrm{OH}$, prepared from treatment of $\left(\mathrm{NH}_{2} \mathrm{OH}\right), \mathrm{H}_{2} \mathrm{SO}_{4}(8.8$ $\mathrm{g}, 53.5 \mathrm{mmol}$) with a 3 M ice-cold aqueous solution of $\mathrm{NaOH}(38 \mathrm{~mL}$, 0.11 mol), was added to the resulting deep-blue solution. The solution was stirred for 20 min to cool to $0^{\circ} \mathrm{C}$. The diazonium salt prepared above was added to the copper solution in three equal portions of 50 mL . The temperature was maintained below $7^{\circ} \mathrm{C}$ throughout the procedure. After the addition was complete, the resulting orange/red solution was heated under reflux for 30 min , and allowed to cool. After the red solution had attained ambient temperature, conc. $\mathrm{HCl}(37.5 \mathrm{~mL})$ was added slowly and the mixture was allowed to stand overnight to provide for the complete precipitation of the product. The yellow/brown precipitate was removed by filtration using a Büchner funnel, washed with water and air-dried. The crude material was stirred in boiling EtOH (200 mL); any remaining bright yellow solid was removed by filtration, leaving a clear brown filtrate. Crystallization of the bis(carboxylic acid) (\pm)-8 was induced by the addition of water to the filtrate to yield light brown crystals ($8.4 \mathrm{~g}, 55 \%$); m.p. $226-230{ }^{\circ} \mathrm{C}$ (dec.); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2982$, 2907, 2667, 2579, 1680, 1583, 1436, 1377, 1316, 1159, 962, 799, 768, 722; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; d_{6}\right.$-DMSO) $1.81(6 \mathrm{H}, \mathrm{s}), 7.31(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}), 7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 12.28(2 \mathrm{H}$, broad); $\delta_{C}\left(125 \mathrm{MHz} ; d_{6}\right.$-DMSO) 19.8, 126.6, 127.3, 132.9, 136.0, 140.7, 168.1.

6,6'-Dimethyl-2,2'-bis(hydroxymethyl)biphenyl ($\mathbf{\pm}$)-9 ${ }^{4}$

Compound (\pm)-8 ($2.20 \mathrm{~g}, 8.2 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ under a nitrogen atmosphere. The resulting pale yellow solution was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{LiAlH}_{4}(0.93 \mathrm{~g}, 24.5 \mathrm{mmol})$ added slowly at a rate that just maintained the effervescence. The resulting suspension was heated under reflux for 1 h , after which time the reaction mixture was allowed to cool to room temperature. Solid $\mathrm{Na}_{2} \mathrm{SO}_{4}(6.0 \mathrm{~g})$ was added to the suspension, which was cooled in an ice-bath and stirred for 5 min. Water (10 mL) was added dropwise to quench the excess LiAlH_{4}. The mixture was stirred for 30 min , filtered through a layered pad of Celite and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the colourless filtrate concentrated
under reduced pressure to yield (\pm)-9 as a colourless crystalline solid ($1.91 \mathrm{~g}, 96 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3254,3064,3017,2935,2880,1679$, 1592, 1458, 1378, 1239, 1211, 1163, 1028, 994, 902, 783, 760, 623; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.86(6 \mathrm{H}, \mathrm{s}), 3.19(2 \mathrm{H}, \mathrm{s}), 4.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.5 \mathrm{~Hz}), 4.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}), 7.24(2 \mathrm{H}, \mathrm{s}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.29(2$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.2$, 63.1, 127.6, 128.0, 129.9, 136.1, 138.3, 138.5; m/z (HNES) found for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$265.1200; $[\mathrm{M}+\mathrm{Na}]^{+}$requires 265.1199.

6,6'-Dimethyl-1,1'-biphenyl-2,2'-bis(carboxaldehyde) ($\mathbf{\pm}$)-7 ${ }^{29}$

$\operatorname{PCC}(1.33 \mathrm{~g}, 62.0 \mathrm{mmol})$ was added in one portion to a solution of ($\mathbf{\pm}$)-9 $(0.50 \mathrm{~g}, 20.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, producing a dark-orange solution. The solution was stirred vigorously for 3 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and a spatula of Celite was added to the resulting black mixture, which was stirred for a further 30 min . The reaction mixture was filtered through a layered pad of Celite and silica gel. Solvents were removed under reduced pressure to yield compound ($\mathbf{\pm}$)-7 as a colourless crystalline solid ($0.43 \mathrm{~g}, 87 \%$); m.p. $108-110^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.98(6 \mathrm{H}, \mathrm{s}), 7.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 9.60(2 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.7,126.4,128.6,134.5,135.9,137.6,140.0$, 191.4; m/z (HNES) found for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}+\mathrm{NH}_{4}\right]^{+}: 256.1333$; $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ requires 256.1332 .
(+)-(R)-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,11-dimethyl-6,7-dihydro-5H-dibenzo[c,e]azepine $\mathbf{1 0 R}_{\mathrm{ax}}$ and (+)-(S)-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,11-dimethyl-6,7-dihydro-5H-dibenzo[c,e]azepine $\mathbf{1 0 S}_{\mathrm{ax}}$
 11.8 mmol) in $\mathrm{MeOH}(160 \mathrm{~mL})$. After stirring for $5 \mathrm{~min}, \mathrm{NaBH}_{3} \mathrm{CN}$ ($1.62 \mathrm{~g}, 25.8 \mathrm{mmol}$) and glacial acetic acid (1 mL) were added. The solution was stirred for 24 h at room temperature. A 1 M aqueous solution of $\mathrm{NaOH}(20 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was collected, and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The organic fractions were combined, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed under reduced pressure to yield a crude oil that was purified by flash column chromatography, eluting with light petroleum/EtOAc (10:1), buffered with 2% TEA, to give the desired compound as a mixture of diastereoisomers [First eluting $\mathbf{1 0 R}_{\mathrm{ax}}$ as a colourless crystalline solid ($1.18 \mathrm{~g}, 49 \%$); and second eluting $\mathbf{1 0 S}_{\mathrm{ax}}$ as a colourless foam (0.62 g, 26\%)].
First eluting amine $\mathbf{1 0 R}_{\mathrm{ax}:}[\alpha]_{\mathrm{D}}+54.9\left(\mathrm{c}=0.97, \mathrm{CDCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-}$ ${ }^{1}$ 2990, 2934, 2860, 1452, 1378, 1308, 1263, 1236, 1200, 1172, 1150, 1075, 1027 953, 852, 787, 749, 727, 698; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.58(3 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{s}), 2.11(6 \mathrm{H}, \mathrm{s}), 2.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz})$, $3.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 3.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.12-4.21(2 \mathrm{H}$, m), 5.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}$), 6.98-7.02 ($2 \mathrm{H}, \mathrm{m}$), 7.14-7.18 ($4 \mathrm{H}, \mathrm{m}$), 7.24-7.36 (5 H, m); $\delta_{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.3,20.0,29.9,53.2,60.1$, $61.9,75.3,99.3,126.4,126.7,126.9,127.5,127.8,129.0,135.4$, 136.7, 138.6, 140.5; m / z found for $\left[\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 414.2431 ;[\mathrm{M}+\mathrm{H}]^{+}$ requires 414.2428 .
Second eluting amine $10 S_{\mathrm{ax}}:[\alpha]_{\mathrm{D}}+121.0\left(\mathrm{c}=1.07, \mathrm{CDCl}_{3}\right)$; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2990,2939,2859,1497,1452,1378,1332,1263$, 1236, 1198, 1168, 1140, 1076 1024, 1001, 952, 853, 787, 750, 722, 697, 665; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 2.12(6 \mathrm{H}$, s), $3.01(1 \mathrm{H}, \mathrm{br}), 3.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4$
$\mathrm{Hz}), 3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}), 5.13(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.80-7.02(2 \mathrm{H}, \mathrm{m}), 7.16-7.27(4 \mathrm{H}, \mathrm{m}), 7.33(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}) ; \mathrm{m} / \mathrm{z}$ found for $\left[\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 414.2425; $[\mathrm{M}+\mathrm{H}]^{+}$requires 414.2428 .
(-)-(R_{a})-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,11-dimethyl-5H-dibenzo[c,e]azepin-6-ium tetraphenylborate $\mathbf{5 R} \boldsymbol{R}_{\mathrm{ax}}$ Prepared according to the general procedure from $\mathbf{1 0 R}_{\mathrm{ax}}(1.10 \mathrm{~g}$, $2.66 \mathrm{mmol})$. The title compound $\mathbf{5} \boldsymbol{R}_{\text {ax }}$ was isolated as a fine yellow powder (1.18 g, 61\%). $[\alpha]^{20}{ }_{\mathrm{D}}-190.5$ (c = 1.01, MeCN); $v_{\max }($ neat $) / \mathrm{cm}^{-}$ ${ }^{1} 3055,3002,2161,2041,1976,1629,1580,1478,1450,1426$, 1382, 1350, 1263, 1238, 1202, 1164, 1107, 1031, 955, 847, 790, 730, 664, 611; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; DMSO-d6) $1.70(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s})$, $1.94(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}), 3.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=13.7 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7 \mathrm{~Hz}, 2.9 \mathrm{~Hz}), 5.55(1$ $\left.\mathrm{H}, \mathrm{br}, \operatorname{ArCH}_{2} \mathrm{~N}\right), 5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 6.79(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz})$, $6.92(8 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.10-7.29(14 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9$ $\mathrm{Hz}), 7.41-7.48(2 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6$ $\mathrm{Hz}), 8.92(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ DMSO-d6) 19.3, 20.2, 29.9, 56.2, $61.2,66.5,71.3,100.8,122.2,125.5,125.8,125.9,128.37,128.38$, 128.42, 129.1, 129.7, 132.2, 136.2, 137.1, 138.3, 139.0, 139.9, 164.0; m / z found for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{2}\right]^{+} 412.2273$, iminium cation requires 412.2271.
(+)-(S_{a})-6-((4S,5S)-2,2-Dimethyl-4-phenyl-[1,3]dioxan-5-yl)-1,11-dimethyl- 5 H -dibenzo[c,e] azepinium tetraphenylborate $\mathbf{5 S}$ ax Prepared according to the general procedure from $\mathbf{1 0 S}_{\mathrm{ax}}(0.56 \mathrm{~g}$, 1.35 mmol). The title compound $\mathbf{5 S} \mathrm{S}_{\mathrm{ax}}$ was isolated as a yellow solid ($0.83 \mathrm{~g}, 83 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}+329.8$ (c = 0.98, MeCN); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3059$, 2989, 2161, 1977, 1623, 1578, 1559, 1427, 1381, 1359, 1308, 1263, 1239, 1168, 1122, 1086, 1069, 1031, 1000, 969, 43, 783, 728, 664, 608; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; DMSO-d6) $1.72(3 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}$, s), $2.23(3 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz})$, $4.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.8 \mathrm{~Hz}, 3.9 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $13.5 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}), 6.84(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.98(8$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.10-7.19(5 \mathrm{H}, \mathrm{m}), 7.21-7.29(8 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz})$, 7.71-7.76 (2 H, m), $9.17(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; acetone-d6) 17.9, 19.1, 19.2, 59.4, 62.1, 67.0, 71.4, 100.8, 121.3, 125.1 ($q, J=2.8 \mathrm{~Hz}$), 125.5, 126.1, 128.1, 128.3, 128.68, 128.74, 129.0, 130.6, 132.1, 134.2, 136.1, 136.2 ($q, J=1.3 \mathrm{~Hz}$), 137.16, $137.18,138.4,139.3,140.2,163.5,163.9,164.3,164.7,171.2 ; \mathrm{m} / \mathrm{z}$ found for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{2}\right]^{+} 412.2268$; iminium cation requires 412.2271 .
(5R,11b R_{a})-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,5,11-trimethyl-6,7-dihydro-5H-dibenzo[c,e]azepine $\mathbf{1 1}_{\mathrm{ax}}$ Prepared according to the general procedure from $\mathbf{5} \boldsymbol{R}_{\mathrm{ax}}(0.60 \mathrm{~g}, 1.45$ $\mathrm{mmol})$. The title compound $\mathbf{1 1} \boldsymbol{R}_{\mathrm{ax}}$ was isolated as a colourless foam ($0.34 \mathrm{~g}, 94 \%$). $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3059,2991,2921,2859,1593,1497$, 1452, 1378, 1342, 1265, 1239, 1201, 1156, 1079, 1029, 955, 910, $885,853,787,744,700 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.91(1 \mathrm{H}$, dd, $J=6.0 \mathrm{~Hz}, 3.9 \mathrm{~Hz}$), $3.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.4 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3 \mathrm{~Hz}, 2.1 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0$ $\mathrm{Hz}, 4.0 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.81$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.7 \mathrm{~Hz}, 2.0 \mathrm{~Hz}), 7.09-7.15(4 \mathrm{H}$, m), 7.20-7.38 (5 H, m); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.2,19.3,19.4,21.0$,
29.1, 54.0, 59.7, 60.0, 63.2, 74.2, 99.3, 126.0, 126.4, 126.6, 126.8, 127.4, 127.6, 128.5, 128.7, 135.9, 136.9, 138.9, 139.2, 140.3, 141.3; m / z (HNES) found for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 428.2582 ;[\mathrm{M}+\mathrm{H}]^{+}$requires 428.2584.
(5S,11bSa)-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,5,11-trimethyl-6,7-dihydro-5H-dibenzo[c,e]azepine 11S axx
Prepared according to the general procedure from $\mathbf{5 S} \mathbf{S a x}^{(0.40} \mathrm{g}, 0.97$ $\mathrm{mmol})$. The title compound $\mathbf{1 1 S}_{\mathrm{ax}}$ was isolated as a colourless foam (0.23 g, 99\%). $v_{\max }$ (neat)/ $/ \mathrm{cm}^{-1} 3059,2991,2921,2859,1593,1497$, 1452, 1378, 1342, 1265, 1239, 1201, 1156, 1079, 1029, 955, 910, $885,853,787,744,700 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.14(3 \mathrm{H}, \mathrm{d}), 1.47$ (3 $\mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.14(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5$ $\mathrm{Hz}, 4.1 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.90$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3 \mathrm{~Hz}, 2.4 \mathrm{~Hz}), 4.15(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=12.3 \mathrm{~Hz}, 4.0 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}), 6.65-6.71(1 \mathrm{H}, \mathrm{m})$, $6.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6 \mathrm{~Hz}, 2.1 \mathrm{~Hz}), 7.02-7.07(2 \mathrm{H}, \mathrm{m}), 7.15-7.24(3 \mathrm{H}$, m), $7.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) ; \delta_{\mathrm{c}}(125 \mathrm{MHz}$; chloroform-d) 19.4, 19.5, 19.6, 22.3, 29.0, 50.9, 62.2, 63.1, 67.0, $73.7,99.0,126.0,126.5,126.57,126.63,127.2,127.4,127.6,128.5$, 128.9, 135.4, 136.3, 136.6, 138.1, 138.9, 140.0, 140.8; m/z (HNES) found for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 428.2579 ;[\mathrm{M}+\mathrm{H}]^{+}$requires 428.2584.
(-)-(5R,11bR $\left.R_{\mathrm{a}}\right)-6-((4 S, 5 S)-2,2-d i m e t h y l-4-$ phenyl-1,3-dioxan-5-yl)-1,5,11-trimethyl-5H-dibenzo[c,e]azepin-6-ium tetraphenylborate $\mathbf{6} \boldsymbol{R}_{\text {ax }}$ Prepared according to the general procedure from $\mathbf{1 1 R}_{\mathrm{ax}}(0.34 \mathrm{~g}$, 0.81 mmol). The title compound $\mathbf{6} \boldsymbol{R}_{\mathrm{ax}}$ was isolated as a yellow powder ($0.18 \mathrm{~g}, 30 \%$). $[\alpha]^{20} \mathrm{D} \quad \square 167.2$ (c = 1.00, MeCN); $v_{\text {MAX }}($ neat $) / \mathrm{cm}^{-1} 3053,2986,1632,1579,1559,1540,1478,1425$, 1379, 1298, 1262, 1239, 1201, 1165, 1107, 1085, 1045, 1032; δ_{H} (400 MHz ; DMSO) $0.78(3 \mathrm{H}, \mathrm{br}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.90(3$ $\mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.63-4.68(2 \mathrm{H}, \mathrm{m})$, $5.76(1 \mathrm{H}, \mathrm{br}), 5.82(1 \mathrm{H}, \mathrm{s}), 6.79(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.92(8 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 7.10-7.25(14 \mathrm{H}, \mathrm{m}), 7.32-7.40(2 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{br}), 7.71-$ $7.74(1 \mathrm{H}, \mathrm{m}), 9.20(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ; \mathrm{DMSO}) 14.9,19.3,19.9$, 20.0, 29.9, 62.0, 65.9, 67.4, 70.8, 101.0, 122.2, 125.2, 125.9, 126.5, $127.5,128.3,128.7,128.8,129.7,131.1,132.0,132.1,136.2,136.4$, 137.7, 138.8, 139.2, 140.2, 164.0; m/z found for $\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{2}\right]^{+}$: 426.2435, iminium cation requires 426.2428.
(+)-(5S,11bS ${ }_{\mathrm{a}}$)-6-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-1,5,11-trimethyl-5H-dibenzo[c,e]azepin-6-ium tetraphenylborate $\mathbf{6 S} \mathrm{S}_{\mathrm{ax}}$ Prepared according to the general procedure from $11 S_{\mathrm{ax}}(0.25 \mathrm{~g}$, $0.58 \mathrm{mmol})$. The title compound $\mathbf{6 S} \mathrm{ax}_{\mathrm{ax}}$ was isolated as a pale yellow powder ($0.14 \mathrm{~g}, 32 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}+310.0(\mathrm{c}=1.00, \mathrm{MeCN})$; $v_{\max }($ neat $) / \mathrm{cm}^{-}$ ${ }^{1} 3055,2999,1625,1580,1562,1478,1452,1427,1383,1306$, 1262, 1202, 1166, 1112, 1085, 1032, 952, 844, 789, 748, 734, 666, 611; $\delta_{\mathrm{H}}(400 \mathrm{MHz} ; \mathrm{DMSO}) 0.65(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.67(6 \mathrm{H}, \mathrm{s})$, $1.96(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 4.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}), 4.65-4.69(2 \mathrm{H}$, m), $5.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}), 6.79(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})$, $6.92(8 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.04-7.22(13 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz})$, 7.42-7.52 ($2 \mathrm{H}, \mathrm{m}$), $7.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz})$, 8.98 ($1 \mathrm{H}, \mathrm{s}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) 14.4, 19.3, 19.9, 20.0, 30.0, 61.6, 68.1, 68.4, 71.8, 101.0, 122.2, 125.9, 126.0, 127.65, 127.70, 128.4, 128.6, 128.9, 129.5, 132.1, 132.3, 132.5, 136.17, 136.18, $136.5,137.9,139.0,139.3,140.1,141.1,164.0,170.7 ; \mathrm{m} / \mathrm{z}$ found for $\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{2}\right]^{+} 426.2424$; iminium cation requires 426.2428.
$(-)-\left(R_{\mathrm{a}}\right)-5,5^{\prime}, 6,6$ ',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diol $13{ }^{29}$ $\left(R_{\mathrm{a}}\right)$-Binol ($3.00 \mathrm{~g}, 11.5 \mathrm{mmol}$) was divided equally between three test tubes each containing $\mathrm{Pd} / \mathrm{C} 10 \% \mathrm{w} / \mathrm{w}(0.20 \mathrm{~g})$. Glacial acetic acid $(4.0 \mathrm{~mL})$ was added to each of the test tubes and mixed. The tubes were then placed in a hydrogenation apparatus, and were charged and evacuated with H_{2} twice. The pressure was increased to 50 bar and the reaction mixtures stirred at ambient temperature. The reactions were monitored over 10 days. The combined mixture was filtered through celite and washed through with CHCl_{3}. The organic filtrate was washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 50 \mathrm{~mL})$, water ($2 \times 50 \mathrm{~mL}$), and brine ($1 \times 50 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure to yield a colourless solid. Column chromatography was performed, eluting with light petroleum ether / EtOAc (4:1), to yield compound 13 as a colourless solid which was crystallized from hexane to give fine colourless needles ($1.63 \mathrm{~g}, 52 \%$); $[\alpha]^{20} \mathrm{D}-42.6\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right.$), lit. ${ }^{29}$ $[\alpha]^{20}{ }_{\mathrm{D}}-42.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3475,3381,2929$, 2856, 1587, 1472, 1333, 1287, 1248, 1195, 1152, 936, 828, 812, 726; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.63-1.78(8 \mathrm{H}, \mathrm{m}), 2.16(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=17.0$ $\mathrm{Hz}, 6.0 \mathrm{~Hz}), 2.29(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=17.0 \mathrm{~Hz}, 6.1 \mathrm{~Hz}), 2.75(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2$ $\mathrm{Hz}), 4.56(2 \mathrm{H}, \mathrm{br}), 6.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.8,22.9,27.0,29.1,113.0,118.8,130.2$, 131.1, 137.2, 151.5.
(-)-(R_{a})-2,2'-Trifluoromethanesulfonyloxy-5,5'6,6'7,7',8,8'-octahydro-1,1'-binaphthyl $14{ }^{28}$
Compound 13 ($10.0 \mathrm{~g}, 34 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ in a flame-dried flask under an atmosphere of N_{2}. The vessel was cooled to $-30{ }^{\circ} \mathrm{C}$. DMAP ($1.66 \mathrm{~g}, 13.6 \mathrm{mmol}$), 2,6-lutidine (11.9 mL , $102 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(17.2 \mathrm{~mL}, 102 \mathrm{mmol})$ were added to the solution and the mixture stirred for 10 min , and allowed to reach room temperature overnight. Silica gel was added to the dark brown solution, and the mixture stirred for 20 min . The solvents were removed under reduced pressure. The residue was transferred to a sintered glass funnel containing a layer of silica gel and washed with hexane until the product had eluted. The solvent was removed under reduced pressure to yield compound 14 as a colourless crystalline solid (28.01 g, 99\%); m.p. $119-121{ }^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}_{\mathrm{D}}-259.6$ ($\mathrm{c}=1.03$, CHCl_{3}), lit. ${ }^{28}[\alpha]^{20}{ }_{\mathrm{D}}-260.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} ; 2947$, 2870, 2836, 1476, 1464, 1451, 1410, 1249, 1202, 1182, 1138, 1048, 926, 872, 926, 872, 853, 834, 806, 763, 699, 644; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.75(8 \mathrm{H}, \mathrm{m}), 2.28(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.0 \mathrm{~Hz}, 17.4 \mathrm{~Hz}), 2.43(2 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=6.0,17.7 \mathrm{~Hz}), 2.86(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.2,22.3,27.4$, 29.3, 118.1, 118.2 ($q, J=322 \mathrm{~Hz}$), 127.1, 130.9, 138.3, 139.3, 144.8.
(-)-(R_{a})-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-
bis(carboxylate) 15^{28}
DMSO (90 mL), MeOH ($36.0 \mathrm{~mL}, 1.56 \mathrm{~mol}$) and Hünig's base (13.4 $\mathrm{mL}, 137 \mathrm{mmol})$ were added to $14(1.50 \mathrm{~g}, 17.9 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.61 \mathrm{~g}, 4.7 \mathrm{mmol}$) and dppp ($1.11 \mathrm{~g}, 4.70 \mathrm{mmol}$) under an argon atmosphere. The vessel was sealed with a gas manifold and pressurised with CO (g) at 2 bar followed by evacuation of the atmosphere until the orange solution just began to boil. The cycle was repeated five times. During the cycles, the solution turned to opaque black. The vessel was heated to $80^{\circ} \mathrm{C}$ and maintained at at
a pressure of 2.4 atm . of CO for 48 h . The reaction mixture was transferred to a round-bottomed flask, and solvents were removed under reduced pressure to yield an oily residue. This crude residue was purified by column chromatography, eluting with light petroleum / EtOAc (5:1). Compound 15 was obtained as a colourless crystalline solid (5.9 g, 88\%); m.p. $=99-105^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}-2.1\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{28}[\alpha]^{20}{ }_{\mathrm{D}}-1.9\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2926,2853,1718$, 1588, 1430, 1400, 1289, 1251, 1186, 1164, 1124, 1066, 1050, 878, 861, 832, 771, 749; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.69(8 \mathrm{H}, \mathrm{m}), 1.99(2 \mathrm{H}, \mathrm{dt}$, $J=5.9 \mathrm{~Hz}, 17.0 \mathrm{~Hz}), 2.18(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4 \mathrm{~Hz}, 17.2 \mathrm{~Hz}), 2.86(4 \mathrm{H}$, m), $3.57(6 \mathrm{H}, \mathrm{s}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.4,23.0,27.2,30.2,51.5,126.6,127.1,128.0$, 135.4, 141.7, 141.9, 167.6.
(-)-(R_{a})-5, $5^{\prime}, 6,6^{\prime}, 7,7^{\prime}, 8,8^{\prime}-$ Octahydro-1,1'-binaphthyl-2,2'-dimethanol $12{ }^{21}$
A suspension of $\mathrm{LiAlH}_{4}(0.30 \mathrm{~g}, 7.94 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ under a nitrogen atmosphere was cooled to $0^{\circ} \mathrm{C}$. Compound 15 ($1.50 \mathrm{~g}, 3.97$ mmol) was added slowly. After the effervescence had ceased, the reaction mixture was heated under reflux for 30 min . The mixture was cooled in an ice bath. $\mathrm{Na}_{2} \mathrm{SO}_{4}(1.50 \mathrm{~g})$ and Celite were added in one portion and stirred for 10 min followed by the dropwise addition of water (2.0 mL). After 30 min , the mixture was filtered through a pad of Celite and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and washed though with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were removed under reduced pressure to yield compound 12 as a colourless foam ($1.24 \mathrm{~g}, 99 \%$); $[\alpha]^{20}{ }_{\mathrm{D}}-39.1$ ($c=0.96$, MeOH), lit. ${ }^{21}$ $[\alpha]^{20}{ }_{\mathrm{D}}-39.0(\mathrm{c}=1.01, \mathrm{MeOH}) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3257,2923,2853$, 1594, 1433, 1231, 1061, 1005, 899, 815, 740; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.69(8 \mathrm{H}, \mathrm{m}), 2.02(4 \mathrm{H}, \mathrm{m}), 2.82(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{s})$, $4.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}), 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.7,23.2$, 27.6, 29.8, 62.9, 127.2, 128.9, 134.8, 135.7, 137.6, 138.3.
(+)-(R_{a})-5,5',6,6',7,7',8,8'-Octahydro-1,1'-binaphthyl-2,2'bis(carbaldehyde) $16{ }^{21}$
Compound 12 ($0.11 \mathrm{~g}, 0.34 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and PCC ($0.22 \mathrm{~g}, 1.02 \mathrm{mmol}$) added in one portion. The resulting dark orange solution was stirred for 2 h , and celite added followed by $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was stirred for 30 min and filtered through a layered pad of silica gel and Celite. The desired compound was eluted with $\mathrm{Et}_{2} \mathrm{O}$. Solvents were then removed to furnish compound 16 as a colourless crystalline solid ($0.11 \mathrm{~g}, 99 \%$); m.p. $129-131{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{D}+110.4\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{21}[\alpha]^{20}{ }_{\mathrm{D}}+108.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; $v_{\max (\text { neat }) / \mathrm{cm}^{-1}}$ 2931, 2851, 2747, 1688, 1672, 1582, 1441, 1383, 1315, 1292, 1268, 1246, 1230, 1162, 1125, 996, 968, 943, 913, 897, 836, 811, 760; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.73(8 \mathrm{H}, \mathrm{m}), 2.15(4 \mathrm{H}, \mathrm{m})$, $2.91(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}), 9.51(2 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.2,22.7,27.4,30.4$, 125.1, 129.8, 132.4, 136.2, 140.7, 145.2, 191.5.
(R_{a})-5,5',6,6',7,7',8,8'-Octahydro-1,1'-binaphthyl-2,2'bis(bromomethyl) $18{ }^{27}$
Compound 12 ($2.03 \mathrm{~g}, 6.3 \mathrm{mmol}$) was dissolved in toluene (60 mL) under an atmosphere of N_{2}, and pyridine ($0.05 \mathrm{~mL}, 0.7 \mathrm{mmol}$) added. Tribromophosphine ($1.78 \mathrm{~mL}, 18.9 \mathrm{mmol}$) was added dropwise. After the addition was complete, the mixture was heated at $60^{\circ} \mathrm{C}$ for 3 h . After cooling, water (50 mL) was added, and the resulting biphasic
mixture transferred to a separating funnel. The organic layer was isolated and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layers were dried over MgSO_{4} and decolourized with a spatula of carbon black, and filtered. The solvents were removed under reduced pressure to yield compound 18 as a colourless powder ($2.79 \mathrm{~g}, 99 \%$); $[\alpha]^{20} \mathrm{D}+34.3\left(\mathrm{c}=2.05, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{27}[\alpha]^{20} \mathrm{D}$ +36.5 (c = 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2920,2851,1592,1457$, 1376, 1235, 1204, 928, 862, 831, 814, 759, 723, 623; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.71(8 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4 \mathrm{~Hz}, 17.6 \mathrm{~Hz}), 2.34(2 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=5.5 \mathrm{~Hz}, 17.0 \mathrm{~Hz}), 2.83(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9$ $\mathrm{Hz}), 4.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.6,22.9,27.5,29.9,32.9,128.1$, 129.6, 132.3, 135.6, 137.9, 138.6.
(-)-(R_{a})-4-((4S,5S)-2,2-Dimethyl-4-phenyl-1,3-dioxan-5-yl)-
4,5,8,9,10,11,12,13,14,15-decahydro-3H-dinaphtho[2,1-c:1',2'e]azepine 17
Method 1: Compound 18 ($0.17 \mathrm{~g}, 0.38 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(10 \mathrm{~mL})$ under an atmosphere of $\mathrm{N}_{2} . \mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{~g}, 1.11$ $\mathrm{mmol})$ and a solution of amine $4(79 \mathrm{mg}, 0.38 \mathrm{mmol})$ in MeCN (2 mL) were added. The mixture was stirred at room temperature for 1 h , heated under reflux overnight, and allowed to cool. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water (30 mL) were added. The organic layer was separated and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over MgSO_{4}, and solvents were removed under reduced pressure to yield 17 in excellent purity as colourless crystals ($0.18 \mathrm{~g}, 97 \%$).
Method 2: Compound 16 ($0.11 \mathrm{~g}, 0.35 \mathrm{mmol}$) was suspended in $\mathrm{MeOH}(4 \mathrm{~mL})$ under an atmosphere of N_{2}. A solution of amine 4 (79 $\mathrm{mg}, 1.1$ equiv., 0.38 mmol) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added followed by $\mathrm{NaCNBH}_{3}(44 \mathrm{mg}, 2$ equiv., 0.70 mmol$)$ and glacial acetic acid (0.2 mL). The mixture was stirred for 24 h at ambient temperature, and a 1 M aq. solution of $\mathrm{NaOH}(25 \mathrm{~mL})$ added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL) and dried over MgSO_{4}. Solvents were removed under reduced pressure to yield a pale yellow foam that was purified by column chromatography, eluting with light petroleum ether / EtOAc (5:1). Compound 17 was isolated as colourless crystals ($116 \mathrm{mg}, 67$ \%). $[\alpha]^{20}{ }_{\mathrm{D}}-27.7\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2928,2832,1451$, 1377, 1291, 1267, 1237, 1194, 1172, 1147, 1074, 1053, 1017, 939, 898, 852, 829, 810, 753, 723, 700, 654, 640, 628; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.46-1.57 ($2 \mathrm{H}, \mathrm{m}$), $1.57(3 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s}), 1.67-1.82(6$ $\mathrm{H}, \mathrm{m}), 2.13(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.9 \mathrm{~Hz}, 11.5 \mathrm{~Hz}), 2.58-2.65(3 \mathrm{H}, \mathrm{m}), 2.75-$ $2.86(4 \mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 3.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz})$, $4.17(2 \mathrm{H}, \mathrm{m}), 5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.98$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.30(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.1,22.7$, 22.9, 27.6, 29.4, 29.6, 52.7, 59.8, 61.8, 75.0, 99.1, 126.0, 126.7, 127.6, 128.2, 133.6, 135.0, 136.0, 138.2, 140.4; m/z (HNES) found for $\left[\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 494.3039 ;[\mathrm{M}+\mathrm{H}]^{+}$: requires 494.3039.
(-)-(R_{a})-4-((4S,5S)-2,2-Dimethyl-4-phenyl-1,3-dioxan-5-yl)-
8,9,10,11,12,13,14,15-octahydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-4ium tetraphenylborate 19
Prepared according to the general procedure from 17 ($1.47 \mathrm{~g}, 2.98$ $\mathrm{mmol})$ and NBS ($0.58 \mathrm{~g}, 3.28 \mathrm{mmol}$). Ion exchange was performed with $\mathrm{NaBPh}_{4}(1.12 \mathrm{~g}, 3.28 \mathrm{mmol})$. The title compound 19 was isolated as a fine, pale-yellow crystalline solid ($1.51 \mathrm{~g}, 63 \%$). m.p. $195-19{ }^{\circ} \mathrm{C}$;
$[\alpha]^{20}{ }_{D}-331.9$ (c = 1.01, acetone); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3053,2982,2936$, 2864, 1615, 1577, 1479, 1450, 1424, 1380, 1304, 1263, 1235, 1198, 1107, 1083, 1010, 954, 941, 904, 835, 763, 746, 731, 701, 660, 623, 609; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$; acetone-d6, $\left.50{ }^{\circ} \mathrm{C}\right)$ 1.35-1.41 ($1 \mathrm{H}, \mathrm{m}$), 1.45-1.56 $(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.67-1.85(6 \mathrm{H}, \mathrm{m}), 2.01-2.06(1$ $\mathrm{H}, \mathrm{m}), 2.24(1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.53-2.62(1 \mathrm{H}, \mathrm{m}), 2.70-3.01(5 \mathrm{H}, \mathrm{m})$, $4.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $2.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7 \mathrm{~Hz}, 3.0 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7$ $\mathrm{Hz}), 5.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.75(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.89(8 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}), 7.06-7.21(6 \mathrm{H}, \mathrm{m}), 7.23-7.40(11 \mathrm{H}, \mathrm{m}), 8.73(1 \mathrm{H}, \mathrm{s}) ; \delta_{c}$ (75 MHz ; acetone-d6) 18.0, 21.6, 21.9, 22.0, 22.1, 27.4, 27.5, 28.9, 29.2, 29.8, 57.6, 60.1, 66.0, 71.3, 100.8, 121.6, 124.9, 125.0, 125.3, $125.8,128.1,128.8,129.1,129.4,130.4,133.5,134.5,136.28$, 136.32, 137.7, 139.1, 139.9, 140.9, 145.0, 164.3, 169.7; m/z (HNES) found for $\left[\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{2}\right]^{+}: 492.2895$; iminium cation requires 492.2897 .
(-)-(3R,11cR $\left.R_{\mathrm{a}}\right)-4-((4 S, 5 S)-2,2-$ Dimethyl-4-phenyl-1,3-dioxan-5-yl)-3-methyl-4,5,8,9,10,11,12,13,14,15-decahydro-3H-dinaphtho[2,1-
c:1',2'-e]azepine 20
Prepared according to the general procedure from 19 (1.28 g, 1.57 mmol) and 3 M MeMgBr ($5.26 \mathrm{~mL}, 15.7 \mathrm{mmol}$). The crude mixture was purified by column chromatography eluting with light petroleum / EtOAc (5:1), buffered with 2% TEA. The title compound 20 was isolated as a colourless oil ($0.63 \mathrm{~g}, 79 \%$). $[\alpha]^{20} \mathrm{D}-8.4$ (c = 2.04, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.42-1.63(2$ $\mathrm{H}, \mathrm{m}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 1.68-1.81(6 \mathrm{H}, \mathrm{m})$, 2.09-2.19 (2 H , m), 2.54-2.69 ($2 \mathrm{H}, \mathrm{m}$), 2.77-2.82 ($4 \mathrm{H}, \mathrm{m}$), $2.91(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=4.2 \mathrm{~Hz}$, $2.5 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.09(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3 \mathrm{~Hz}, 2.4 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3 \mathrm{~Hz}, 4.3 \mathrm{~Hz}), 4.34$ $(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6$ $\mathrm{Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.7 \mathrm{~Hz}), 7.22-7.38(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.4,21.0,22.7$, 22.8, 22.9, 27.3, 29.0, 29.3, 29.4, 54.3, 59.0, 60.1, 62.9, 74.1, 99.3, 125.9, 126.4, 126.5, 126.6, 127.6, 128.1, 128.2, 135.2, 135.5, 135.6, 135.7, 136.1, 136.6, 138.4, 138.8, 140.3; m/z (HNES) found for $\left[\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 508.3204 ;[\mathrm{M}+\mathrm{H}]^{+}$requires 508.3210.
(-)-(3R,11cR R_{a})-4-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-3-methyl-8,9,10,11,12,13,14,15-octahydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-4-ium tetraphenylborate 21
Prepared according to the general procedure from 20 ($0.62 \mathrm{~g}, 1.22$ $\mathrm{mmol})$ and NBS ($0.24 \mathrm{~g}, 1.34 \mathrm{mmol})$. Ion exchange was performed using $\mathrm{NaBPh}_{4}(0.46 \mathrm{~g}, 1.34 \mathrm{mmol})$. The title compound 21 was isolated as a pale yellow crystalline solid ($0.71 \mathrm{~g}, 71 \%$). m.p. 121-122 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-232.8$ (c = 1.00, acetone); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3055,2986$, 2936, 2864, 1623, 1575, 1479, 1449, 1426, 1381, 1308, 1265, 1236, 1201, 1165, 1107, 1080, 1031, 1000, 956, 910, 835, 731; $\delta_{H}(400$ MHz ; acetone-d6) $1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.35-1.58(2 \mathrm{H}, \mathrm{m}), 1.66-$ $1.90(6 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 2.25(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.4 \mathrm{~Hz}$, $5.7 \mathrm{~Hz}), 2.47-2.60(1 \mathrm{H}, \mathrm{m}), 2.72-2.88(4 \mathrm{H}, \mathrm{m}), 2.98(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.7 \mathrm{~Hz}, 6.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=0.8 \mathrm{~Hz}, 13.6 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $2.5 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7 \mathrm{~Hz}, 2.9 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz})$, $5.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}), 6.78(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 6.92(8 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}), 7.02-7.23(7 \mathrm{H}, \mathrm{m}), 7.28-7.37(8 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$, $7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 9.25(1 \mathrm{H}, \mathrm{s}) ; \delta_{c}(100 \mathrm{MHz}$; acetone-d6) 14.9, 18.1, 21.6, 22.1, 22.2, 22.4, 27.3, 27.6, 29.1, 29.3, 30.0, 61.9, $67.5,69.8,71.1,101.0,121.6,124.8,124.9,125.3,125.8,128.0$,
$128.6,129.2,130.2,130.5,131.3,136.0,136.4,138.1,139.5,139.7$, 141.2, 147.7, 164.3, 168.6; m/z (HNES) found for $\left[\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{2}\right]^{+}$: 506.3054; iminium cation requires 506.3043.

General procedure for the formation of racemic epoxides

The alkene was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL per g of alkene) and the solution cooled to $0^{\circ} \mathrm{C}$. A solution of m-CPBA (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL per g of alkene), dried over MgSO_{4}, was filtered into the solution of alkene. The reaction was allowed to achieve ambient temperature and stirred until complete conversion of the alkene was observed by TLC. Saturated aqueous NaHCO_{3} (10 mL per g of alkene) was added, and organic layer collected and washed with 1 M NaOH (10 mL per g of alkene), and dried over MgSO_{4}. The solvents were removed under reduced pressure. Analytically pure samples of the epoxides were obtained by means of flash column chromatography, typically eluting with light petroleum / EtOAc (99:1), buffered with 2% TEA.

General procedures for catalytic asymmetric epoxidation of alkenes with Oxone® mediated by iminium salts under aqueous conditions
Method A: Oxone® (2 equiv.) and NaHCO_{3} (5 equiv) were added with stirring to a solution of the catalyst ($5 \mathrm{~mol} \%$) in MeCN (1 mL) and water (0.1 mL) at $0{ }^{\circ} \mathrm{C}$. After 5 min , alkene (3 mmol) dissolved in MeCN (1 mL), was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ until complete conversion of the alkene was observed by TLC, or for up to 6 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the resulting suspension filtered through a pad of mixed $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and MgSO_{4}. The solvents were removed under reduced pressure, and analytically pure samples of the epoxide were obtained by means of flash column chromatography or preparative TLC, typically eluting with light petroleum / EtOAc (99:1), containing 2\% TEA. The major enantiomer was identified by $[\alpha]^{20}$ D measurements and comparison to the literature; enantioselectivities were determined either by chiral HPLC, or by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of a resolving agent.
Method B: A mixture of water (1 ml), MeCN (1 mL) and NaHCO_{3} $(100 \mathrm{mg}, 1.2 \mathrm{mmol})$ was cooled in an ice-bath at $0^{\circ} \mathrm{C}$. Oxone ${ }^{\circledR}(370$ $\mathrm{mg}, 0.6 \mathrm{mmol}$) was added. After the effervescence had subsided, the catalyst ($5 \mathrm{~mol} \%$) was added followed, after 1 min , by the alkene (0.3 mmol). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until complete conversion of the alkene was observed by TLC, or for up to 6 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL per 0.10 g of substrate), and the resulting suspension filtered through a pad of mixed $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and MgSO_{4}. The solvents were removed under reduced pressure, and analytically pure samples of the epoxide were obtained by either flash column chromatography or preparative TLC, eluting with light petroleum / EtOAc (99:1), containing 2\% TEA. The major enantiomer was identified by $[\alpha]^{20}{ }_{D}$ measurements and comparison with the literature; enantioselectivities were determined either by chiral HPLC, or by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of a resolving agent.
Method C: A mixture of water (0.8 mL) and $\mathrm{NaHCO}_{3}(67 \mathrm{mg}, 0.80$ $\mathrm{mmol})$ was cooled in an ice-bath at $0^{\circ} \mathrm{C}$. Oxone ${ }^{\circledR}(132.0 \mathrm{mg}, 0.21$ mmol) was added, and the solution stirred until the effervescence had ceased. The alkene (0.20 mmol) was dissolved in in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and added. A solution of the catalyst ($5 \mathrm{~mol} \%$) and 18 -crown-6 (1 mg , 2.5 mol\%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.7 mL) was cooled to $0^{\circ} \mathrm{C}$, and added with stirring. The reaction mixture was vigorously stirred, typically for 2 h
at $0{ }^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, both cooled to around 0 ${ }^{\circ} \mathrm{C}$, were added. The organic layer was collected and dried over MgSO_{4}. The solvents were removed under reduced pressure, and analytically pure samples of the epoxide were obtained by either column chromatography or preparative TLC, eluting with light petroleum / EtOAc (99:1), containing 2\% TEA. The major enantiomer was identified by $[\alpha]^{20}$ D measurements; enantioselectivities were determined either by chiral HPLC, or by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of a resolving agent.

Tetraphenylphosphonium monoperoxysulfate ${ }^{15}$
Tetraphenylphosphonium chloride ($15.0 \mathrm{~g}, 40 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the solution cooled to $10{ }^{\circ} \mathrm{C}$. A solution of Oxone® ${ }^{\circledR}(15.0 \mathrm{~g}, 48 \mathrm{mmol})$ in deionised water $(300 \mathrm{~mL})$ was cooled to $10^{\circ} \mathrm{C}$, and added over a period of 5 min . The resulting biphasic mixture was stirred vigorously for 1 h . The organic layer was separated, and the solvents were removed under reduced pressure at room temperature. The crude colourless solid was washed with deionised water ($3 \times 80 \mathrm{~mL}$). The solid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ and dried over MgSO_{4}. Hexane was added until a solid precipitate just began to form, and the flask placed in a freezer overnight. The resulting colourless crystalline solid was collected by filtration ($12.87 \mathrm{~g}, 71 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3210,3060,1586,1484$, $1435,1262,1226,1162,1106,1058,1041,996,721 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 7.58-7.69 ($8 \mathrm{H}, \mathrm{m}$), 7.71-7.80 ($8 \mathrm{H}, \mathrm{m}$), 7.82-7.86 ($4 \mathrm{H}, \mathrm{m}$), $9.18(1 \mathrm{H}, \mathrm{s})$. The oxygen content, typically 94% peroxide, was estimated by comparing the integrals of the aromatic and hydroxyl signals.

General procedure for catalytic asymmetric epoxidation of alkenes with TPPP mediated by iminium salts under non-aqueous conditions A solution of alkene was cooled to the required temperature, and TPPP was added in one portion with stirring over 2 min . The catalyst was added as a solid in small portions over 1 min . The reaction was stirred until complete consumption of the starting alkene had been observed, or until it was judged that no further conversion was occurring, by TLC. $\mathrm{Et}_{2} \mathrm{O}$, cooled to $0^{\circ} \mathrm{C}$, was added to prepcipitate out TPPP and its reduced by-products. The suspension was filtered through a thin pad of celite and silica gel to yield the desired epoxide. If column chromatography was required, it was typically performed eluting with light petroleum / EtOAc (99:1), containing 2\% TEA. The major enantiomer was identified by $[\alpha]^{20}$ D measurements and comparison to the literature; enantioselectivities were determined by either chiral HPLC, or by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of a resolving agent.

(E)-Methylstilbene oxide ${ }^{30}$

Isolated as a colourless crystalline solid: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3061,1601$, 1495, 1449, 1370, 1278, 1156, 1117, 1065, 1026, 980; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.46(3 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{s}), 7.30-7.45(10 \mathrm{H}, \mathrm{m})$. HPLC conditions-hexane/2-propanol (80:20), oven temp $20^{\circ} \mathrm{C}$, column Chiracel OD-H $01250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size, flow rate 1 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}: t_{r}-4.00 \mathrm{~min}(-)-(1 S, 2 S), 6.92 \mathrm{~min}(+)-(1 R, 2 R)$.

1-Phenylcyclohexene oxide ${ }^{30}$

Isolated as a colourless oil: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3083,1602,1495,1445$, $1359,1248,1174,1133,1078,1030,993,974 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
1.20-1.33 ($1 \mathrm{H}, \mathrm{m}$), 1.51-1.62 ($3 \mathrm{H}, \mathrm{m}$), 1.97-2.05 ($2 \mathrm{H}, \mathrm{m}$), 2.16-2.18 $(1 \mathrm{H}, \mathrm{m}), 2.24-2.31(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.26-7.41(5 \mathrm{H}$, $\mathrm{m})$.

1-Phenyldihydronaphthalene oxide ${ }^{30}$
Isolated as a colourless crystalline solid: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3087,1601$, $1493,1284,1176,1158,1094,1072,1028 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.10(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=15.5 \mathrm{~Hz}, 5.6 \mathrm{~Hz}) 2.48-2.59(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}, \mathrm{dd}, J$ $=15.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}) 2.96-3.07(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}), 7.09-$ $3.29(4 \mathrm{H}, \mathrm{m})$, 7.45-7.60 ($5 \mathrm{H}, \mathrm{m}$). HPLC conditions-hexane/2propanol (90:10), oven temp $20^{\circ} \mathrm{C}$, column Chiracel OD-H $01250 \times$ $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size, flow rate $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}: t_{r}-4.51 \mathrm{~min}(-$)-(1S,2R), $5.94 \min (+)-(1 R, 2 S)$.
(E)-Stilbene oxide ${ }^{30}$

Isolated as a colourless crystalline solid: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3081,1776$, 1602, 1485, 1336, 1155, 1074, 1042, 953; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.87$ ($2 \mathrm{H}, \mathrm{s}$), 7.29-7.39 ($10 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 63.3,126.0,128.6$, 129.3, 137.6. HPLC conditions-hexane/2-propanol (80:20), oven temp $20^{\circ} \mathrm{C}$, column Chiracel OD-H $01250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size, flow rate $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}: t_{r}-4.98 \mathrm{~min}(-)-(1 S, 2 S), 6.54 \mathrm{~min}$ (+)-(1R,2R).

Dihydronaphthalene oxide ${ }^{16}$

Isolated as a colourless oil: $v_{\max }$ (neat)/ $/ \mathrm{cm}^{-1} 3058,3028,2931,2850$, 1602, 1492, 1314, 1129, 1088, 1031, 965; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.65-$ $1.84(1 \mathrm{H}, \mathrm{m}), 2.33-2.42(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz})$, 2.67-2.85 (1 H, m), 3.71-3.80 (1 H, m), 3.81-3.89 (1 H, m), 7.05 (1 H, $\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}$), $7.18-7.35(2 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$.

Triphenylethylene oxide ${ }^{16}$
Isolated as a colourless crystalline solid: $v_{\max }$ (neat)/ $/ \mathrm{cm}^{-1} 3061,3031$, 2956, 2924, 2857, 1604, 1595, 1498, 1471, 1448, 1262, 1220, 741, 699; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.42(1 \mathrm{H}, \mathrm{s}), 7.13-5.50(15 \mathrm{H}, \mathrm{m})$. HPLC conditions-hexane/2-propanol (90:10), oven temp $20^{\circ} \mathrm{C}$, column Chiracel OD-H $01250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size, flow rate 1 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}: t_{r}-4.26 \mathrm{~min}(+)-(S), 7.47 \mathrm{~min}(-)-(R)$.

Acknowledgments

This investigation has enjoyed the support of the EPSRC, Loughborough University, the University of East Anglia, Charnwood Molecular Ltd, and the ERDF (ISCE-Chem \& INTERREG IVa programme 4061). We acknowledge the support of The Royal Society. We are also indebted to the EPSRC Mass Spectrometry Unit, Swansea. The calculations presented in this paper were carried out on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia.

References

1 a) C. H. Behrens,K. B. Sharpless, Aldrichimica Acta, 1983, 16, 67; b) J. Gorzynski Smith, Synthesis 1984, 629; c) T. Katsuki, Coord. Chem. Rev., 1995, 140, 189.
2 a) A. Armstrong, Angew. Chem., Int. Ed. 2004, 43, 1460; b) P. I. Dalko, L. Moisan, Angew. Chem., Int. Ed. 2001, 40, 3726; c)
D. W. C. MacMillan, M. P. Brochu, S. P. Brown, J. Am. Chem. Soc. 2004, 126, 4108; d) Y. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199.
3 a) D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng, K.K. Cheung, J. Am. Chem. Soc. 1996, 118, 491; b) D. Yang, X. C. Wang, M.-K. Wong, Y.-C. Yip, M.-W. Tang, J. Am. Chem. Soc. 1996, 118, 11311; c) D. Yang, M.-K. Wong, Y.-C. Yip, X. C. Wang, M.-W. Tang, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc. 1998, 120, 5943; d) D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, K. K. Cheung, J. Org. Chem. 1998, 63, 9888.
4 a) S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue, R. G. Wilde, J. Org. Chem. 1995, 60, 1391; b) S. E. Denmark, H. Matsuhashi, C. M. Crudden, Z. Wu, J. Org. Chem. 1997, 62, 8288; c) S. E. Denmark, Z. Wu, J. Org. Chem. 1997, 62, 8964; d) S. E. Denmark, Z. Wu, J. Org. Chem. 1998, 63, 2810; e) S. E. Denmark, Z. Wu, Synlett 1999, 847.
5 a) A. Armstrong, B. R. Hayter, Chem. Commun. 1998, 621; b) A. Armstrong, G. Ahmed, B. Dominguez-Fernandez, B. R. Hayter, J. S. Wailes, J. Org. Chem. 2002, 67, 8610.
6 a) Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806; b) Z.-X. Wang, Y. Tu, M. Frohn, Y. Shi, J. Org. Chem. 1997, 62, 2328; c) Z.-X. Wang, Y. Shi, J. Org. Chem. 1998, 63, 3099; d) Z.-X. Wang, Y. Shi, J. Org. Chem. 1997, 62, 8622; e) G. A. Cao, Z.-X. Wang, Y. Tu, Y. Shi, Tetrahedron Lett. 1998, 39, 4425; f) Y. Zhu, Y. Tu, H. Yu, Y. Shi, Tetrahedron Lett. 1998, 39, 7819; g) T. Yong, Z. X. Wang, M. Frohn, M. He, H. Yu, Y. Tang, Y. Shi, J. Org. Chem. 1998, 63, 8475; h) J. D. Warren, Y. Shi, J. Org. Chem. 1999, 64, 7675; i) M. Frohn, X. Zhou, J.-R. Zhang, Y. Tang, Y. Shi, J. Am. Chem. Soc. 1999, 121, 7718; j) L. Shu, Y. Shi, Tetrahedron Lett. 1999, 40, 8721; k) L. Shu, Y. Shi, J. Org. Chem. 2000, 65, 8807; I) H. Tian, X. She, J. Xu, Y. Shi, Org. Lett. 2001, 3, 1929; m) H. Tian, X. She, H. Yu, L. Shu, Y. Shi, J. Org. Chem. 2002, 67, 2435; n) X.-Y. Wu, X. She, Y. Shi, J. Am. Chem. Soc. 2002, 124, 8792.
7 a) A. Picot, P. Milliet, X. Lusinchi, Tetrahedron Lett. 1976, 17, 1573; b) P. Milliet, A. Picot, X. Lusinchi, Tetrahedron Lett. 1976, 17, 1577; c) G. Hanquet, X. Lusinchi, P. Milliet, Tetrahedron Lett., 1987, 28, 6061; d) G. Hanquet, X. Lusinchi, P. Milliet, Tetrahedron Lett. 1988, 29, 3941; e) L. Bohé, G. Hanquet, M. Lusinchi, X. Lusinchi, Tetrahedron Lett. 1993, 34, 7271; f) L. Bohé, M. Lusinchi, X. Lusinchi, Tetrahedron, 1999, 55, 141.
8 a) L. Bohé, M. Kammoun, Tetrahedron Lett. 2002, 43, 803; b) L. Bohé, M. Kammoun, Tetrahedron Lett. 2004, 45, 747; c) V. K. Aggarwal, M. F. Wang Chem. Commun., 1996, 191; d) A. Armstrong, G. Ahmed, I. Garnett, K. Gioacolou, Synlett 1997, 1075; e) A. Armstrong, G. Ahmed, I. Garnett, K. Gioacolou, J. S. Wailes, Tetrahedron 1999, 55, 2341; f) A. Gluszynska, I. Mackowska, M. D. Rozwadowska, W. Sienniak, Tetrahedron: Asymmetry 2004, 15, 2499; g) M. R. Biscoe, R. Breslow, J. Am. Chem. Soc. 2005, 127, 10812; h) S. Minakata, A. Takemiya, K. Nakamura, I. Ryu, M. Komatsu, Synlett 2000, 1810; i) M.-K. Wong, L.-M. Ho, Y.-S. Zheng, C.-Y. Ho, D. Yang, Org. Lett. 2001, 16, 2587; j) J. M. Crosthwaite, V. A. Farmer, J. P. Hallett, T. Welton, J. Mol. Catal. A 2008, 279, 148; k) R. Novikov, J. Lacour, Tetrahedron: Asymmetry 2010, 21, 1611; I) R. Novikov, J. Vachon, J. Lacour, Chimia 2007, 61, 236; m) J. Vachon, C. Lauper, K. Ditrich, J. Lacour, Tetrahedron: Asymmetry 2006, 17, 2334; n) J. Vachon, S. Rentsch, A. Martinez, C. Marsol, J. Lacour, Org. Biomol. Chem. 2007, 5, 501; o) O. A. Wong, Y. Shi, Chem. Rev. 2008, 108, 3958; p) R. Novikov, G. Bernardinelli, J. Lacour, Adv. Synth. Catal. 2009, 351, 596.
9 a) P. C. Bulman Page, B. R. Buckley, M. M. Farah, A. J. Blacker, Eur. J. Org. Chem. 2009, 3413; b) P. C. Bulman Page, B. R. Buckley, L. F. Appleby, P. A. Alsters, Synthesis 2005, 3405; c) P. C. Bulman Page, B. R. Buckley, G. A. Rassias, A. J. Blacker, Eur. J. Org. Chem. 2006, 803.

10 P. C. Bulman Page, P. Parker, G. A. Rassias, B. R. Buckley, D. Bethell, Adv. Synth. Catal. 2008, 350, 1867
11 P. C. Bulman Page, P. Parker, B. R. Buckley, G. A. Rassias, D. Bethell, Tetrahedron, 2009, 65, 2910.
12 B. R. Buckley, Y. Chan, N. Dreyfus, C. E. Elliott, F. Marken, P. C. Bulman Page, Adv. Synth. Catal. 2008, 350, 1149.

13 P. C. Bulman Page, M. M. Farah, B. R. Buckley, A. J. Blacker, J. Lacour, Synlett, 2008, 1381, and references therein.
14 a) M. F. A. Adamo, V. K. Aggarwal, M. A. Sage, J. Am. Chem. Soc. 2000, 122, 8317; b) M. F. A. Adamo, V. K. Aggarwal, M. A. Sage, J. Am. Chem. Soc. 2002, 124, 11223; c) V. K. Aggarwal, C. Lopin, F. Sandrinelli, J. Am. Chem. Soc. 2003, 125, 7596; d) C.-Y. Ho, Y.-C. Chen, M.-K. Wong, D. Yang, J. Org. Chem. 2005, 70, 898.
15 S. Campestrini, F. Di Furia, G. Labat, F. Novello, J. Chem. Soc. Perkin Trans. 2 1994, 10, 2175.
16 a) P. C. Bulman Page, B. R. Buckley, D. Barros, A. J. Blacker, H. Heaney, B. A. Marples, Tetrahedron 2006, 62, 6607; b) P. C. Bulman Page, B. R. Buckley, D. Barros, A. J. Blacker, B. A. Marples, M. R. J. Elsegood, Tetrahedron 2007, 63, 5386.
17 P. C. Bulman Page, B. R. Buckley, H. Heaney, A. J. Blacker, Org. Lett., 2005, 7, 375.
18 P. C. Bulman Page, L. F. Appleby, D. Day, Y. Chan, B. R. Buckley, S. M. Allin, M. J. McKenzie, Org. Lett. 2009, 11, 1991.

19 C. J. Bartlett, D. P. Day, Y. Chan, S. M. Allin, M. J. McKenzie, A. M. Z. Slawin, P. C. Bulman Page, J. Org. Chem. 2012, 77, 772.

20 C. J. Bartlett, Y. Chan, D. Day, P. Parker, B. R. Buckley, G. A. Rassias, A. M. Z. Slawin, S. M. Allin, J. Lacour, A. Pinto, P. C. Bulman Page, J. Org. Chem. 2012, 77, 6128.
21 R. Novikov, G. Bernardinelli, J. Lacour, Adv. Synth. Catal. 2008, 350, 1113.
22 S. E. Denmark, H. Matsuhashi, J. Org. Chem. 2002, 67, 3479.
23 S. L. Pira, T. W. Wallace, J. P. Graham, Org. Lett. 2009, 11, 1663.

24 J. Ruan, G. Lu, L. Xu, Y.-M. Li, A. S. C. Chan, Adv. Synth. Catal. 2008, 350, 76.
25 A. K. Unni, N. Takenaka, H. Yamamoto, V. H. Rawal, J. Am. Chem. Soc. 2005, 127, 1336.
26 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Wallingford CT, 2009.

27 See Tables S1 and S2 in the supplementary information.
28 a) J. Lacour, D. Monchaud, C. Marsol, Tetrahedron Lett. 2002, 43, 8257; b) J. Vachon, C. Pérollier, D. Monchaud, C. Marsol, K. Ditrich, J. Lacour, J. Org. Chem. 2005, 70, 5903.

29 Korostylev, A.; Tararov, V. I.; Fischer, C.; Monsees, A.; Borner, A., J. Org. Chem. 2004, 69, 3220.

30 P. C. Bulman Page, G. A. Rassias, D. Bethell, M. B. Schilling, J. Org. Chem. 1998, 63, 2774.

[^0]: a. School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
 ${ }^{\text {b. }}$ Department of Chemistry, Nottingham Trent University, Clifton, Nottinghamshire NG11 8NS, UK.
 c. Charnwood Molecular Ltd, 7 Beaumont Court, Prince William Road,

 Loughborough, Leicestershire LE11 5GA, UK.
 d. Département de Chimie Organique, Université de Genève, Quai Ernest Ansermet $30, \mathrm{CH}-1121$ Genève 4, Switzerland.
 E-mail: p.page@uea.ac.uk
 † Electronic Supplementary Information (ESI) available:

