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Abstract 

The past decade has seen the development of a new class of rare event methods in which 
molecular configuration space is divided into a set of boundaries/interfaces, and then short 
trajectories are run between boundaries. For all these methods, an important concern is how to 
generate boundaries. In this paper, we outline an algorithm for adaptively generating boundaries 
along a free energy surface in multi-dimensional collective variable (CV) space, building on the 
boxed molecular dynamics (BXD) rare event algorithm. BXD is a simple technique for accelerating 
the simulation of rare events and free energy sampling which has proven useful for calculating 
kinetics and free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations 
across a range of systems, in both NVT and NVE ensembles. Two key developments outlined in this 
paper make it possible to automate BXD, and to adaptively map free energy and kinetics in complex 
systems. First, we have generalized BXD to multidimensional CV space. Using strategies from rigid-
body dynamics, we have derived a simple and general velocity-reflection procedure that conserves 
energy for arbitrary collective variable definitions in multiple dimensions, and show that it is 
straightforward to apply BXD to sampling in multidimensional CV space so long as the Cartesian 
gradients ∇CV are available. Second, we have modified BXD to undertake on-the-fly statistical 
analysis during a trajectory, harnessing the information content latent in the dynamics to 
automatically determine boundary locations. Such automation not only makes BXD considerably 
easier to use; it also guarantees optimal boundaries, speeding up convergence. We have tested the 
multidimensional adaptive BXD procedure by calculating the potential of mean force for a chemical 
reaction recently investigated using both experimental and computational approaches – i.e., F + 
CD3CN → DF + D2CN in the gas phase and in a strongly coupled explicit CD3CN solvent. The 
results obtained using multidimensional adaptive BXD agree well with previously published 
experimental and computational results, providing good evidence for its reliability. 
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1 Introduction 

The solution to wide range of problems that can be addressed with molecular simulation 

consists fundamentally in determining rate coefficients. For example, biochemical systems rely on a 

delicate balance of rate coefficients within larger coupled kinetic networks. [1] Similarly, bulk 

oxidation timescales in atmospheric chemistry [2] and combustion [3] (required to predict pollutant 

lifetimes, or to optimize an engine) are linked to detailed kinetic networks comprised of a wide range 

of elementary kinetic steps. [4] With developments in both statistical mechanics and electronic 

structure theory, it is now possible to identify the important stationary points on a molecular 

potential energy surface (PES), [5] and carry out accurate calculations of the energy and partition 

function at each point.  This enables extremely accurate calculations of the rate coefficients at which 

small molecules undergo structural changes, in either canonical or microcanonical ensembles. [6] 

However, calculating accurate rate coefficients for larger molecules (e.g., enzymes, long-chain 

hydrocarbon fuels, unsaturated volatile organic pollutants, etc.) remains an outstanding challenge for 

a number of reasons: (1) electronic structure theory struggles to calculate an accurate PES along a 

given path, (2) there is a combinatorial explosion in the number of paths with increasing system 

dimensionality, and (3) the conformational flexibility inherent in larger molecular systems makes it 

very difficult to calculate accurate partition functions. As a result of these challenges, the calculation 

of rate coefficients in complex systems tends to not to focus on stationary points, but rather on free 

energy surfaces along a particular path between states, typically defined in terms of a small set of 

collective variables (CVs). In cases where it is a good assumption that the full system dynamics 

along a particular path is mostly associated with changes in a small set of CVs, then the maximum 

on the free energy surface may be utilized to calculate rate coefficients in the Eyring equation. [7] In 

cases where this is not a good assumption, an additional correction in the form of the so-called 

‘recrossing coefficient’ is typically applied. [8, 9] 

In this paper, we present a relatively simple adaptive algorithm for discovering minimum free 

energy pathways between states in a multidimensional space of CVs, which can then be used to 

calculate rate coefficients in complex systems. There is strong evidence within computational 

complexity theory provides that problems of this sort are NP-complete [10-12] – i.e., it is possible to 

verify (within polynomial time) whether any proposed solution is indeed a solution, but there is no 

known polynomial time algorithm to find a solution in the first place. This has rather profound 

consequences for how we think about free energy path sampling in complex molecular systems: the 
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emphasis is less on finding an algorithm which is well-suited to every type of rare event problem, but 

rather on having access to a flexible range of methods which can be practically used to tackle 

different conformational search problems.  

‘Boxed Molecular Dynamics’ (BXD), [13-16] a method we have been actively involved in 

developing over the last few years, allows one to obtain both thermodynamic and kinetic information 

from the same run, producing data that produces a Markov master equation.[1, 4, 14, 17] BXD can 

be formulated so as to conserve energy, accelerating NVE simulations as well as NVT simulations. 

As a result of these features, BXD has been successfully utilized to provide microscopic insight into 

a range of problems within condensed phase chemistry. [15, 16, 18-30] The fact that BXD preserves 

the dynamics (unlike umbrella sampling, where dynamics is lost) has been experimentally confirmed 

for a growing set of systems.[18, 20-22, 24] The fundamental idea in BXD is to accelerate dynamics 

simulations by introducing a set of hard boundaries within the hyper-dimensional configuration 

space of the system being simulated. When a trajectory passes a boundary, those components of the 

velocity vector that take the trajectory across the boundary are reflected. The statistics of reflections 

at the boundary of the box are subsequently used to renormalize the results. Within BXD, ‘boxes’ 

refer to the configuration space domain between a particular set of boundaries. In principle, it is 

possible to implement boundaries which depend on the 6n dimensional phase space of Cartesian 

coordinates and momenta (where n is the number of atoms); however, in practice the original 

implementations of BXD utilized one-dimensional CVs in configuration space.  

BXD falls within a class of sampling methods in which molecular configuration space is 

divided into a set of boundaries (also called interfaces or hypersurfaces), and short trajectories are 

run between boundaries. These methods (e.g., milestoning, [31, 32] forward flux sampling, [33, 34] 

transition interface sampling, [35] nonequilibrium umbrella sampling, [36] and others [37-39]) have 

yet to displace umbrella sampling [40] as the most widely used method to determine free energies (or 

potentials of mean force), but in fact they have a number of features which we believe make them 

more attractive than umbrella sampling: (1) because they do not require modification of the potential 

energy function, they perturb the dynamics far less than umbrella sampling; (2) they allow for exact 

renormalization of the results in each box (unlike the iterative numerical WHAM scheme typically 

utilized to renormalize umbrella sampling results); (3) they require specification of fewer parameters 

than umbrella sampling (i.e, BXD only requires specifying a boundary location; umbrella sampling 

requires specifying the umbrella position and force constant); (4) they can provide both 

thermodynamic (free energy) and kinetic (rate) data simultaneously; (5) unlike umbrella sampling, 
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they provide results which are in fact dynamically meaningful; and (6) it is possible to rigorously 

define the regimes in which the accelerated dynamics they provide map onto the results that would 

have been obtained using standard unbiased simulations with any of a range initial conditions 

sampling strategies.  

An important concern with these methods is how to generate boundaries (analogous to the 

umbrella sampling issue of how best to choose ‘umbrella’ potentials). In a broad range of molecular 

simulation studies, boundaries (or umbrella potentials) are located along a particular set of CVs 

which align with the intuition of the investigator (i.e., “user”). For example, in enzyme catalysis, it is 

usually possible to highlight a few key bonds as being particularly important; similarly in a drug 

binding study, it is often possible to identify a few key motions as particularly important to binding. 

Such user intuition is not a panacea: it may in fact fail to identify important CVs, and there are 

potential pitfalls[41] owing to the fact that it is often extremely difficult to find good CVs. [42] 

Nevertheless, for understanding dynamics in hyperdimensional systems, user ‘intuition’ as to the 

important CVs usually constitutes an important guess as to where to initiate sampling and make 

practical progress in a simulation study.  

With BXD’s implementation in the CHARMM molecular simulation package, [43] it has 

found application to a range of chemical systems. These applications have highlighted two important 

issues: (1) the BXD velocity reflection procedure must be generalized to deal with a wider range of 

CVs than the relatively small subset with which it is currently compatible; (2) with the 

implementation of a wider range of CVs, BXD must be formulated in way that can automatically 

identify optimal boundaries in multi-dimensional collective variable space. The reason for the latter 

point is that BXD in multi-dimensional CV space requires specifying a large number of parameters. 

The number of parameters required scales as NCV × NB, where NCV is the number of collective 

variables, and NB is the number of boundaries (NB is typically between 10 – 100 in systems studied 

so far). For relatively small systems where NCV = 1 and which require no more than ~10 boundaries, 

a user can typically keep track of the number of parameters requiring specification; however, for 

larger systems where NCV > 1, the number of parameters which requires specification rapidly 

expands beyond what even an expert can keep track of, becoming extremely tedious (if not 

altogether impossible). By automating the boundary selection scheme outlined in this paper using an 

adaptive algorithm, we avoid these problems entirely, and we also guarantee the specification of 

optimal boundaries. Adaptive sampling strategies have been previously explored in the context of 

Page 4 of 33Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



  5 

umbrella sampling, [44, 45] force biasing, [46] weighted ensemble sampling, [39] transition interface 

sampling, [47] accelerated molecular dynamics, [48] metadynamics, [49, 50] and steered MD. [51]. 

BXD’s robustness arises in part from the fact that it generates free energy profiles which are 

largely insensitive to the location of boundaries, so long as the typical transit time from one 

boundary of the box to the other is larger than the system’s characteristic decorrelation timescale. 

[13, 14] This is in fact the only ‘hard-and-fast’ rule which must be satisfied in order for BXD to yield 

physically meaningful results: the average time between boundary reflections in any given box must 

be larger than the system’s characteristic dynamical decorrelation timescale in that region of the 

free energy surface. [14] This rule places a lower limit on the allowed distance between any box’s 

boundaries; otherwise, ballistic reflection between box boundaries will occur, and the results are 

meaningless. So long as the boundaries are far enough apart to avoid problems related to dynamical 

decorrelation, then the choice of box boundaries is flexible, and the BXD results do not depend on 

boundary location. 

 

 
Scheme 1: Illustration of the relationship between a system’s characteristic dynamics [red lines] in a given region of the free energy 
surface G(ρ) [black line] sampled along some CV ρ. Optimal boundaries are shown by grey lines. In steep regions of G(ρ), optimal 

boundaries are closely spaced; in flatter regions of G(ρ), optimal boundaries are farther apart. 

 

However, the computational efficiency of BXD (i.e., the speed at which it converges a free 

energy or a rate calculation) does depend on the boundary placement. For maximum efficiency, the 
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boundaries should be placed close enough together so that a typical trajectory will visit the 

boundaries of any given box in a reasonable amount of time. Optimally placed boundaries will result 

in faster convergence. This is an issue that has become particularly apparent as we have attempted to 

use BXD to accelerate dynamics obtained from on-the-fly electronic structure theory, and also in 

condensed phase reactions, where force evaluations are very expensive. Our experience to date has 

shown that ‘user-selected’ box boundaries are often far from ideal, and can result in wasted clock 

cycles, a point which is easily understood from Scheme 1. In regions with a large gradient, boxes 

should be smaller, given that an unbiased trajectory free to sample the box is more likely to get 

trapped downhill rather than travel uphill while in flatter regions that have a small gradient, the 

boxes can be larger, given that an unbiased trajectory will more readily sample wide regions of the 

configuration space. Scheme 1 therefore allows us to understand how clock cycles are wasted as a 

result of two common boundary-selection pitfalls: (1) large boxes in a region of the free energy 

surface with steep gradients, or (2) small boxes in a relatively flat region of the free energy surface. 

In the former case, the trajectory will rarely visit high free energy configurations within the box, and 

convergence will be slow. In the latter case, clock cycles are wasted on constraining sampling in flat 

regions of the free energy surface that the trajectory would have naturally visited anyway – i.e., the 

boundaries actually slow down an intrinsic sampling rate which was already satisfactory. Scheme 1 

highlights a final important point – i.e., sampling on any given free energy path often requires boxes 

of varying sizes, with the size of the box inversely related to the gradient of the free energy surface 

along a particular coordinate, which is generally unknown in advance. Box boundary placement is 

also sensitive to the local friction regime in which the dynamical process of interest takes place (a 

point discussed in further detail below). In general, efficient sampling in high friction environments 

(e.g., a chemical reaction occurring in a solvent) requires closely spaced boundaries, while 

boundaries in low friction environments (e.g., a chemical reaction in the gas phase) are farther apart. 

In this paper, we outline an extension of BXD to multidimensional CV space, and an 

automated procedure that adaptively generates optimal BXD hypersurfaces to sample dynamical 

pathways within a user-specified multidimensional CV space. The underlying idea guiding this 

approach is simple, and exploits one of the key advantages of BXD compared to a method like 

umbrella sampling: because the underlying dynamics are in fact meaningful, ‘on-the-fly’ analysis of 

their information content is in fact the most reliable guide to boundary placement. This philosophy 

allows us to use BXD for generating optimal boundaries in multidimensional applications, which 

may be subsequently used to accelerate rare events or carry out free energy sampling. We also report 
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on results using this multi-dimensional adaptive BXD scheme to accelerate free energy sampling 

along the F + CD3CN → DF + CD2CN reactive pathway, in both CD3CN solvent and in the gas 

phase. This system constitutes a stringent test of the methodology, owing to the extreme asymmetry 

of the PES either side of the transition state (TS) – e.g., similar to that shown in Scheme 1. The 

solvent results are in good agreement with previous experimental and modelling studies, providing 

good evidence for the reliability of our extended BXD algorithm. We believe that the adaptive 

scheme described in this article may be useful to other methods that rely on sampling between 

configuration space interfaces. 

2 Theoretical Framework 

2.1 BXD along a single collective variable. 

BXD is an exact extension of transition state theory, [13, 14] with origins in Intramolecular 

Dynamics Diffusion Theory (IDDT), [52-56] which describes the motion of a trajectory along a 

reaction coordinate in terms of a diffusional equation or equivalent Langevin equation. BXD was 

initially formulated in order to accelerate dynamics by introducing a series of constraints along a 

one-dimensional collective variable, which provide a series of ‘boxes’ within which to lock the 

trajectory, as illustrated in Figure 1. The region defined by the collective variable ρ is split into m 

boxes by the introduction of m+1 user defined constraints. The trajectory is constraint within each 

box, which allows one to sample regions that would otherwise be visited only rarely.  

 

 

Figure 1: Illustration of the original one-dimensional BXD scheme along some collective variable ρ. 
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The trajectory constraint procedure involves an elastic collision procedure applied at the boundaries, 

which works as follows: whenever the next time step in the dynamics would result in the trajectory 

crossing the boundary, the trajectory is reset to the previous step, and a velocity inversion (i.e., 

reflection) procedure is applied to those atoms that contribute to the definition of the collective 

variable. For a given box i bounded by
	
ρ
i
 and

		
ρ
i−1

, the rate coefficient for transfer from box i to i-1 is 

determined by the inverse of the mean first passage time (MFPT) 〈�〉. The simplest way to compute 

this is to keep track of the number of times the trajectory has undergone velocity transformation at 

each boundary, 
		
h
i ,i−1

, along with the total amount of time ti that the trajectory spends within box i. 

This gives the rate coefficient for transfer from box i to box i-1 as follows:

 

 

		

k
i ,i−1

= τ
i ,i−1

−1
=
h
i ,i−1

t
i

  (1) 

The equilibrium constant between box i and box i-1 may then be obtained from equilibrium 

statistical mechanics as 

  , (2) 

where 
		
∆G

i−1,i
 is the free energy difference between box i and box i-1. Eq (2) allows us to obtain a 

full set of box-to-box free energy differences. Defining some arbitrary zero G0, the set of box-to-box 

free energy differences may then be summed appropriately to obtain 
	
∆G

i
, the free energy of any 

given box relative to G0. This allows calculation of
	
p
i
 (the probability of the residing in box i) as 

follows: 

   (3) 

Having determined the probability of residing in any specific box according to (3), it is then possible 

to determine 		p(ρ) to arbitrary resolution by renormalizing the statistics within each box using 

histogram binning. Letting 
		
p
i
(ρ) be the probability of a particular value of ρ  observed in box i, 

1, 1,
1,

, 1

expi i i i

i i

i i B

k G
K

k k T

− −
−

−

−∆ 
= =  

 

1
exp( / )

exp( / )
i i B

i B

i

p G k T
G k T

= −∆
−∆∑
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estimated by histogram binning from a sample within the box, then the probability of residing 

anywhere along the reaction coordinate defined by the boxes is given by 

  
		
p(ρ)= p

i
(ρ)× p

i
 (4)  

Since only the box-to-box rate coefficients need to be computed, the length of time the trajectory 

needs to spend in each box is only determined by how long it takes for these rate coefficients to 

converge. The BXD method of partitioning the configuration space means that regions that are 

poorly sampled in standard MD trajectories can be isolated within a box, meaning they can sampled 

independently, which lends itself well to parallelisation on modern cluster architectures. 

Alternatively, it is easy to formulate the BXD algorithm so that a given trajectory – after a specified 

number of reflection events at a particular boundary – is allowed to proceed to the next box, as 

illustrated in Figure 1. Such a ‘box-to-box’ strategy allows trajectories to scan over adjacent boxes 

until convergence is achieved.  

2.2 Extending BXD to Multidimensional Collective Variable Space 

In this section, we present a generalisation of BXD to multidimensional collective variables. For a 

system of � atoms, we define  to be the vector of Cartesian coordinates of atoms in the 

system, and  to be the vector of corresponding velocities. A collective variable at some 

time t is a function   s(t)  of  and . In cases where one wants to characterize the dynamics of 

a molecular system at some time t using M collective variables, then the CV space may be 

represented as an M-dimensional vector , where M is generally much less 

than N. In the simplest case, where � = 1,  is often referred to as a reaction coordinate. In its 

original implementation, BXD partitioned a one-dimensional collective variable space into an 

ordered set of zero-dimensional points along the reaction coordinate. An intuitive route to 

generalising BXD is thus to partition the M-dimensional CV space into a series of (M-1) dimensional 

boundaries, which is a strategy that follows naturally from BXD’s origins in transition state 

theory.[54, 57] For example, a two-dimensional CV space may be partitioned by an ordered set of 

lines, a three-dimensional CV space by an ordered set of planes, and so on – to the general case of 

hyperplanes. Within an M-dimensional collective variable space , any 
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given BXD boundary Bj may be defined as a plane in Hessian normal form – i.e., in terms of a unit 

norm 	and a constant Dj: 

 

		

B
j
≡ n

i
s
i

i=1

M

∑






+D

j
=0 (5) 

Using the notation outlined above, Figure 2 schematically illustrates a set of BXD boundaries that 

one might choose in order to partition a system defined in terms of two collective variables.  

 

Figure 2: Schematic illustration of BXD boundaries that one could choose to partition a multi-dimensional system with two potential 
energy surface (PES) wells. The potential energy isosurface in the figure is projected into the collective variable 	
 = �	�, 	��. 

 

2.3 General Velocity Reflection Procedure in Multidimensional Collective Variable Space 

Having specified a set of boundaries which partition the space of collective variables into 

smaller regions, a standard MD trajectory is performed within boundaries �� and ����. At every step, 

the collective variable vector  is computed, and the velocities and positions of the previous time 

step are stored. For times t where the trajectory crosses either boundary �� or ����, a velocity 

reflection procedure is applied to constrain the trajectory so that it does not cross the boundary. In 

what follows, we focus on the velocity reflection procedure to be used for reflecting off multi-

dimensional boundaries of the sort defined in Eq (5), generalizing the one-dimensional velocity 

reflection procedure outlined in our previous BXD papers to multidimensional collective variable 

space. 
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Within the space of collective variables, Eq (5) specifies that a BXD boundary Bj is defined 

in terms of a unit norm , which lies a distance 
	
D
j
 from the origin. The function 

 provides a measure of how far the system is from a particular boundary at time 

t, with changes in the sign of  indicating that the system has crossed Bj. In order to constrain 

dynamics so that they lie to a specific side of a particular boundary Bj, we wish to satisfy the 

following inequality:  

  (6) 

The inequality in this equation gives it the form of a so-called “unilateral constraint” [58] – i.e., a 

constraint which is enforced only at times when the inequality is unsatisfied. For example, consider a 

case where  at time t, and at the next timestep � + ��. In this case, the 

BXD procedure specifies that we revert back to , and invert the velocities to give new velocities 

v’(t), propagation according to which ensures that the constraints are satisfied at timestep t + ∆t. By 

the chain rule, the time derivative of the constraint may be written as the projection of the atomic 

velocities onto the gradient of : 

   (7) 

To ensure that the constraint will be satisfied at time  t + ∆t , the inverted velocities must satisfy the 

following: 

  (8) 

In the general case of a system of K constraints, ∇φ is a matrix of K rows by 3N columns, but here 

we are restricting ourselves to the case of a single constraint, and therefore ∇φ  in Eq (8) represents a 

row vector. The inverted velocities are related to the unbiased ones through Eq (8) in order to ensure 

a fully elastic reflection of the velocities normal to ��. This procedure is in contrast to the sorts of 

holonomic constraints typically employed in molecular dynamics, (e.g., SHAKE[59] and RATTLE 

[60]), in which velocities normal to the constraint are set zero in order to constrain the dynamics. 

The equation of motion for dynamics [58, 60-62] under a single constraint may be written as: 

   (9) 

Page 11 of 33 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



  12 

where 		  M∈�
3N×3N  is a diagonal matrix of atomic masses,  is the vector of accelerations, F is 

the force vector from the MD energy function, and G are the forces due to the constraint, given by   

 	 G = −λ∇φT ,  (10) 

where λ  is a time-dependent Lagrangian multiplier, and 	φ
T represents the transpose of φ . Rather 

than applying the constraint directly as an acceleration, the constraint is enforced upon the inverted 

velocities as follows: 

    (11) 

By substituting Eq (11) into Eq (8) and rearranging for � we have 

   (12) 

The Lagrangian multiplier and subsequent impulse is only computed and applied for time steps in 

which an unaltered velocity would result in the constraint being unsatisfied, similar to the strategy 

used in the original BXD velocity reflection algorithm. Defining BXD boundaries as hyperplanes 

ensures that the derivatives of φ  in Eq (12) may be computed by combining the derivatives of the 

components of 	� as follows: 

   (13) 

Eq (13) means that the reflection procedure can easily be constructed from a linear combination of 

derivatives of collective variables. This allows for straightforward combination of arbitrary reaction 

coordinates for which gradients are defined. 

2.4 Adaptively Generated Boundaries in Multidimensional CV Space 

The extension of BXD to multidimensional collective-variable space raises interesting questions 

as to where initial boundaries should be placed. For studies involving only a single collective 

variable (i.e., a 1d case), determining those boundary placements which most efficiently partition a 

reaction coordinate (either for rare event acceleration or free energy sampling) has generally been 

undertaken through some combination of ‘user intuition’ and trial & error. In multidimensional 

collective variable space, such a strategy quickly becomes unfeasible owing to the fact that the 
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number of variables required to specify a boundary increases with the dimensionality of the CV 

space. In this section we present an automated adaptive path sampling procedure, in which optimal 

boundaries are generated through on-the-fly statistical analysis carried out during a trajectory. 

2.4.1 Overall Adaptive Scheme 

Whereas previous implementations of BXD required a list of box boundaries, the adaptive 

implementation of BXD requires the user to provide the following input data, all of which are 

schematized in Fig 2:  

(1) Specification of the CVs which the user wishes to adaptively sample along with a pair of limits 

that bound the sampling within a particular CV. In many cases, one of the CV limits (e.g., B0 in 

Fig 2) helps define the extremum for what can be considered a reactant state, and the other CV 

limit (e.g., Bn in Fig 2) helps define the extremum for what can be considered a product state.  

(2) A ‘starting’ or ‘reactant’ geometry (characterized by a set of ‘starting’ CVs). 

(3) A ‘target’ or ‘product’ geometry (characterized by a set of ‘target’ CVs).  

We define 	 Γ ⊂ �
M  to be the region of CV space defined by two boundaries �R and �P (in 

Figure 2, 
  BR

≡ B
0
 and 

 
B

P
≡ B

n
), and 

 
B

i
 to be some arbitrary boundary that lies within Γ.  h 

region 
		 
Γ
1

⊂ �
M lies between 

 
B

R
 and 

 
B

i
, while the region 

		 
Γ
2

⊂ �
M  lies between 

 
B

i  and 
 
B

P
, with Γ1 

+ Γ2 = Γ. The approach of adaptive BXD is to carry out a single sampling run that makes two passes 

over the CV space – i.e., from �R to �P, and then to reverse direction and go from �P to �R.  Along 

the way, statistical analysis determines the most efficient location at which to place the next bound. 

After the placement of a bound, the BXD velocity reflection procedure is used to enhance the 

sampling of the next region. Passes in both directions are generally required so that barriers on the 

energy landscape are sampled in both directions (i.e., what may not require any acceleration in the 

downhill direction will in fact require acceleration when approached from the uphill direction).  

The overall adaptive BXD procedure is illustrated by the flowchart in Figure 3, which assumes 

that the adaptive procedure has been initialised near
 
B

R
, so that the first pass involves generating 

boundaries en route to
 
B

P
. At the start of the trajectory, 

 
B

i
← B

R
, and 

 
B

End
← B

P
 (i.e., 

 
B

i
 and 

 
B

End
 

initially enclose the region 
	
Γ ≡ Γ

2
, with Γ1  = 0). After n steps of dynamics, sampling  within Γ2 

(constrained through application of the BXD velocity reflection procedure), there are two possible 

outcomes: (1) velocity reflections against 
 
B

E
 were observed, implying that the path from 

 
B

i
 to 

 
B

End
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requires no additional acceleration; or (2) velocity reflections against 
 
B

End
 were not observed, which 

means that an additional bound 
 
B

new
 is required according to the procedure outlined below in section 

2.4.2. Dynamics are then run until the system crosses 
 
B

new
, at which point 

 
B

i
← B

new
. The dynamics 

in this hitherto unexplored space are then restricted in the region of 
 Γ2

 through the application of the 

BXD velocity reflection procedure. The sampling procedure is repeated until the dynamics reach 

 
B

End
, at which point 

 
B

i
← B

P
 and 

 
B

End
← B

R
, and the dynamics sweep back for a second pass in 

the opposite direction. Upon completion of the reverse pass, the Fig 3 schematic arrives at the “Stop” 

point, and Γ  will have been partitioned into a set of boxes with bounds 
		 
B
R
,B

1
,B

2
,� ,B

n
,B

P
	for 

subsequent use in BXD runs to generate free energy surfaces to a specified degree of convergence. 

 

 

Figure 3: Flowchart illustrating the adaptive BXD boundary generation procedure. 

 

Sample 	�	in the region bounded by 
�� and ��for n timesteps.   

Place a new boundary ���  between 
�� and ��, based on sampled values 
of 	� (see text for details on boundary 

placement) 

Continue trajectory until ��� is 
crossed. Let �� ← ��� . 

Start: Specify bounds �"and �#. 
Trajectory started near �" 

Set �� ← �",	�� ← �# 

Set	�� ← �# , �� ← �". Reverse 
direction of sampling and repeat 

until reflection events at �" occur. 

Stop: Ordered set of 
boundaries generated.  

No 

Yes 

Any reflection events observed 
against ��? 
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2.4.2 Procedure for adaptively generating a new boundary 

An important aspect of the adaptive BXD scheme is ‘on-the-fly’ analysis of the statistics 

collected during the sampling procedure for generation of a new boundary, 
		
B
new

. Let 	  S∈�
n×M
 be the 

set of the sampled values of , illustrated as blue circles in Figure 4A, and let  be the vector 

of distances r from
 
B

i
to each sampled value in S. The vector  provides information on how far 

from
 
B

i
the next boundary should be placed, the location of which is determined as follows: 

1. A normalized histogram of  is computed to give 		p(r), a probability density function 

representing the distances from
 
B

i
 that a trajectory samples between reflections, as shown in 

Figure 4B. 

2. From 		p(r), we calculate the cumulative distribution function 
		
P(r ')= ρ(r)

r=0

r=r '

∑ . We then identify 

a histogram bin 
		
b
max

 in 		p(r) with a bin centre 
		
r
max

 chosen so that .  is a 

parameter which specifies the “probability threshold” at which to place a new boundary (the value 

of ε is specified by the user, and typically ranges from 0.01 – 0.1). We then identify  (the 

mean value of the sampled values in S that fall within bin 
		
b
max

), illustrated in Figure 4B, as the 

point at which to place a new boundary 
		
B
new

. 

3. To determine the orientation of 
		
B
new

 as an (M-1)-dimensional plane, we use a simple strategy 

consistent with BXD’s origins in transition state theory (TST) – i.e., 
		
B
new

 should be more or less 

orthogonal to the path of the observed dynamics. [13, 14] With 
		
b
min

 defined as the first bin in the 

histogram of   (see Fig 4B), we calculate  (the mean value of the sampled values in S that 

fall within 
		
b
min

). With this definition,  represents the average value of  immediately prior to 

and after reflection against ��, i.e. the mean crossing point through ��. Similarly,  represents 

the average crossing point through 
		
B
new

. The vector from  to  thus serves as an 

approximate dynamical pathway through the box, and we define the unit norm for 
		
B
new

 as 

   (14) 
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The unit norm in Eq (14) combined with , allow us to fully define the new boundary 
		
B
new

, as 

illustrated in Figure 4C. The next time the trajectory crosses 
		
B
new

, it becomes enforced as a 

constraint (i.e., 
 
B

i
← B

new
), and an identical analysis will be carried out to determine the next 

		
B
new

.  

As discussed above, adaptive boundary generation in this fashion will eventually lead to 

reflection against 
 
B

P
. Once a trajectory reaches the barrier via adaptive boundary generation on the 

reactant side of the barrier, reflection against 
 
B

P
 generally follows rapidly without any need for 

boundaries on the product side of the barrier. To generate boundaries on the product side, a second 

adaptive sweep from 
 
B

P
 to 

 
B

R
 is required. To do this, the direction of sampling is reversed, and the 

adaptive boundary generation process is repeated going the opposite way. The only difference is that 

- because adaptive boundaries are already in place on the reactant side of the barrier – the reactant 

region is unlikely to require any more boundaries on the second sweep. For example, consider a 

BXD trajectory on its second sweep which is passing through the reactant region enclosed by 

boundaries 
 
B

i
 and 

  Bi−1
 (both of which were adaptively generated in the first pass). It is likely for 

reflection events against
  Bi−1

 to be observed – i.e., sampling within this region is already suitably 

accelerated by BXD, and the trajectory can move on to the region defined by boundaries 
  Bi−1

 and

  Bi−2
. Should we observe that the trajectory has not inverted against 

  Bi−1
 after n steps, then an 

additional boundary is adaptively generated as described above. 

 

 

Figure 4: Illustration of the adaptive boundary generation procedure. Panel A shows sampling of values within a 2d collective variable 
space, with an existing boundary �� . Panel B shows histogram binning of the distances with respect to the existing boundary �� . 	�$%& 
and 	�$'(, located within histogram bins )*�� and )*+,, are both shaded in red. Panel C shows generation of a new bound �new, where 
the norm defined in Eq (14) is illustrated by the purple arrow. 
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3 Multidimensional adaptive sampling of chemical reactions in liquids 

As an initial test of the multidimensional adaptive BXD scheme outlined above, we investigated 

F + CD3CN → DF + CD2CN in CD3CN solvent. This system has recently been the subject of both 

ultrafast transient IR spectroscopy experiments and corresponding non-equilibrium MD simulations. 

[63, 64] As such, it provides an excellent test case for investigating the algorithms described above, 

and also for evaluating their performance and accuracy. The reaction, which takes place in 

deuterated acetonitrile solvent (CD3CN), consists of deuterium abstraction from acetonitrile by the 

fluorine atom, snapshots of which are illustrated in Figure 5. Reactive molecular dynamics are 

possible using a customized version of the CHARMM molecular dynamics software suite, using a 

parallel implementation of the multi-state empirical valence bond (MS-EVB) method. The 

simulation includes a single F radical embedded in a periodic box of 62 CD3CN solvent molecules. 

With a total of 64 MS-EVB states parallelized across 64 CPU cores, our simulations are able to treat 

the reactive process leading to DF as well as transient deuterium transfer from the nascent DF to the 

nitrile group on the other solvent molecules.[64] The MS-EVB coupling elements were fit to 

explicitly correlated CCSD(T)-F12 electronic structure theory extracted to the infinite basis set limit 

(the contours of this PES are shown in Fig 6). This procedure yields an accurate reactive PES, which 

is critical to understanding non-equilibrium energy deposition for reactions of this sort. 
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Figure 5: Snapshots from a molecular dynamics simulation of F + CD3CN in an explicit solvent of 62 CD3CN molecules. The images 
show: (1) approach of F to a CD3CN co-reactant; (2) passage over the abstraction TS; (3) the nascent DF and its CD2CN co-product; 

and (4) formation of a hydrogen-bonded complex between DF and another solvent molecule.  

 

A one-dimensional implementation of BXD was previously used in these simulations to 

restrict the distance between the F radical and the reactive deuterium between 1.5Å and 1.8Å. This 

prevented the F radical diffusing away from its co-reactant during pre-production equilibration 

sampling runs. In the production NVE runs, the lower bound was removed. This allowed the reaction 

to occur, so that we could obtain an accurate measuring energy deposition and relaxation in the 

nascent reaction products. At the time these studies were published, it was not possible to use BXD 

to generate a free energy surface for this reaction given that reversible reactive sampling requires the 

use of at least two CVs: the distance between the F radical and deuterium (F – D distance), and the 

distance between transferring deuterium and the carbon atom to which it is bonded (C – D distance). 

Constraint of the F-D distance accelerates abstraction over a relatively early barrier, and constraint of 
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the C-D distance prevents the product DF from immediately diffusing away from its co-product. In 

addition to BXD sampling of the condensed phase reaction, we also carried out BXD sampling of the 

gas phase reaction, which included only three EVB states: the reactant F + CD3CN state, the co-

product DF + CD2CN state, and the [CD3CND]+---[F]– state. Unless stated otherwise, all the results 

presented herein were run with a time step of 0.1fs, using a Langevin thermostat at 300K with a 

friction coefficient of 20 ps-1. 

3.1 Adaptively Generated BXD Boundaries along the F + CD3CN reaction path 

We applied the adaptive boundary generation procedure described in Section 2.4 to sample this 

reaction and create BXD boundaries that could be used to accelerate the calculation of a free energy 

surface. This constitutes an interesting and particularly stringent test of our adaptive BXD procedure 

because of the large change in gradients along the reaction pathway: the gradients on the reactant 

side of the TS are very flat, while those on the product side are very steep. Application of adaptive 

BXD to this system also enables us to comment on an outstanding experimental question – namely, 

to what extent does the free energy surface of the gas phase chemical reaction resemble the free 

energy surface of the reaction in a strongly coupled solvent like CD3CN? In the gas phase, the 0K 

reaction enthalpy is -37 kcal mol-1, most of which is potentially available for deposition into the 

nascent DF product. Measurements carried out using ultrafast transient IR spectroscopy in solution 

showed substantial vibrational excitation (i.e., at least v = 2) in the stretching motion of the nascent 

DF product for the reaction taking place in solution. This value places a firm lower limit on 

exothermicity of the reaction free energy; however, a detailed analysis of the free energy profiles in 

both the gas phase and in solvent is beyond experimental reach.  

As outlined above, adaptive BXD free energy sampling was undertaken in a CV space 

comprised of the F-D and C-D distances: an F – D distance of 2.7 Å was used to define 
 
B

R
, and a C 

– D distance of 3.5Å was used to define 
 
B

P
. Adaptive sampling times of 100ps (in the gas phase) 

and 30ps (in solution phase) per box were used to determine the placement of new boundaries, with ε 

= 0.01 (guaranteeing that new boundaries are placed at a location visited no more than 1% of the 

time). Figure 6 shows a series of snapshots taken during the automated boundary location procedure, 

illustrating how the adaptive algorithm works. Beginning from an initial point sampled near 
 
B

R
, 

BXD adaptively generates a boundary, which allows it to sample regions near the TS. Once the 

dynamics arrive at the TS, the system rapidly descends toward products, and quickly arrives at 
 
B

P
. 
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At this point, BXD begins sweeping back in the opposite direction, adaptively generating boundaries 

which eventually return it back to the first box bounded by 
 
B

R
. Figure 7 shows the final set of 

adaptively generated boundaries used to sample the free energy along the reaction pathway in both 

solution phase and in the gas phase. The plots also show the dynamical traces in CV space used to 

construct the BXD boundaries. There are some important points to note with respect to Figure 6 and 

Figure 7: (1) the adaptively generated boundaries generally follow the route taken by the dynamics 

along the reaction pathway, with orientations that are roughly orthogonal to the dynamical pathway 

through CV space; (2) the spacing between boundaries varies as a function of the steepness of the 

free energy surface (the gradient) of the underlying PES and the corresponding free energy profile – 

i.e., steep regions with large gradients require several boundaries, whereas less steep regions with 

smaller gradients require fewer boundaries; and (3) the reaction pathway in solvent has more 

adaptively generated BXD boundaries than the corresponding gas phase pathway, as a result of 

solvent friction effects that do not occur in the gas phase. Placing such a large number of BXD 

boundaries by user trial and error would be an extremely labour intensive process. 

 
Figure 6: time series illustrating the dynamical sequence that generates adaptive boundaries along the F + CD3CN reaction path in the 
gas phase. The grey dots indicate points in CV space that have already been sampled, and the black x indicates the position of the 
system at the time when the snapshot for each respective panel was taken. Snapshot 1 shows initial sampling near BR and snapshot 2 
shows generation of the first boundary. Snapshot 3 shows the state of the system immediately following transition state passage and 
rapid downhill transit toward BP. Snapshots 4 – 6 show adaptive boundary placement as the system attempts to find its way back to the 
first box (i.e., that which is bounded by BR). 
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Figure 7: Grey lines show the final set of adaptively generated BXD boundaries for along the F + CD3CN reaction path in gas phase, 
and in solution. The black traces show those values of the CVs which were sampled during the dynamics used to construct the 
boundaries. The contours indicate the underlying 0K MS-EVB potential energy profile, and are provided for reference. The 0K 
reaction enthalpy is -37 kcal mol-1  

 

3.2 Free energy sampling within the adaptive boundaries 

Having adaptively generated boundaries for both the solution and gas phase reactions, the 

standard BXD sampling procedure could then be applied. For the gas phase, the system is small 

enough that it was possible to gather all the required statistics with a single 100ns trajectory, where 

the trajectory was sequentially restrained within each box until 100 reflection events had occurred on 

either side of the boundary before being allowed through to the next box (another way of deciding 

how long to remain in the box is to monitor the point at which the MFPT reaches a user specified 

convergence criterion). Given the larger size of the solution phase system along with the increased 

computational requirements that result from the 64 EVB states, we exploited the trivial parallelism 

of BXD to run trajectories in each box until meeting a user-specified convergence criteria (i.e., that 

the box-to-box MFPTs did not change by more than 0.1% with increased sampling), giving a total of 

12ns of dynamics across all boxes. Figure 8 shows examples of the sampled values of the CVs 

obtained in the solution phase simulations, and demonstrates the sort of statistics obtained in two 

different regions along the free energy profile: (1) in the vicinity of the transition state, and (2) along 

a steep ‘post-transition’ state region after DF has formed. 
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Figure 8: 2D histograms of observed values of the collective variables from BXD sampling in solution. Panel A shows statistics 
sampled in the vicinity of the transition state, while panel B shows observed values on a steep ‘post-transition state’ region of the PES 
after DF has formed. The colors indicate the CV sampling frequency: dark red indicates a very high frequency, deep blue indicates a 

lower frequency, and white indicates zero frequency. 

Once sampling was completed within each box (generating statistics similar to those shown in 

Fig 7), MFPTs were calculated as described in Section 2.1, and the results used to generate a ‘box-

averaged’ free energy profile and corresponding ‘box-averaged’ probability spanning 
 
B

R
 to 

 
B

P
. A 

higher-resolution free energy profile was obtained placing the statistics for a particular box into 

histogram bins and then using Eq (4) to renormalize by the box-averaged probabilities. Figure 9A 

shows the smaller histogram bins into which we partitioned the statistics in each box to accomplish 

this. In the 1d case, high-resolution partitioning along the dynamical pathway is straightforward; in 

this case (and more generally for higher-dimensional cases), our strategy is as follows:  

(1) Define a path ρ which passes through the average dynamical crossing points through each 

boundary (i.e., ), and spans 
 
B

R
 to 

 
B

P
; 

(2) Each region between a set of boundaries is then partitioned into a series of bisecting 

hyperplanes, to an arbitrary user-specified resolution. The regions between these bisecting 

hyperplanes constitute the high-resolution histogram bins. The centre of each bin is chosen to 

be the point along ρ  which is equidistant from the hyperplanes that bound the bin. 

The blue line in Figure 9A shows the path ρ  which spans 
 
B

R
 to 

 
B

P
, and which was used to generate 

finer histogram bins for plotting the high-resolution free energy profile. Figure 9B shows the 

corresponding high-resolution BXD free energy profiles for the gas phase reaction. The overlapping 
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curves in this plot show how the free energy profiles change with increasing sampling time, giving 

some indication of how quickly the BXD free energy profile converges in this particular system.  

 

Figure 9: Panel A shows the BXD boundaries (black lines), and the high-resolution histogram bins (light grey lines) generated using 
the procedure outlined in the text for the gas phase reaction path. The blue line shows the path through the average dynamical 

boundary crossing points. Panel B shows the corresponding high-resolution BXD free energy profile for gas phase CD3CN. The 
overlapping curves in this plot show how the free energy profiles change with increasing sampling time, giving some indication of the 

rate of convergence for this particular system.  

 

Figure 10: Reaction free energy profile in both gas and solution phase. 

Figure 10 shows a comparison of the reactive free energy surfaces obtained in both the gas  

phgase and in solvent. In the vicinity of the reactants and transition states, the profiles are very 

similar; however, they show considerable differences in the post-reaction region. The reason for this 
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difference arises from post-reaction Hydrogen bonding complexes formed by the nascent DF. In the 

gas phase BXD free energy sampling, the DF rotates around the backside of its CD2CN co-product 

and finds a stable hydrogen-bonding complex with the nitrile moiety. In solvent, such interactions 

are possible with any of a wide range of nearby solvent molecules, and therefore no distinct minima 

can be observed along the free energy profile. In terms of understanding the DF energy deposition 

observed in the previously published experimental and MD results, the key quantity in Figure 10 is 

the free energy difference between: (1) the maximum value observed near the transition state region 

and, (2) the minimum observed near the product state region. This quantity places an upper bound on 

the amount of energy which may be deposited into the nascent DF: for the reaction taking place in 

solvent the value is 27.6 kcal/mol, and for the reaction taking place in the gas phase the value is 31.1 

kcal/mol. Both of these values are in good agreement with previous experimental and modelling 

studies. Our previously published experimental and MD studies indicated the prompt deposition of 

~23 kcal mol-1 into the stretching motion of the nascent DF prior to relaxation.[63, 64] While gas 

phase experiments of F + CD3CN are not available for direct comparison to our free energy results, 

experiments examining gas-phase energy deposition into HF in the F + CH3CN reaction have been 

performed,[65] and suggest that the nascent diatomic product in solvent contains slightly less 

excitation than in the gas phase. [63] This is consistent with the results in Figure 10, which indicate 

that more energy is available to the products in the gas phase reaction than in solvent reaction. 

4 Conclusions 

In this paper, we have outlined an adaptive and automated procedure for generating boundaries 

in a multi-dimensional space of CVs. Our automated algorithm reduces the user effort required to 

carry out both rare event and free energy sampling in both one-dimensional and multi-dimensional 

cases; it generates box boundaries which are far enough apart to avoid any problems related to 

dynamical decorrelation, but which afford optimal acceleration. The extension of BXD to 

multidimensional collective variables provides an effective way to sample increasingly complex 

systems, but retains much of the simplicity and original properties of the 1-dimensional BXD 

implementation. The adaptive BXD scheme tested in this paper has been implemented in 

CHARMM, and will soon be available in the release version (we have also made initial efforts 

toward a BXD implementation in the TeraChem [66] ab initio dynamics package). The tests reported 

in this paper were carried out using the CHARMM implementation, in conjunction with 

parallelizable MS-EVB machinery also available in CHARMM. [64] This framework allowed us to 
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map free energy along a deuterium abstraction reaction pathway in both gas and solution phases. The 

results we obtained are in good agreement with previously published experimental and modelling 

studies, providing good evidence for the reliability of our adaptive multidimensional BXD 

implementation.  

We believe that the adaptive scheme outlined in this paper, which allows us to generate 

hyperplanes in multi-dimensional collective variable space, may be more broadly useful to a wide 

range of techniques which rely on splicing up configuration space into a set of interfaces or 

boundaries. In the future, we will explore rigorous methods for estimating the error bars of free 

energy surfaces generated using BXD.[67] We also plan to explore extensions of the adaptive BXD 

scheme in systems with CV spaces that have dimensionalities of three and higher – e.g., enzyme 

reactions and conformational dynamics,[68] drug binding,[69] and chemical reactions at surfaces 

and in liquids.[70] As shown in Eq (7), implementation of BXD in multi-dimensional CV space 

requires definitions of the gradient in CV space, ∇φ , a wide library of which are available in 

PLUMED[71] package. We are presently working on writing the BXD algorithm as a portable, and 

mostly ‘standalone’ plugin that may be easily interfaced with a wide range of molecular dynamics 

packages, a similar philosophy to that which has been adopted by PLUMED[71]. Implementation of 

adaptive BXD in a package of this sort should allow it to be used in a wide range of contexts.  
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Appendix: Velocity Reflection in Two-Dimensional CV Space 

In this section we give details on the calculations required to perform velocity reflection for a 

simple but illustrative case. Consider a system of atoms A, B and C where our collective variables 

are the distances AB and BC. This style of collective variable is useful in many situations, including 

the acceleration of abstraction reactions as discussed in the main document. 

For the sake of brevity we restrict ourselves to 2 spatial coordinates. Let  

be the coordinates and  be the velocities of atoms A, B and C, and let M be 

the diagonal matrix of atomics masses, i.e.: 

		 

M =

m
a

0 0 0 0 0

0 m
a

0 0 0 0

0 0 m
b

0 0 0

0 0 0 m
b

0 0

0 0 0 0 m
c

0

0 0 0 0 0 m
c





























   Eq A.1 

Our collective variable  is given by  

 

   Eq A.2 

 

Suppose we have some BXD boundary B, defined as a two-dimensional line in Hessian form with 

norm 
		
n̂= (n

1
,n
2
) and point D. The constraint on our dynamics is  

 

		
φ ≡ n

1
r
AB

+n
2
r
BC

+D≥0   Eq A.3 

 

Suppose that we identify a timestep in which our constraint will no longer be satisfied – i.e., the 

stepping forward using the current velocities will result in a boundary being crossed, and we require 
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a velocity reflection. In order to perform the velocity reflection using a Lagrangian multiplier, we 

need to compute ∇φ , which is given by 

  Eq A.4 

 

The expression above demonstrates how it is simple to construct the reflection procedure from the 

gradients of the individual collective variables. With ∇φ  in hand, it is a simple matter to determine 

the Langrangian multiplier λ  with which the velocities may be inverted. From Eq (12) we may 

compute λ  via  

 

   Eq A.5 

 

and then subsequently use it to compute inverted velocities from Eq (11) as . 

In the resulting velocities, the components normal to the boundary are inverted, and thus the 

constraint is satisfied.  
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