Green Chemistry

Study of Poplar Organosolv Lignin after Melt Rheology treatment as Carbon Fiber Precursors

Journal:	Green Chemistry
Manuscript ID	GC-ART-04-2016-000977.R2
Article Type:	Paper
Date Submitted by the Author:	27-May-2016
Complete List of Authors:	Sun, Qining; University of Tennessee, Department of Chemical and Biomolecular Engineering Khunsupat, Ratayakorn; Georgia Institute of Technology, Akato, Sam; Oak Ridge National Laboratory, Materials Science and Technology Tao, Jingming; Oak Ridge National Laboratory, Labbe, Nicole; University of Tennessee Gallego, Nidia; Oak Ridge National Laboratory, Materials Science and Technology division Bozell, Joseph; University of Tennessee Rials, Tim; University of Tennessee, Biomass Chemistry Laboratory Tuskas, Gerald; ORNL, Tschaplinski, Timothy; Oak Ridge National Laboratory, Environmental Sciences Division; BioEnergy Science Center, Naskar, Amit; Oak Ridge National Laboratory, Pu, Yunqiao; Oak Ridge National Laboratory Ragauskas, Arthur; University of Tennessee,

SCHOLARONE[™] Manuscripts

Green Chemistry

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Qining Sun, ^{[a][b]} Ratayakorn Khunsupat, ^[a] Kokouvi Akato, ^[c] Jingming Tao, ^[d] Nicole Labbé, *^[d] Nidia C. Gallego, ^[c] Joseph J. Bozell, ^[d] Timothy G. Rials, ^[d] Gerald A. Tuskan, ^[e] Timothy J. Tschaplinski, ^[e] Amit K. Naskar, *^[c] Yunqiao Pu, ^[f] and Art J. Ragauskas ^{*[a][f][g]}

Lignins from various poplar genotypes were isolated by using organosolv fractionation and subjected to rheological treatment at various temperatures. Physicochemical characterization of the lignin variants shows a broad distribution of glass transition temperatures, melt viscosity, and pyrolysis char residues. Rheological treatment at 170 °C induces lignin repolymerization accompanied with an increase in condensed linkages, molecular weights, and viscosities. In contrast, rheology testing at 190 °C results in the decrease in lignin aliphatic and phenolic hydroxyl groups, β -O-aryl ether linkages, molecular weights, and viscosity values. Lignin under air cooling generates more oxygenated and condensed compounds, but lower amounts of ether linkages than lignin cooled under nitrogen. Lignin with lower syringyl/guaiacyl ratio tends to form more cross-linkages along with higher viscosity values, higher molecular weight and larger amounts of condensed bonds.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Introduction

Carbon fibers are among the most important engineered materials for a variety of industrial applications due to their unique properties, including high stiffness and tensile strength, low thermal expansion and density, heat tolerance and reagent resistance. However, the main barriers to the large-scale production of commercial products are the high cost of petroleum-based carbon fiber precursors polyacrylonitrile (PAN) and the associated processing costs.^[1] In an effort to address these barriers, lignin as an alternative precursor with low cost draws significant attention to the potential manufacturing of carbon fiber.^[2] Nonetheless, to date, lignin based carbon fibers do not offer mechanical properties required for many structural applications. Several factors have been proposed to impair the physical properties of lignin carbon fiber, including structural heterogeneity, impurities and isolation methods.^[3] Current methods for the manufacturing of carbon fiber from lignin involve isolation/purification of lignin, melt fiber thermo-stabilization, spinning, oxidative carbonization, graphitization and surface treatment.^[4a] Recently, Mainka et al. characterized major reactions during conversion of lignin to carbon fiber by using nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy and reaction mechanisms were proposed.^[4b] However, understanding on thermal behaviors and lignin chemistry during lignin melt treatment are still very limited. In an effort to increase the strength and integrity of lignin fibers during oxidative thermo-stabilization and subsequent downstream processing, it is essential to understand changes of thermo-rheological properties of lignin and its associated chemical structures during thermal treatment. Such an understanding would facilitate the improvement in lignin derived carbon fibers. This research focuses on exploring lignin structural features and the associated chemistry under thermal and mechanical deformation after a melt rheological treatment.

Lignin is one of the most abundant natural biopolymers that accounts for 10–30 wt% of plant cell walls. It is a complex substituted polyphenol derived typically from hydroxycinnamyl

^{a.} School of Chemistry and Biochemistry, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.

^{b.} Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996–2200, USA.

^{c.} Carbon & Composites Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831-6053, USA.

^{d.} Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.

^e Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831-6422, USA.

^{f.} Biosciences Division, BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

⁹ Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996–2200, USA.

E-mail: aragausk@utk.edu; naskarak@ornl.gov; nlabbe@utk.edu

ARTICLE

monolignols (i.e., coniferyl alcohol, sinapyl alcohol, and paracoumaryl alcohol) with different degrees of methoxylation. The polymerization of these monolignols in native biomass yields a racemic, cross-linked, and highly heterogeneous aromatic macromolecule.^[3] Physical and chemical properties of lignin isolated from biomass depend to a large extent on its source, syringyl (S), guaiacyl (G) and p-hydroxyphenol (H) monomer proportions, molecular weights, degree of branching, isolation methods, and purity. Of the chemical structures in biomass lignin, guaiacyl units show greater crosslinking reaction tendency than syringylic units,^[5] which result in more condensation reactions.^[3b, 6] Most of the lignin generated by Kraft pulping process and biofuel industry is currently utilized primarily as a low-cost fuel.^[7] Therefore, significant attention has recently turned towards largescale use of lignin in various applications, especially for high valueadded lignin-based high performance materials. To date, the organosolv fractionation method has been widely used to isolate lignin from biomass with a number of advantages, including an efficient lignin fractionation, yielding lignin with a high purity, and improved performance of cellulose fraction in downstream conversion processes.^[8] During the fractionation process, the hydrolyzed lignin is extracted into the organophilic phase and then recovered as the filtrate, leaving cellulose as a solid residue and hemicellulose fraction in the water phase as monomeric and oligomeric sugars.^[9] The predominant β -O-4 ether linkages substructures are at lower level in organosolv lignin than the starting material due to acid-catalyzed cleavage that occurred during organosolv process. $^{\left[10\right] }$ These characteristics make organosolv lignin a good candidate for high-value applications.

Lignin's syringyl/guaiacyl (S/G) monolignol ratio in biomass has been used as good indicator of its response to pulping and biomass pretreatment.^[11] In light of these correlations,^[12] as well as the improved performance of engineered plastics with large amounts of guaiacyl groups,^[13] this study investigates the thermal behaviour and structural changes occurring to poplar (Populus sp.) lignin with various S/G ratios under different fractionation conditions as a result of thermal treatment at various temperatures. The objective of this study is to examine the structural and fractionation parameters relevant to lignin's thermo-rheological properties and to determine how those parameters individually and cooperatively affect melt processing of lignin. Nuclear magnetic resonance (NMR) spectroscopy (i.e. ³¹P NMR, HSQC NMR), gel permeation chromatography (GPC), and attenuated total reflectance (ATR) FTIR spectroscopy were employed for structural characterization. The results provide insight into lignin cross-linking and scission mechanisms under thermorheological flow which might help form a basis for the potential manufacturing of lignin carbon fibers. In addition, the findings afford new insight into thermal lignin chemistry and functional group distributions that would help guide further studies into improvements in other lignin related areas, such as biomass pretreatment at elevated temperatures or generation of non-structural carbons.

Results and Discussion

Lignin Purity and S/G ratio

The values of original monolignol S/G ratio in the poplar samples used in this study are shown in Table 1. After solvent fractionation of lignin from the wood samples, the S/G ratio in isolated lignin altered significantly, varying from 2.9 to 3.7,

Biomass ID	S/G ^[a]	FC ^[b]	Se [c]	Ce ^[d]	Hm ^[e]	L ^[f]	A ^[g]	E ^[h]
TAG 1672	2.25	140°C 120min	1.91	42.14 ±0.23	21.26 ±0.08	22.63 ±0.15	0.62 ±0.00	7.92 ±0.11
TAG 562	1.55	140°C 120min	1.91	43.55 ±0.20	21.91 ±0.07	22.4 ±0.15	0.72 ±0.02	6.17 ±0.17
TAG 896	2.26	160°C 60min	2.19	42.89 ±0.56	22.1 ±0.22	22.22 ±0.28	0.72 ±0.01	6.28 ±0.22
TAG 99	1.43	160°C 60min	2.19	43.79 ±0.44	20.48 ±0.12	22.98 ±0.09	0.79 ±0.01	8.01 ±0.20

[a]: S/G was analysed by using py-MBMS; [b]: Fractionation conditions; [c]: Severity; [d]: Cellulose; [e]: Hemicellulose; [f]: Lignin; [g]: Ash, [h]: Extractives.

Biomass	S ^[a]	G ^[b]	S/G	L ^[c]	Hm ^[d]
tag #	(%)	(%)		(wt%)	(wt%)
TAG1672	41.9±2.1	11.9±0.3	3.5±0.2	91.31	1.46
				±0.60	±0.10
TAG562	44.4±0.1	14.2±0.2	3.1±0.0	91.43	1.64
				±0.40	±0.34
TAG896	41.8±0.2	11.9±0.2	3.7±0.1	95.30	3.37
				±0.62	±0.07
TAG99	38.1±0.6	13.3±0.3	2.9±0.1	94.80	3.32
				±0.98	±0.03

[a]: syringyl; [b]: guaiacyl. [c]: Lignin; [d]: Hemicellulose;

which could be attributed to the reactivity difference in S and G units under the acidic organosolv process. The monolignol composition and S/G ratio of organosolv fractionated lignin samples are summarized in Table 2. Lignin samples from TAG896 and TAG99 that were fractionated at higher severity showed higher lignin purity at 95.30 and 94.80 wt%, respectively.

Thermal Analysis

The differential scanning calorimetry (DSC) thermograms of poplar organosolv lignin samples are shown in Figure 1. It appears that the glass transition temperature (Tg) shows a broad transition range (90–140 °C) for all the analyzed lignin samples. Lignin from TAG896 with a high S/G ratio exhibits a low Tg value; in contrast, lignin from TAG562 with low S/G ratio exhibits a higher Tg value. G moieties in poplar lignin could lead to increased crosslinking and this would impact thermal properties of lignin. It has been reported that lignin samples with high S and low G content would exhibit low Tg.^[14] On the other hand, lignin with high G content and low S component would exhibit high Tg.^[14,15] It should be noted that TAG99 lignin also shows a low Tg value even with a low S/G ratio, which might be due to its fractionation at a higher severity.

Figure 1. DSC thermograms of poplar organosolv lignin samples showing base line shift as glass transition temperature.

Figure 2. TGA thermograms of isolated poplar organosolv lignin samples.

The results from thermogravimetric analysis (TGA) of the lignin samples (preformed under a nitrogen environment) are shown in Figure 2. The char residue at 1000 °C varies from 24–38 wt%. Lignin samples with high T_g offer higher char contents and, likewise, low T_g lignin samples have less charred residues. The TGA runs were conducted on as-received samples without inducing any oxidative stabilization that is required for carbon fiber manufacturing. This trend suggests that high carbon yields can be obtained from lignins with more condensed structures. However, such precursor is difficult to melt-spin into a fiber form.

Rheological Data Analysis

The rheological properties of lignin play an important role in optimizing the processing conditions during melt spinning of lignin fibers. The flow behaviours of poplar organosolv lignin samples were investigated at different temperatures of 170, 180, and 190 °C. Sample codes for the various sheared samples are shown in Table 3. As shown in Figure 3, poplar lignin displayed differing time and temperature dependent transient

viscosity profiles. The lignin samples with high T_g (i.e., TAG562) exhibited higher viscosity values. Although fractionation at higher severity resulted in lower values of viscosity, lignin from TAG99 with lower S/G ratio still exhibited relatively higher viscosity values than lignin from TAG 896 under the same fractionation condition. Thus viscosity values appear to be controlled by both chemical reactivity as well as degree of depolymerization on the isolated lignin. Prolonged thermorheological shear exposure (beyond ~20 min or 1200 s) of lignin increased the melt viscosity suggesting thermal cross-linking of lignin segments.

 Table 3. Rheological measurement temperature and cooling conditions of poplar lignin samples and their codes.

Sample Code	Lignin Sample	Temp. (°C)	Cooling Condition
TAG1672	Control lignin		
TAG1672-170A	After rheology test	170	Air
TAG1672-180A	After rheology test	180	Air
TAG1672-190A	After rheology test	190	Air
TAG1672-190N	After rheology test	190	Nitrogen
TAG562	Control lignin		
TAG562-170A	After rheology test	170	Air
TAG562-180A	After rheology test	180	Air
TAG562-190A	After rheology test	190	Air
TAG562-190N	After rheology test	190	Nitrogen
TAG896	Control lignin		
TAG896-170A	After rheology test	170	Air
TAG896-180A	After rheology test	180	Air
TAG896-190A	After rheology test	190	Air
TAG896-190N	After rheology test	190	Nitrogen
TAG99	Control lignin		
TAG99-170A	After rheology test	170	Air
TAG99-180A	After rheology test	180	Air
TAG99-190A	After rheology test	190	Air

The melt viscosity of the lignin samples is reduced significantly with increased temperature from 170 to 190 °C. The percent rise in viscosity at high temperature (190 °C) at prolonged thermo-rheological treatment (i.e., order of magnitude in $\Delta\eta$ at time lapse between 100 s and 1500 s) is very high for the lignin sample TAG562 in which the G content is high. As expected, the TAG896 sample with high S/G ratio exhibits a low viscosity at all temperatures range and slow rise in viscosity over time. The rheo-crosslinking kinetics or chemo-rheological data analyzed based on equations (3) – (5) are displayed in Table 4. The equilibrium rate constants (k_{ee}) for thermo-chemical reactions of lignins from TAG896 and TAG99 are significantly less than the other samples, since both of these samples were obtained under high severity condition (high temperature) and have very low T_g compared to others.

Although sample TAG99 has relatively lower S content than the other lignins, the high severity extraction conditions could be the reason for its anomalous reactivity. The activation energy for the thermal reactions ($\Delta E_k/R$) follows a similar trend as that of the equilibrium rate constant (k_{∞}). The activation energy ($\Delta E_{\eta}/R$) is relatively higher for organosolv lignins TAG1672 as compared to lignin samples from TAG896, TAG562 and TAG99.

Molecular weight analysis

ARTICLE

GPC was employed to determine molecular weight distribution of poplar organosolv lignin before and after rheology testing. Weight-averaged molecular weight (Mw) and numberaveraged molecular weight (Mn) values for the lignin samples are presented in Figure 4. Compared with the controls, lignin molecular weights increased to different extents after

Figure 3. Relation between the shear viscosity and shear rate of poplar lignin at different temperatures (170, 180 and 190 °C).

rheological testing at 170 °C. As the temperature increased to 190 °C, the lignin molecular weights were observe to

decrease. This decrease corresponds to their viscosity properties and suggests that most of the repolymerization reactions in lignin occur at lower processing temperatures, since the depolymerization of lignin dominates at higher temperatures.^[16] The significant increase of molecular weight in TAG562 lignin after the rheology test at 170 ºC in conjunction with its higher viscosity values suggests that lignin with lower S/G ratio could result in the condensing reaction to occur to a higher extent. The organosolv lignins from TAG99 and TAG896 have lower molecular weights than the other lignin samples, because those two samples were isolated at higher severity of organosolv fractionation which could lead to a decrease in lignin molecular weights due to enhanced hydrolysis of lignin.^[17] TAG99 lignin with a low S/G ratio is significantly depolymerized (likely this is why it exhibits low Tg value) and thus it behaves differently in rheological response discussed earlier. Viscosity typically depends on molecular weights and in some cases its change depends, in part, on chemical reactivity. These two combined effects give TAG99 lignin moderate viscosity behavior and low rate constant value (k∞ in Table 4). In addition, lignin samples cooled under air after the 190 °C rheology test exhibited higher molecular weights than those under nitrogen. This suggests that oxygen during cooling could affect lignin macromolecular structure and contributes more to the formation of repolymerized structures in comparison to nitrogen.^[18]

Figure 4. Molecular weights of lignins after rheology test. Sample code with definition is in Table 3.

Table 4. Chemo-rheological characteristics of poplar lignin.					
Sample ID	k∞ (1/s)	η∞ (Pa.s)	$\Delta E_k/R$ (K)	ΔΕ _η /R(K)	
TAG1672	4.5×10^{7}	1.14 x 10 ⁻³¹	-10685	34028	
TAG562	4.4×10^{8}	6.48 x 10 ⁻²⁶	-11472	28409	
TAG896	74	2.58 x 10 ⁻²⁷	-4709	29059	
TAG99	43	4.19 x 10 ⁻²⁷	-4181	28865	

NMR and FTIR analysis

³¹P NMR, ¹H-¹³C HSQC NMR, and ATR-FTIR spectroscopies were employed to investigate structural changes occurring to poplar organosolv lignins as a result sof the thermal rheology treatment. Lignin phosphitylation and ³¹P NMR quantitative analysis was carried out to analyze the amounts and distribution of various hydroxyl structures as summarized in Figure 5. Compared to control samples before rheology treatment, there is a reduction in aliphatic hydroxyl group contents in lignin. The decreased amounts of these hydroxyl groups indicate that lignin side chain hydroxyl groups were eliminated under the applied thermal conditions, especially at the higher temperature of 190 °C. The cleavages of side chain hydroxyl groups could be attributed to the dehydration of aliphatic hydroxyl groups yielding sites of unsaturation and/or new formed cross-linkages bridging the aromatic rings. The carboxylic OH group contents also decrease as the rheology testing temperature is raised from 170 to 190 °C. Guaiacyl and syringyl type phenolic hydroxyl groups contents were observed to increase after the rheology treatment at 170 °C which could result from the cleavage of ether bonds. The decrease of ether linkages was further confirmed by ATR-FTIR semi-analysis of main ether linkages as shown in Figure 6. However, rheology treatment at higher temperature (190 °C) yielded lower amounts of phenolic OH groups, which could be attributed to the intensive elimination reactions that transformed hydroxyl groups to water and double bonds.

In addition, ³¹P NMR analysis shows noticeably increased amounts of C5 condensed phenolic structures in poplar organosolv lignin after 170 °C rheology treatment. This suggests that rheology testing at 170 °C could lead to lignin repolymerization, thereby resulting in modified lignin with higher viscosity and molecular weights, consistent with GPC results with respect to the increase of related molecular weights. In contrast, the higher temperature of 190 °C tends to favor depolymerization of lignin to a large degree, thereby generating lignin with lower molecular weights and lower viscosity. During rheology testing, lignin with lower S/G ratio generates more cross-linkages that could exist as a bridge between the aromatic rings and/or as a cyclic form attached to aromatic carbons. This could be attributed to the active phenyl C5 site of guaiacyl units resulting in cross-linking reactions in a higher proportion for guaiacyl lignins. Moreover, a large amount of aliphatic OH in the control organosolv lignin sample TAG562 would be another key factor affecting their molecular weight and viscosity increase during rheology test, because the strength of hydrogen bonding for primary versus secondary alcohols is different. A previous study has shown the presence of γ -OH groups strongly reduced the thermal mobility of the β -O-4 model oligomers.^[19] Therefore, lignin containing more

Figure 5. Hydroxyl contents in lignin determined by using ³¹P NMR. Sample code with definition is in Table 3.

aliphatic OH groups including both secondary α -OH and primary γ -OH groups would be shown to be more infusible during the rheology test. Moreover, thermally treated lignin samples acquired under nitrogen cooling after the rheology test at 190 °C yielded fewer amounts of various hydroxyl groups than lignin under air cooling, which indicates oxygen

ARTICLE

could oxidize lignin and introduce more oxygenated compounds into the lignin macromolecules.

Figure 6. Ether linkages relative ratio calculated from ATR-FTIR absorption data. Sample code with definition is in Table 3.

In an effort to further investigate lignin chemical structure changes during rheological treatment at 190 °C, HSQC NMR of three groups of lignin were carried out. Figure 7 shows the HSQC spectra for the TAG562 organosolv lignin sample before and after rheological treatment at 190 °C under air cooling. The cross peaks were assigned by comparing with the literature data.^[20] HSQC spectra show a significant reduction in signal intensity of cross peaks in interunit linkages, indicating the scission of ether linkages during rheology treatment. In good agreement with aliphatic region changes, there is also a considerable reduction in aromatic resonances including syringyl and guaiacyl lignin units after the rheology treatment at 190 °C, indicating the change of lignin side chains and possible repolymerization reaction of aromatic units. Interestingly, lignin under nitrogen cooling remained with relatively more heta-O-4 ether linkages than lignin under air cooling. This could suggest that nitrogen's inert properties could protect lignin thus resulting in a less scission of ether linkages at the temperature of 190 °C. This in conjunction with molecular weight, ³¹P NMR, and FTIR results indicates oxygen (i.e., O₂) significantly contributes to the formation of crosslinkages among lignin molecules through a series of elimination, rearrangement and oxidative reactions of free radicals derived from homolysis of β -O-4 ether bonds in lignin.

Furthermore, the possible mechanistic pathways associated with these structural changes during thermal rheology testing that resulted in heat-induced polymerization and depolymerization of lignin are proposed in Scheme 1. At relatively low temperature, lignin samples could be mainly subjected to repolymerization reactions starting from initial homolysis of C_{α} and/or C_{β} -ether linkages (A in Scheme 1) generating a phenoxyl (C) and 1-phenyl-2-propyl (B) radical.^[21] The formed phenoxyl radical with the resonance mesomeric forms (C1) leads to radical coupling reactions with C5 and/or C3 centered radicals to form new 4-O-5, 5-5', 3-3', 3-5' and 3-O-5 linkages along with increased molecular weight and condensed lignins. This suggests lignin with more guaiacyl (G)

Figure 7. HSQC spectra of TAG562 poplar organosolv lignin after rheology treatment. (a) aliphatic region; (b) aromatic region; A: β -O-4 ether; B: phenylcoumaran; C: resinol; G: guaiacyl; S: syringyl; S': syringyl units with oxidized α -ketone; PB: p-hydroxybenzoate.

units could result in more cross-linkages due to less steric hindrance in lignin C5 position that facilitates the formation of resonance structures. At a relatively high temperature (during the rheology test of lignin, the polymer undergoes competitive repolymerization and depolymerization reactions, and the depolymerization reaction appears to be dominant as evident by the apparent decrease in molecular weight and hydroxyl groups in lignin.^[16] Radical induced H-abstraction occurring at the $C_{\alpha}\text{-}H$ could form a benzyl radical that should have a lower unpaired spin density at the $\alpha\mbox{-}position$ with extensive electron delocalization analogous to the formed phenoxyl radicals.^[16] Two different pathways for depolymerization reaction thus could be proposed in order to not only control molecular weight growth but also transform the reactive C-O bonds into C-C linkages. The 1-phenyl-2-propyl radical (B) formed at relatively low temperature is reported to be more exothermic than that of phenoxyl radical.^[21a] Although intermediates generated by those radicals would be sterically hindered which further limit their participation in the chain propagating reaction, these radicals could be severely limited with regard to the sites that are capable of abstracting hydrogen from lignin to form more stable intermediates for depolymerization reactions (possible pathways I and II in Scheme 1) at relatively

Journal Name

high temperature. Furthermore, cooling under air will lead to a series of highly reactive oxygen-based radicals, which further oxidizes the lignin structure introducing more carbonyl and carboxyl groups into lignin than under nitrogen cooling conditions.^[16]

Conclusions

Rheology test of organosolv lignins from poplar with different S/G ratios was accomplished at 170, 180, and 190 °C under different cooling conditions. At 170 °C, repolymerization of lignin is favored, which resulted in the significant increase in molecular weights and viscosity values. In contrast, at 190 °C lignin depolymerization appears to be dominant as exhibited by a considerable reduction of β -O-4 ether linkages, aliphatic,

Typical repolymerization reactions via radical coupling at relatively low temperature

Typical thermal depolymerization reactions at relatively high temperature

Scheme 1. Proposed lignin repolymerization and depolymerization reaction mechanisms during melt rheology treatment.

phenolic and carboxylic hydroxyls, and therefore yielded lignins with relatively lower molecular weights and lower viscosity values. Air cooling introduced more oxygenated compounds and condensed bonds into the lignin macromolecules but lower amounts of ether linkages than nitrogen cooling. Poplar organosolv lignins with lower S/G ratio exhibited higher viscosity values and molecular weights with larger amounts of condensed structures after rheology test at relative lower temperature. Proper temperature and air cooling conditions could contribute to the crosslinking of lignin and the formation of condensed structures with more carboncarbon linkages that improve the spinnability of organosolv poplar lignins. The detailed characterization of lignin physicochemical properties after rheology treatment provides insight into the mechanisms of rheology of lignin and will be of value in the production of novel lignin carbon fibers. Further study using bench scale lignin samples to synthesize carbon fibers containing such treated lignin will be needed in the future for efficiently incorporating lignin in carbon fiber production.

Experimental

Biomass and lignin isolation: Three-year-old black cottonwood (Populus trichocarpa) clones harvested from a Genome-wide Association Study at Clatskanie, OR were harvested Dec. 2012, cut into ~50 cm logs and shipped to ORNL, where they were dried for 2 weeks at 70 °C. The logs were then debarked with an axe and an angle grinder and then chipped to \sim 1–3 cm sections in a commercial chipper. A small amount of the chips were ground to 0.420 mm and the powder samples were analyzed by pyrolysis molecular-beam mass spectrometry (py-MBMS) to determine the S/G ratio. Five trees with S/G ratio ranging from 1.43 to 2.27 were selected to perform organosolv fractionation process. Poplar clone identification codes for selected samples are shown in Table 1. The chemical composition of the biomass samples was determined by following procedures developed by National Renewable Energy Laboratory (NREL/TP-510-42619, NREL/TP-510-42618 and NREL/TP-510-42622). The ash, extractives, cellulose, hemicellulose, and lignin content of the poplar samples are summarized in Table 1. The selected hybrid poplar wood chips were sieved and particles with size larger than 2.36 mm were placed in a flow through reactor and heated with a mixture of methyl isobutyl ketone/ethanol/water (16/34/50 wt%) in presence of sulfuric acid (0.05M).^[10c] The organosolv fractionation process was carried out at 140 °C for 120 min or 160 °C for 60 min with solid to liquid loading ratio 1:20 (w/w). The combined severity factor (Ro') of the fractionation, which combines the effects of reaction time, temperature, and acid concentration into a single value, was calculated as following:^[22]

(1)

(2)

Ro'=Log Ro- pH

Ro = (t) (exp (Tr-Tb)/14.75)

Where t represents fractionation time in minutes; Tr is the fractionation temperature in $^{\circ}C$; Tb is the baseline temperature, mostly at 100 $^{\circ}C$. After organosolv process, lignin was isolated from the resulting cooking liquor by a reported salting-out method.^[10c, 23]

Lignin characterization and thermal analysis: The composition and S/G ratios of the lignin fractions were determined using Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) by following the procedures developed by National Renewable Energy Laboratory (NREL/TP-510-42618 and NREL/TP-510-42622). Briefly, 200 µg of lignin were pyrolyzed in a Frontier multi-shot pyrolyzer (PY3030D) at 450 °C for 12s. The interface temperature was 280 °C. A Perkin Elmer Clarus 680 GC with a split ratio of 80:1 was used for compound separation. The sample was injected into a 30 m \times 0.25 i.d. \times 0.25 µm Elite 1701 (Perkin Elmer) capillary column with 1mL/min helium gas. A Perkin Elmer Clarus SQ8C mass spectrometer with scanning range of 35-550 Da was used to detect the eluting component. The S and G % of lignin fractions were calculated following the method developed by Sykes et al.^[24] Thermal analysis of the lignin samples was conducted in a TA Q500 thermogravimetric analyzer (TGA) heated from RT (30 °C) to 1000 °C, at 10 °C/min under a nitrogen atmosphere. Differential scanning calorimetry (DSC) was carried out on lignin samples using a TA Instruments DSC Q2000 in standard mode. Second heating scans ran at 10 °C/min was used to determine glass transition temperature of the lignin samples.

Rheological measurement: Melt viscosity values of the lignin samples (~ 400 mg) were measured using a strain-controlled ARES rheometer (TA Instruments). Isothermal transient rheological analysis was conducted using parallel plate geometry (25-mm diameter plate) at three temperatures (170, 180, and 190 °C) with a 1 mm gap and a shear rate of 10 rad/s. Parallel aluminium plates were first heated to desired temperature at ramp rate of 5 °C/min. Once the desired temperature was reached, nitrogen gas was purged through the oven. The lignin was compressed into a pellet and loaded after the reset of the gap and forced between the upper and lower plate. The upper plate was gradually lowered to contact the lignin sample and finally to reach 1 mm gap. The lignin sample was isothermally sheared in between preheated parallel plate at constant shear rate (10 rad/s) and viscosity data were monitored at 170, 180, and 190 °C under nitrogen during the rheological test (for ~2000 s), and then cooled down to room temperature under air or nitrogen environments (by purging room temperature air or nitrogen, respectively) in approximately 1 h, separately. Sample codes for the various sheared lignin samples are shown in Table 3. The recorded data showed a short duration (10 - 200 s) of steady viscosity after a short increase at the beginning of measurement of transient data; then the viscosity increases due to thermally-induced reactions. The gradual increase in viscosity data was analysed by fitting equations (3)-(5).

$$\ln \eta(t) = \ln \eta_{\gamma} + kt$$

(3)

Equation (3) shows k as the temperature dependent reaction rate constant and η_{γ} as the steady viscosity value at the onset of viscosity rise. Chemorheological activation energies associated with temperature dependence of viscosity ($\Delta E\eta$) and rate constants (ΔEk) were studied using isothermal viscosity data and fitting equations (4) and (5).^[25]

ATR-FTIR analysis: To investigate and semi-quantify chemical changes in lignin after rheological treatment, a PerkinElmer Spectrum 100 FTIR spectrometer with a universal ATR sampling accessory was used. The lignin sample was pressed uniformly against the crystal surface via a spring-anvil, and spectrum was obtained by accumulating 32 scans from 4000 to 500 cm⁻¹ at 4 cm⁻¹ resolution. An ATR correction and baseline correction were carried out by the PerkinElmer Spectrum software. Semi-quantitative analysis of chemical group change was carried out by normalizing the FTIR absorption spectra at a band position of 1506 cm⁻¹ representing lignin aromatic skeletal vibration based on related studies.^[26]

Gel permeation chromatography (GPC) analysis: The lignin samples after rheological treatment (dried under vacuum at 40 °C overnight) were acetylated with acetic anhydride/pyridine (1/1, v/v) at RT for 24 h in a sealed flask under an inert atmosphere. The concentration of the lignin in the solution was approximately 20 mg/mL. After 24 h, the solution was diluted with ~20 mL of ethanol and stirred for an additional 30 min, after which the solvents were removed with a rotary evaporator followed by drying in a vacuum oven at 40 °C. Prior to GPC analysis the acetylated lignin sample was dissolved in tetrahydrofuran (1.0 mg/mL), filtered through a 0.45 μm filter, and placed in a 2 mL auto-sampler vial. The molecular weight distributions of the acetylated lignin samples were then analyzed on an Agilent GPC SECurity 1200 system equipped with four Waters Styragel columns (HR1, HR2, HR4, HR6), an Agilent refractive index (RI) detector, and an Agilent UV detector (270 nm), using tetrahydrofuran (THF) as the mobile phase (1.0 mL/min), with an injection volume of 20.0 μ L. A standard polystyrene sample was used for calibration. The number-average molecular weight (Mn) and weight-average molecular weight (Mw) were determined by GPC. Average data of Mw, Mn and polydispersity index (PDI) were presented based on three different rheology tests on each poplar lignin sample at different temperatures.

Quantitative ³¹**P-NMR analysis:** Lignin phosphitylation and ³¹**P**-NMR analysis was used to quantitatively determine hydroxyl functional groups in lignin samples. Quantitative ³¹**P**-NMR spectra were acquired after in situ derivatization of the lignin sample using about 15.0 mg of lignin sample with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) in a solution of (1.6:1, v/v) pyridine/CDCl₃ containing chromium acetylacetonate (relaxation agent) and endo-N-hydroxy-5-

ternal standard) ³

ARTICLE

norbornene-2,3-dicarboximide (NHND, internal standard). ³¹P NMR analysis of lignin samples was carried out using a Bruker Avance 400-MHz NMR spectrometer operating at frequencies of 161.93 MHz for ³¹P at 25°C in a magnetic field of 9.4 Tesla. The quantitative 31P NMR spectra were acquired using an inverse gated decoupling pulse sequence with a 25-s pulse delay and 128 scans. Average data of lignin functional groups were presented based on three repeated rheology tests on each poplar lignin sample at various temperatures.

Heteronuclear single quantum coherence (HSQC) NMR analysis: HSQC experiments of lignin after rheological treatment were carried out in a Bruker Avance 400-MHz NMR spectrometer. NMR samples were prepared as follows: 50 mg of lignin sample was added to 0.5 mL HMPA-d₁₈ and stirred at 45 °C for 4 hours. A standard Bruker pulse sequence with 13-ppm spectra width in F2 (¹H) dimension with 1024 data points (95.9-ms acquisition time), 210-ppm spectra width in F1 (¹³C) dimension with 256 data points (6.1-ms acquisition time), a 90° pulse, 1.5-s pulse delay, ¹J_{C-H} of 145 Hz and 48 scans was employed. NMR data were processed using the TopSpin 2.1 software (Bruker BioSpin) and MestreNova (Mestre Labs) software packages.

Acknowledgements

Part of the research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. Department of Energy. This work was also supported and performed as part of the BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The Georgia Tech authors also acknowledge the financial support from the paper science engineering (PSE) fellowship program in Renewable Bioproducts Institute at Georgia Institute of Technology.

Notes and references

[1] S. Chand, J. Mater. Sci. 2000, 35, 1303-1313.

[2] a)T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Nessman, F. S. Baker, M. Keller, A. K. Naskar, *Green Chem.* 2012, 14, 3295-3303; b)A. Awal, M. Sain, *J. Appl. Polym. Sci.* 2013, 129, 2765-2771.

[3] a)P. Sannigrahi, Y. Pu, A. Ragauskas, *Curr. Opin. Env. Sust.* 2010, 2, 383-393; b)J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph, J. H. Christensen, *Phytochem. Rev.* 2004, 3, 29-60.

[4] a)D. A. Baker, T. G. Rials, *J. Appl. Polym. Sci.* 2013, 130, 713-728; b) H. Mainka, L. Hilfert, S. Busse, F. Edelmann, E. Haak, A.S. Herrmann, *J. Mater. Res Technol.* 2015, 4, 377-391.

[5] a)I. Norberg, Y. Nordström, R. Drougge, G. Gellerstedt, E. Sjöholm, J. Appl. Polym. Sci. 2013, 128, 3824-3830; b)M.

ARTICLE

Foston, G. A. Nunnery, X. Meng, Q. Sun, F. S. Baker, A. Ragauskas, *Carbon* 2013, 52, 65-73.

[6] Q.-N. Sun, T.-F. Qin, G.-Y. Li, Int. J. Polym. Anal. Charact. 2009, 14, 19-33.

[7] A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, *Science* 2006, 311, 484-489.

[8] a)M. Oliet, J. Garcıa, F. Rodrıguez, M. Gilarrranz, *Chem. Eng. J.* 2002, 87, 157-162; b)A. A. Shatalov, H. Pereira, *Carbo. polym.* 2007, 67, 275-281; c)H. Sixta, H. Harms, S. Dapia, J. Parajo, J. Puls, B. Saake, H.-P. Fink, T. Röder, *Cellulose* 2004, 11, 73-83.

[9] X. Pan, J. F. Kadla, K. Ehara, N. Gilkes, J. N. Saddler, *J. Agric. Food Chem.* 2006, 54, 5806-5813.

[10] a)R. El Hage, N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi, A. *Ragauskas, Polym. Degrad. Stab.* 2009, 94, 1632-1638; b)P. Sannigrahi, A. J. Ragauskas, S. J. Miller, *Energ. Fuels* 2010, 24, 683-689; c)J. J. Bozell, C. O'Lenick, S. Warwick, *J. Agric. Food Chem.* 2011, 59, 9232-9242.

[11] P. Sannigrahi, A. J. Ragauskas, G. A. Tuskan, *Biofuels Bioprod. Biorefining* 2010, 4, 209-226.

[12] a)G. Papa, P. Varanasi, L. Sun, G. Cheng, V. Stavila, B. Holmes, B. A. Simmons, F. Adani, S. Singh, *Bioresour. Technol.* 2012, 117, 352-359; b)F. Guo, W. Shi, W. Sun, X. Li, F. Wang, J. Zhao, Y. Qu, *Biotechnol. Biofuels* 2014, 7, 38; c)B. H. Davison, S. R. Drescher, G. A. Tuskan, M. F. Davis, N. P. Nghiem, in Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals, Springer, 2006, pp. 427-435.

[13] a)H. Hatakeyama, T. Hatakeyama, in Biopolymers, Springer, 2010, pp. 1-63; b)S. Kubo, J. F. Kadla, *Macromolecules* 2004, 37, 6904-6911.

[14] A. Olsson, L. Salmén, in ACS symposium series (USA) 1992, 489, 133-143.

[15] a)A. Tejado, C. Pena, J. Labidi, J. Echeverria, I. Mondragon, *Bioresour. Technol.* 2007, 98, 1655-1663; b)N. E. El Mansouri,
Q. Yuan, F. Huang, *BioResources* 2011, 6, 2647-2662.

[16] J. Braun, K. Holtman, J. Kadla, Carbon 2005, 43, 385-394.

[17] R. El Hage, N. Brosse, P. Sannigrahi, A. Ragauskas, *Polym. Degrad. Stab.* 2010, 95, 997-1003.

[18] K. Sudo, K. Shimizu, J. Appl. Polym. Sci. 1992, 44, 127-134.

[19] Y. Uraki, Y. Sugiyama, K. Koda, S. Kubo, T. Kishimoto, J. F. Kadla, *Biomacromolecules* 2012, 13, 867-872.

[20] a)H. L. Trajano, N. L. Engle, M. Foston, A. J. Ragauskas, T. J. Tschaplinski, C. E. Wyman, *Biotechnol. biofuels* 2013, 6, 110;
b)Y. Pu, F. Chen, A. Ziebell, B. H. Davison, A. J. Ragauskas, *BioEnergy Res.* 2009, 2, 198-208.

[21] a)T. Elder, Holzforschung 2010, 64, 435-440; b)C. Cui, H. Sadeghifar, S. Sen, D. S. Argyropoulos, *BioResources* 2013, 8, 864-886; c)T. Nakamura, H. Kawamoto, S. Saka, *J. Anal. Appl. Pyrolysis* 2008, 81, 173-182; d)H. Kawamoto, T. Nakamura, S. Saka, *Holzforschung* 2008, 62, 50-56.

[22] a)H. L. Chum, D. K. Johnson, S. K. Black, *Ind. Eng. Chem. Res.* 1990, 29, 156-162; b)R. Overend, E. Chornet, J. Gascoigne, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1987, 321, 523-536; c)M. Pedersen, A. S. Meyer, *New biotechnol.* 2010, 27, 739-750. [23] J. J. Bozell, S. K. Black, M. Myers, D. Cahill, W. P. Miller, S. Park, *Biomass Bioenerg.* 2011, 35, 4197-4208.

[24] R. Sykes, M. Yung, E. Novaes, M. Kirst, G. Peter, M. Davis, in Biofuels:Methods and Protocols, Springer, 2009, pp. 169-183.

[25] M. J. Bortner, V. Bhanu, J. E. McGrath, D. G. Baird, *J. Appl. Polym. Sci.* 2004, 93, 2856-2865.

[26] a)S. Kubo, J. F. Kadla, *Biomacromolecules* 2005, 6, 2815-2821; b)G. Hu, C. Cateto, Y. Pu, R. Samuel, A. J. Ragauskas, *Energ. Fuels* 2011, 26, 740-745; c)Q. Sun, M. Foston, X. Meng, D. Sawada, S. V. Pingali, H. M. O'Neill, H. Li, C. E. Wyman, P. Langan, A. J. Ragauskas, *Biotechnol. Biofuels* 2014, 7, 150.

This journal is © The Royal Society of Chemistry 20xx

Graphic abstract

Carbon fiber precursors were prepared from poplar organosolv lignins with various syringyl/guaiacyl ratios under different severities to investigate the structural changes before and after rheology treatment.

