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Analytical model of hydrogen evolution and oxidation reactions 
on electrodes partially covered with catalyst 
Erno Kemppainen*, Janne Halme and Peter D. Lund 

Our previous theoretical study on the performance limits of platinum (Pt) nanoparticle catalyst for the hydrogen evolution 
reaction (HER) had shown that the mass transport losses at a partially catalyst-covered planar electrode are independent of 
the catalyst loading. This suggests that the two-dimensional (2D) numerical model used could be simplified to a one-
dimensional (1D) model to provide an easier but equally accurate description of the operation of these HER electrodes. In 
this article we derive the analytical 1D model and show that it indeed gives results that are practically identical to the 2D 
numerical simulations. We discuss the general principles of the model and how it can be used to extend the applicability of 
existing electrochemical models of planar electrodes to the low catalyst loadings suitable for operating 
photoelectrochemical devices at unconcentrated sunlight. Since the mass transport losses of the HER are often very sensitive 
to the H2 concentration, we also discuss the limiting current density of the hydrogen oxidation reaction (HOR) and how it is 
not necessarily independent of the reaction kinetics. The results give insight to the interplay of kinetic and mass-transport 
limitations at HER/HOR electrodes with implications to the design of kinetic experiments and the optimization of the catalyst 
loadings in the photoelectrochemical cells. 

1. Introduction 
This paper continues our work on theoretical simulation models 
used for the optimization of catalyst coatings for 
photoelectrochemical water splitting cells 1,2. The studied 
model system is a planar TiO2 coated silicon photoelectrode (PE) 
partially covered with randomly distributed Pt nanoparticles 
(Figure 1). Although often criticized for scarcity and cost, Pt is 
still the most common catalyst used in electrochemical energy 
conversion devices such as in electrolyzers and fuel cells 3–6. 
Employing it as finely dispersed nanoparticles helps mitigating 
the material costs, because it gives high electrocatalytically 
active surface area per gram of material used. 
Optimizing catalyst loadings for photoelectrochemical (PEC) 
cells is quite different from other electrochemical systems with 
one respect: their current and power density is relatively low, 
because it is limited by the absorbed photon flux of sunlight. For 
example, a fully integrated planar PEC device, that employs 
equal electrode areas for both the photoconversion and 
electrolysis reactions, can generate at most ca. 40 mA/cm2 
when operated with un-concentrated sunlight 7–10. At such low 
current densities, only a small amount of Pt is needed 1,11–13. For 
example, our previous work showed that a Pt loading as low as 
100 ng/cm2 is enough to run the hydrogen evolution reaction 
(HER) in a PEC cell at 10 mA/cm2 current density without 
inflicting more than 50 mV overpotential 1. This loading is so low 

that the 5 nm Pt nanoparticles used cover only 1 % of the 
electrode surface.  
Other electrochemical devices, that are usually rate-limited by 
the transport of chemical species (reactants and products) 
rather than photon flux, can be designed for much higher 
operating current densities. In water electrolyzers and alkaline 
fuel cells, for example, current densities as high as 0.2 – 2 A/cm2 
are reached by employing highly porous conducting electrodes 
that host large number of Pt particles, typical loadings being as 
high as 0.05 – 2 mg/cm2 3,5,14. In this case, the catalyst surface 
area exceeds the projected surface area of the electrode by 
more than one order of magnitude 15,16. Optimization of such 
porous electrodes in terms of electrochemical performance and 
catalyst utilization is a classical problem of electrochemical 
device engineering, which requires the theoretical modeling of 
the coupled reaction kinetics and mass transport within the 
porous electrode structure 17–19. The corresponding geometrical 
modeling of catalyst performance in PEC cells with low surface 
coverage has received less attention, perhaps because it has 
been previously thought that no catalyst would perform well 
enough to be used in such low amounts. 
Our first paper on this topic presented a 2D numerical model 
that combines the effects of mass transport and HER kinetics to 
describe the current–overpotential characteristics of such PEs 1. 
Our second paper extended the model by considering the 
transport of both gaseous and dissolved H2, as well as mass 
exchange between them in the electrolyte2. In this work, we 
present an analytical model that captures the phenomena 
described by the 2D numerical model and is therefore readily 
applicable to interpreting experimental data and performing 
optimization calculations in practical research. We also discuss 
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the assumptions made with the mass transport geometry and 
the reaction kinetics. Although our primary interest is in the PEs, 
our model focuses on the mass transport in the electrolyte and 
the behavior of the metallic catalyst on the electrode surface. 
When the current flows solely through the catalyst particles, the 
PE-catalyst and the catalyst-electrolyte segments can be 
treated separately, because the potential level in the catalyst 
can be used as a boundary condition for both segments. 
Summing the potential differences that correspond to the same 
current density and catalyst potential yields the total voltage, as 
with fully covered PEs20. This way, the model developed in this 
paper can be connected to models describing the photovoltaic 
operation of the PE in a complete PEC device.  
The paper is organized as follows. We first present the main 
observations from the previous two papers with regard to the 
geometrical considerations to give rationale to the 1D modeling 
approach in this paper (Section 2). Thereafter we discuss our 
general approach and the details of the kinetic model coupled 
with the mass transport, and how we solve the equations. As 
the mass transport is included in our model, also the effects of 
the limiting current density on reaction kinetics are discussed, 
as well as how the reaction mechanism affects the limiting 
current density. The relative simplicity of our model allows us to 
derive analytical expressions that describe the 
micropolarization region and high overpotentials (i.e. “Tafel 
equation”), which are compared to the full numerical solution. 

2. Current distribution and mass transport losses 
at nanoparticle electrode with low surface 
coverage 

One of the observations from our earlier 2D numerical 
simulations of our model system (Figure 1) was that, when the 
current density per electrode area was considered, the mass 
transport losses were almost independent of the Pt loading 1,2, 
which allowed simplifying the mass transport problem to one 
dimension. As a result, an analytical 1D solution mathematically 
similar to the diffusion of only dissolved H2, but including the 
effects of the bubble transport and dissolution kinetics, was 
found and shown to be valid at current densities below ca. 40 
mA/cm2 2. Why the catalyst loading had only a little effect on 
the mass transport could be rationalized by realizing that the 
stagnant diffusion layer was much thicker than the average 
distance between the Pt particles. Because the flux profile is a 
result of a linear drift-diffusion model, it can also be considered 
as a superposition of the overlapping, hemispherical flux 
profiles of the individual catalyst particles 21–23: Close to the 
electrode surface the flux is mainly affected by the nearest 
particle, creating the hemispherical profile, whereas far from 
the interface the effects of the individual particles are blurred, 
forming a uniform 1D profile 23. Numerical simulations (Figure 
1C) illustrate this by showing how the 1D flux converges to a 
spherical flux towards the catalyst particle only very close to the 
electrode surface. The fact that going from a uniform Pt coating 
to sparsely distributed Pt nanoparticles hardly affects the mass 
transport losses indicates that the convergence of the transport 

flux to the Pt particle brings negligible contribution to the total 
mass transport resistance. The 1D mass transport picture holds 
as long as the average distance between the nearest particles is 
much shorter than the diffusion layer thickness that 
corresponds to the limiting current density of the mass 
transport 23,24. Therefore the 1D picture does not apply to the 
extremely sparsely catalyst decorated electrodes and to very 
rapid mass transport. Since at least the sparse catalyst array 
could be a relevant scenario, in addition to other study topics, 
we also aim to identify when the 1D picture is no longer 
accurate.  

 
Figure 1. Illustrations of real and simulated electrode with 50 ng/cm2 Pt 
nanoparticle (d = 5 nm) loading having 2.7 % surface area fraction (fsurf ≈ 0.027): 
A) SEM image of Pt nanoparticles on TiO2.Reproduced from Ref 1 with permission 
from The Royal Society of Chemistry.; B) Scheme of the diffusion domain approach 
(r ≈ 30 nm); C) Local current density distribution (mA/cm2) in the electrolyte for iel 
≈ -20 mA/cm2. Grey lines are current stream lines and black lines indicate the 
current density isopotential surfaces. Letters a – f indicate the boundaries in the 
simulation cell: a is the symmetry axis at r = 0, b the Pt surface, c the inactive 
electrode substrate, d the outer boundary of the cell and e indicates the 
geometrical position of the bulk electrolyte interface, although it is significantly 
farther from the electrode than the upper edge of the figure. Similarly to e, f 
indicates the position of the voltage contact of the electrode substrate in the 2D 
simulations, although in reality it is farther than the bottom of the shown portion 
of the simulation cell. 

Another key observation was that the mass transport and 
kinetic overpotentials depend on different current densities: 
the mass transport overpotential depends on the current per 
electrode surface area whereas the kinetic overpotential arises 
from the current density per catalyst surface area, which in our 
case is smaller than the electrode area. This separation suggests 
that our 2D model could be fully simplified to 1D by coupling 
these current density scales to each other. In this work, we 
show that this is indeed correct: the 1D analytical model 
obtained agrees remarkably well with the 2D numerical 
simulations. This result suggests that also other 1D models, or 
point models of the homogeneous electrode-electrolyte 
interface, could be extended to electrodes partially covered 
with catalyst. 
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3. One-dimensional model of HER/HOR on 
catalyst particle arrays 
3.1. General modeling principle 

We describe the electrode with a 1D model. Concentrations on 
the catalyst surface are determined by the mass transport 
model and the current density per electrode area (iel), whereas 
the total overpotential is given by the model of the reaction 
kinetics, current density per catalyst area (icat) and surface 
concentrations. These current density scales are coupled 
together via the ratio of the catalyst surface area (Acat) to the 
geometrical electrode area (Ael), fsurf 

𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐   (1a) 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐
𝐴𝐴𝑒𝑒𝑒𝑒

   (1b) 

In the context of the present paper, equation (1) is the general 
principle for coupling a kinetic model that considers varying 
catalyst surface areas to a mass transport model that neglects 
them.  
In a broader context, we point out that, mathematically 
speaking, fsurf can describe equally well also varying the catalytic 
activity of the electrode surface, because in all the equations of 
our model, it appears always as a factor multiplying the 
exchange current density of the reaction. By scaling the 
exchange current density of the reaction with the surface area 
fraction, we assume that the catalyst distribution on the surface 
is sufficiently homogeneous that the changes in the catalyst 
loading can be described as changes in the catalytic activity of 
the electrode, without considering the mass transport in the 
vicinity of the particles.  
The conventional way of using fsurf is to describe electrodes with 
an active area that is larger than the geometrical electrode area 
(fsurf > 1, Figure 2C), i.e. as the surface roughness factor 15,25,26. 
Using the ratio to describe surfaces that are only partially 
covered with catalyst (fsurf < 1, Figure 2A) is apparently not as 
common, and we found only a few examples of this 24,27. Our 
kinetic model is based on earlier models 15,28, and the details of 
the reaction kinetics are discussed in several earlier articles, 
such as 15,28–34. In this article, we verify that equation (1) is as 
accurate as our 2D model of nanoparticle arrays and thereafter 
analyze the effects of the catalyst surface area on the electrode 
operation. Although our discussion does not go into the details 
of the reaction kinetics, such as the effects of the kinetic 
parameters 28,34,35 or blocked adsorption sites 15, the results 
from previous theoretical analyses can be applied to our 
situation, namely the study of the effect of catalyst surface area, 
by varying either the exchange current density or the mass 
transport limitation. 

 
Figure 2. Cross-sectional schemes of the different regimes of the fsurf values: A) partially 
covered electrode, B) smooth, planar electrode and C) rough, planar electrode. The grey 
color indicates the electrochemically active material. 

3.2. Mass transport and surface concentrations 

We assume linear mass transport to enable direct comparison 
with our earlier 2D simulations 1. For the sake of simplicity, and 
to allow analytical solutions to be reached, the effect of H2 
bubbles on the transport of the dissolved H2 molecules is 
neglected here 2.  
In practice, linear mass transport means that the surface 
concentrations can be described with a bulk concentration and 
a limiting current density (which depends on the bulk 
concentration) 

 𝑐𝑐𝐻𝐻+
𝑐𝑐𝐻𝐻+
0 =

𝑐𝑐𝐻𝐻+
𝑏𝑏

𝑐𝑐𝐻𝐻+
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻+
�   (2a) 

𝑐𝑐𝐻𝐻2
𝑐𝑐𝐻𝐻2
0 =

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
�   (2b) 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝑛𝑛 = 𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝑛𝑛
0 𝑐𝑐𝑛𝑛𝑏𝑏

𝑐𝑐𝑛𝑛0
   (2c) 

The concentration of a species n on the catalyst surface is 
marked with cn, the bulk concentration is indicated with 
superscript b and the concentration that corresponds to the 
thermodynamic reference potential (in this case the standard 
hydrogen electrode, SHE and VSHE) with superscript 0. The SHE 
conditions correspond to 1 mol/l (1 M) proton concentration 
and 1 bar H2 pressure, i.e. 0.77∙10-3 M, but it is possible that only 
a small fraction of H2 is in form that can participate in the 
reaction at the electrode surface 36. In our simulations cb = c0, 
and the bulk concentration is included for the sake of generality. 
For SHE conditions we use the limiting current densities that we 
determined from earlier 1D simulations (“flat Pt” in 1,for 5 µm 
diffusion layer ilim,H+ = -35940 mA/cm2 and ilim,H2 = 15.4 mA/cm2, 
see Table 1. in Section 3.4. for the simulation parameters). We 
follow the convention that positive currents correspond to HOR 
and negative to HER.  
In addition to simplifying the details of the catalyst array 
geometry and mass transport to the single parameter fsurf 
(Sections 2. and 3.1.), we focus on the steady state operation, 
and therefore omit transient behavior. Phenomena related to 
the electrode geometry that fsurf alone cannot describe, such as 
the surface concentration transient in a nanoelectrode array 
22,23, are out of the scope of our model. Although also surface 
diffusion and spillover effect may be important with catalyst 
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arrays, especially with rapid mass transport 27, we have 
neglected them here, as it seems that the HER/HOR on Pt could 
be described with only mass transport and reaction kinetics 24. 

3.3. Reaction kinetics 

The total hydrogen oxidation and evolution reaction proceeds 
through intermediate reactions called Volmer, Tafel and 
Heyrovsky steps 

H2 ⇄ 2 H+ + 2 e- HER/HOR  (3a) 

H2 ⇄ 2 Hads Tafel  (3b) 

H2 ⇄ Hads + H+ + e- Heyrovsky  (3c) 

Hads ⇄ H+ + e- Volmer  (3d) 

Hydrogen atoms adsorbed on the surface are marked with Hads 
and reaction proceeding from left to right corresponds to the 
HOR (and from right to the left to the HER). Although the 
HER/HOR on Pt has been studied extensively, even the most 
recent literature is somewhat inconclusive about the reaction 
mechanism, with some results indicating the Volmer-Tafel (V-T) 
16,37,38, and others the Volmer-Heyrovsky (V-H) mechanism 39 as 
the dominant path. To allow direct comparisons with our earlier 
2D simulations 1 where we assumed the V-T path with Volmer 
as the rate determining step (RDS), we assume the same 
mechanism also in this article. Some features in our analysis are 
specific to the V-T mechanism, but the general principle of the 
model and the applicability of the 1D model should be 
independent of the reaction mechanism. 
The V-T mechanism is convenient for the analysis of the model 
and the simulations, because we can derive an analytical 
expression for the fraction of the reaction sites covered with 
Hads (θ) as a function of the current density. Alternatively, we 
can also solve the current density as a function of θ, as discussed 
in the next section. We begin with the reaction rates of the Tafel 
(νT) and Volmer (νV) steps 

𝜈𝜈𝑇𝑇 = 𝜈𝜈0,𝑇𝑇 ��
1−𝜃𝜃
1−𝜃𝜃0

�
2
�𝑐𝑐𝐻𝐻2
𝑐𝑐𝐻𝐻2
0 � − � 𝜃𝜃

𝜃𝜃0
�
2
�  

= 𝜈𝜈0,𝑇𝑇 ��
1−𝜃𝜃
1−𝜃𝜃0

�
2 𝑐𝑐𝐻𝐻2

𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
� − � 𝜃𝜃

𝜃𝜃0
�
2
�  (4a) 

𝜈𝜈𝑉𝑉 = 𝜈𝜈0,𝑉𝑉 �
𝜃𝜃
𝜃𝜃0
𝑒𝑒
𝜂𝜂′

2 −
𝑐𝑐𝐻𝐻+
𝑏𝑏

𝑐𝑐𝐻𝐻+
0 � 1−𝜃𝜃

1−𝜃𝜃0
� 𝑒𝑒

−𝜂𝜂′

2 �  

= 𝜈𝜈0,𝑉𝑉 �
𝜃𝜃
𝜃𝜃0
𝑒𝑒
𝜂𝜂′

2 −
𝑐𝑐𝐻𝐻+
𝑏𝑏

𝑐𝑐𝐻𝐻+
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻+
� � 1−𝜃𝜃

1−𝜃𝜃0
� 𝑒𝑒

−𝜂𝜂′

2 �  (4b) 

𝜂𝜂′ = 𝑞𝑞𝑒𝑒(𝑉𝑉−𝑉𝑉0)
𝑘𝑘𝐵𝐵𝑇𝑇

   (4c) 

The rate of the Volmer step (equation (4b)) is described with an 
extended version of the Butler-Volmer (B-V) equation that takes 
into account the proton concentration and the fraction of 
reaction sites occupied by adsorbed hydrogen atoms. The 
elementary charge is denoted with qe, Boltzmann constant with 
kB and temperature in Kelvins with T. The symmetry factor of 
the Volmer step is assumed to be β = ½ (and thus η’/2 in the 
exponent), as is common. Superscript 0 marks the equilibrium 
value at the thermodynamic reference potential (i.e. the SHE 

potential) also in the case of θ. The exchange rates of the 
reactions are denoted with the subscript 0 and the equilibrium 
potential of the reaction is V0 (0 V vs SHE) with V being the 
potential on the catalyst surface. Because the resistive losses in 
the metallic catalysts are negligible, the potential of the catalyst 
particles can be taken constant, and therefore, the catalyst 
potential V can be used directly as a boundary condition to 
connect a photovoltaic model of the PE to the kinetic model of 
the catalyst. This works as long as the HER/HOR proceeds only 
on the catalyst surface, and hence all current flows through the 
PE-catalyst contact and none, or a negligibly small fraction, 
through the PE-electrolyte interface. Note that this holds also in 
the case of pinched-off catalyst particles40, when the charge 
transport to the PE-catalyst contact depends on the nearby PE-
electrolyte interface, because, even in this case, the catalyst 
potential can be used as the reference point for the calculations. 
On the other hand, if the reaction kinetics depend not only on 
the catalyst particle and its potential, our approach of 
separating the catalyst operation from the rest of the electrode 
does not apply, and another modeling approach should be 
taken instead. This would be true for instance if the catalytic 
activity of the bare PE surface could not be neglected, or the 
metal coverage was thin enough to allow the substrate to affect 
the electronic properties of the catalyst surface, making it 
different from the surface of the bulk material, thus affecting 
the reaction kinetics 41,42. 
Equation (4) gives the reaction rates on the catalyst surface. We 
substituted current density for the surface concentrations in 
equations (4a) and (4b) to explicitly show the variables that we 
use in the calculations. Because no electrons cross the 
electrode-electrolyte interface in the Tafel-reaction, the Volmer 
rate multiplied by the Faraday constant and fsurf yields the 
current density per electrode area. 

𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹𝜈𝜈𝑉𝑉 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖0,𝑉𝑉 �
𝜃𝜃
𝜃𝜃0
𝑒𝑒
𝜂𝜂′

2 − �1 − 𝑖𝑖𝑒𝑒𝑒𝑒
𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻+

�
𝑐𝑐𝐻𝐻+
𝑏𝑏

𝑐𝑐𝐻𝐻+
0 � 1−𝜃𝜃

1−𝜃𝜃0
� 𝑒𝑒

−𝜂𝜂′

2 �(5) 

The exchange current density is i0,V = F∙ν0,V, where F is the 
Faraday constant. When the current density and θ are known 
(see Section 3.5.), the overpotential is solved numerically from 
this equation. Additionally, it is possible to derive analytical 
expressions for the micropolarization range and “Tafel-
equations” for high negative and positive overpotentials 
(Section 3.7.). 
The overpotential in equation (4c) is the total overpotential and 
includes the losses from both the reaction kinetics and mass 
transport. The mass transport overpotential is the Nernst 
potential difference between the catalyst surface and the bulk 
electrolyte. 

𝜂𝜂𝑀𝑀𝑇𝑇 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞𝑒𝑒
�ln � 𝑐𝑐𝐻𝐻+

𝑐𝑐𝐻𝐻+
b � − 1

2
ln �𝑐𝑐𝐻𝐻2

𝑐𝑐𝐻𝐻2
b ��  (6) 

The current density dependence can be solved by inserting 
equations (2a) and (2b) inside the logarithms. Often, it can be 
assumed that the limiting current density of the proton 
transport is significantly higher than the current density 
(|iel/ilim,H+|→0) or the H2 mass transport limitation, leading to a 
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solution that depends only on the limiting current density of the 
H2 transport 1,16,43,44  

𝜂𝜂𝑀𝑀𝑇𝑇 ≈ −𝑘𝑘𝐵𝐵𝑇𝑇
2𝑞𝑞𝑒𝑒

ln �1 − 𝑖𝑖𝑒𝑒𝑒𝑒
𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2

�   (7a) 

𝑖𝑖𝑒𝑒𝑒𝑒 ≈ 𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻2 �1 − 𝑒𝑒−2
𝑞𝑞𝑒𝑒𝜂𝜂𝑀𝑀𝑀𝑀
𝑘𝑘𝐵𝐵𝑀𝑀 �   (7b) 

This reflects the starting point of our model. When the current 
density per electrode area is considered, the mass transport 
losses are independent of the amount of catalyst (fsurf). If the H2 
mass transport limitation is lower than the exchange current 
density of the electrode, then not only is the HOR under 
diffusion control, but also the HER overpotential is 
approximately equal to the mass transport overpotential, thus 
effectively determined by the H2 transport 16,43. 
In equilibrium the net rate of both reaction steps must be zero, 
from which we can derive the potential for the reversible 
hydrogen electrode (RHE) with the given bulk concentrations. 
Starting from equation (4), this condition yields us an expression 
similar to equation (6) (but with 𝑐𝑐𝑛𝑛𝑏𝑏/𝑐𝑐𝑛𝑛0 inside the logarithms, 
instead of 𝑐𝑐𝑛𝑛/𝑐𝑐𝑛𝑛𝑏𝑏), so the kinetics of our model is consistent with 
the thermodynamics of the reaction. It would be possible to also 
derive expressions for and numerically solve the dependence of 
the exchange current density with respect to the proton and H2 
concentrations, but this property and the comparison to 
experimental results 37–39 are beyond the scope of our analysis. 

3.4. Simulation parameters 

Table 1. contains the simulation parameters introduced in the 
previous sections. We used the same values that we used 
previously 1, or values derived from those simulations. The 
limiting current densities correspond to the solution of the 1D 
drift-diffusion problem over a 5 µm thick diffusion layer. In the 
case of protons, electroneutrality is enforced and perchlorate 
ions (ClO4-) are the anions in the electrolyte. 
In the 2D simulations we assumed spherical particles that were 
simulated in cylindrical geometry. Therefore, the catalyst 
surface area fraction is 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑠𝑠

𝑅𝑅𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒
�
2

   (8) 

Where the r is the radius of the catalyst particles, fexp the 
fraction of the catalyst particle surface that is exposed to the 
electrolyte and Rcell the radius of the simulation cell. Previously, 
we assumed spherical particles (5 nm diameter, i.e. r=2.5 nm) 
that were slightly embedded in the substrate, so that 95% of 
their surface area was exposed to the electrolyte (i.e. fexp = 0.95) 
1. 
The radius of the simulation cell corresponded to a given 
catalyst mass loading (ng/cm2, Lcat) 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 4𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠3

3𝑅𝑅𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒
2    (9) 

The density of the catalyst material is ρcat, which for Pt is ρ = 
21450 kg/m3 45. Depending on the regularity of the particle 
placement on real electrodes, equation (9) may slightly 
overestimate either the center to center distance between 

particles (dc-c = 2Rcell), if starting from the mass loading, or the 
catalyst loading, if starting from the average distance between 
the neighboring particles. In both cases, the overestimation 
originates from the use of cylindrical/circular unit cell. In regular 
particle arrays the unit cells are regular polygons and the 
distance between the particles is twice the apothem (the 
distance between the center of the polygon and the midpoint 
of its side). Thus, for a given unit cell area (particle density) the 
radius is larger than the apothem and, for a given interparticle 
distance, the area of the circle is smaller than the area of the 
polygon.  

Table 1. The simulation parameters and their original source (if not based only on1) 

Symbol Explanation Value  
T Temperature 298.15 K 

ilim,H2 
Limiting current density of H2 

transport 
15.4 mA/cm2  

ilim,H+ 
Limiting current density of H+ 

transport 
-35940 mA/cm2 

𝒄𝒄𝐇𝐇+
𝟎𝟎  Equilibrium proton concentration 1.0 M 
𝒄𝒄𝐇𝐇𝟐𝟐
𝟎𝟎  Equilibrium H2 concentration 0.7698 mM 36 

i0,V 
Volmer reaction exchange current 

density 
100 mA/cm2 16 

rH Ratio of Heyrovsky and Volmer rates 0 16 
rT Ratio of Tafel and Volmer rates 9.5 
θ0 Equilibrium H-coverage 0.67 46 

 

3.5. Current density and hydrogen coverage of the catalyst 

As mentioned, equation (5) includes three unknown variables: 
iel, θ and η’. We can use either the current density or the 
hydrogen coverage as the starting point and solve the other 
from the Tafel rate. In steady state, θ does not change over 
time, yielding 

2𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑇𝑇𝑖𝑖0,𝑉𝑉 ��
1−𝜃𝜃
1−𝜃𝜃0

�
2 𝑐𝑐𝐻𝐻2

𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
� − � 𝜃𝜃

𝜃𝜃0
�
2
� = 𝑖𝑖𝑒𝑒𝑒𝑒  (10) 

The factor 2 comes from the stoichiometry of the reactions (two 
hydrogen atoms per Tafel step, but one per Volmer step). We 
also define rT = ν0,T/ν0,V (similarly to Wang et al. 15), the relative 
exchange rate of the Tafel step compared with the Volmer step. 
Although one can consider rT > 1 to correspond to Volmer as the 
RDS, and rT < 1 to Tafel as the RDS, the value of rT needs to be 
significantly lower than 1 to produce the 30 mV/decade Tafel 
slope that is considered an indication of the Tafel step being the 
RDS 30.  
Since the only unknown variables in equation (10) are the 
current density and the surface hydrogen coverage, we can use 
either of them as the starting point and solve the other 
analytically. In our case of V-T mechanism, and possibly also in 
the case of other Langmuir-Hinshelwood reactions, θ is a 
mathematically convenient starting point. However, because 
the convenience may be limited to the specific combination of 
the kinetic and mass transport models, and because θ is likely a 
less intuitive starting point than the current density, we discuss 
our model also with the current density as the starting point.  
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Solving the current density (i.e. starting from θ ∈[0,1]) from 
equation (10) gives 

𝑖𝑖𝑒𝑒𝑒𝑒 =
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑖𝑖0,𝑉𝑉�

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 � 1−𝜃𝜃

1−𝜃𝜃0
�
2
−� 𝜃𝜃

𝜃𝜃0
�
2
�

1+
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑙𝑙0,𝑉𝑉𝑐𝑐𝐻𝐻2

𝑏𝑏

𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2𝑐𝑐𝐻𝐻2
0 � 1−𝜃𝜃

1−𝜃𝜃0
�
2

  (11) 

The nominator is the Tafel-rate with the bulk H2 concentration 
and the denominator corresponds to the effects of the H2 
transport. It is readily apparent that the proton concentration 
has no effect on the interdependence of the current density and 
θ. With equation (11) we can show that ∂iel/∂θ < 0(when θ0 
∈(0,1) and θ ∈(0,1)), so the extremes θ = 0 and θ = 1 correspond 
to the kinetic limits of the HOR and HER current densities, 
respectively. Note that in the case of the HOR the mass 
transport limitation remains and affects the limiting current 
density. This is discussed in more detail in Section 3.6. 
To solve the hydrogen coverage from the current density, 
equation (10) is reorganized to the standard form 

𝐴𝐴𝜃𝜃2 + 𝐵𝐵𝜃𝜃 + 𝐶𝐶 = 0   (12a) 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐴𝐴 =

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
� − �1−𝜃𝜃

0

𝜃𝜃0
�
2

           

𝐵𝐵 = −2
𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
�                        

𝐶𝐶 =
𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1 − 𝑖𝑖𝑒𝑒𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
� − 𝑖𝑖𝑒𝑒𝑒𝑒(1−𝜃𝜃0)2

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑖𝑖0,𝑉𝑉
      

  (12b) 

𝜃𝜃 = �
−𝐵𝐵−√𝐵𝐵2−4𝐴𝐴𝐴𝐴

2𝐴𝐴
 𝐴𝐴 ≠ 0

− 𝐴𝐴
𝐵𝐵

                𝐴𝐴 = 0
   (12c) 

Although there are minor differences, this is equivalent to the 
solution of Wang and co-workers15,47. The physically sensible 
solution corresponds to the negative root, because it yields θ = 
θ0, when iel = 0 (and 𝑐𝑐𝐻𝐻2

𝑏𝑏 = 𝑐𝑐𝐻𝐻2
0 ). The last term of C corresponds 

to the kinetic limiting current density: When we assume that 
either the surface is fully covered with hydrogen, or that the 
coverage tends to zero (and 𝑐𝑐𝐻𝐻2 = 𝑐𝑐𝐻𝐻2

0 ), the highest current 
densities per catalyst area that the Tafel step allows are 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛,𝑃𝑃𝑐𝑐 = −2𝑠𝑠𝑀𝑀𝑖𝑖0,𝑉𝑉

𝜃𝜃02
   (13a) 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛,𝑃𝑃𝑐𝑐 = 2𝑠𝑠𝑀𝑀𝑖𝑖0,𝑉𝑉
(1−𝜃𝜃0)2   (13b) 

Therefore, the last term can be rewritten as 

𝑖𝑖𝑒𝑒𝑒𝑒(1−𝜃𝜃0)2

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑖𝑖0,𝑉𝑉
= 𝑖𝑖𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘𝑙𝑙𝑛𝑛,𝑃𝑃𝑐𝑐
= −�1−𝜃𝜃

0

𝜃𝜃0
�
2 𝑖𝑖𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘𝑙𝑙𝑛𝑛,𝑃𝑃𝑐𝑐

  (13c) 

This term is therefore the mathematical way to express the 
effect of the finiteness of the Tafel exchange rate on the 
hydrogen coverage as a function of the current density. We 
denote the kinetic current density limitations per electrode area 
in a shorter form that includes the effect of the catalyst surface 
area 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛,𝑃𝑃𝑐𝑐  (14a) 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑘𝑘𝑖𝑖𝑛𝑛,𝑃𝑃𝑐𝑐  (14b) 

In the micropolarization region, the current density is small 
compared with the exchange current density of the reaction. 
Regardless of which step is the RDS, the last term of the C is at 
most equal to the current density divided by the effective 
exchange current density of the electrode. If Volmer is the RDS, 
rT > 1 and the term is even smaller than this fraction. On the 
other hand, if rT < 1, the denominator is equal to the exchange 
current density of the reaction, so the assumption is valid 
irrespective of value of rT. When the last term of C can be 
neglected, equation (12c) is simplified to 

𝜃𝜃 ≈
𝜃𝜃0�

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1− 𝑙𝑙𝑒𝑒𝑒𝑒

𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
�

1−𝜃𝜃0�1−�
𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 �1− 𝑙𝑙𝑒𝑒𝑒𝑒

𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
��

   (15) 

Note that at the low current densities, i.e. iel/ilim,H2 → 0, this 
expression becomes constant that depends only on the 
equilibrium coverage and the bulk H2 concentration, which 
implies that if the bulk H2 concentration is fixed by the 
experimental conditions, the H2 transport determines the 
current density range, where constant hydrogen coverage can 
be assumed in the interpretation of the experimental results. 
Although the hydrogen coverage is independent of fsurf, low 
catalyst loadings allow the current density per catalyst area to 
reach higher values before the hydrogen coverage changes 
significantly from its equilibrium value. 

3.6. Current limitation due to kinetics, mass transport and 
their combination 

As discussed briefly in the previous section, in addition to the 
mass transport, also the reaction kinetics limits the current 
density in the case of the V-T mechanism, because the rate of 
the Tafel step depends directly on θ, but not on the 
overpotential. Therefore, the steady state current density 
cannot be enhanced beyond the limits imposed by the Tafel 
step. The expressions for this limit for both HER and HOR (in the 
SHE conditions) were given in equation (13). 
Because proton transport does not affect θ directly, we can 
consider the mass transport and kinetic limitations of HER 
separately. Therefore, if the limiting current density of proton 
transport is lower than the limit of the reaction kinetics, the 
catalyst is never fully covered with adsorbed hydrogen atoms, 
and the current is limited by the proton transport. In the 
opposite case, the current density is limited by the Tafel-step 
(equation (11) and (12), θ → 1 corresponds to iel → ilim,,HER,kin) 
and the mass transport limit is not reached. In equation (15) the 
kinetic limitation is neglected and therefore θ → 1 corresponds 
to iel → −∞. 
Because the mass transport losses are mainly dictated by the H2 
concentration (equations (6) and (7)), the limiting current 
density of the H2 transport is an important parameter, even 
when considering only the HER 1,16,44. However, as already 
mentioned, also the reaction kinetics limits the HOR current 
density. Therefore, although it may be easy to measure the HOR 
limiting current density, it might not be equal to the H2 
transport limitation. Moreover, because the H2 transport and θ 
are directly coupled to each other in the Tafel-rate, mass 
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transport and kinetic limitations cannot always be considered 
separately, like in the case of the HER. As mentioned regarding 
equation (11), the current density is maximized at the limit θ → 
0, so the corresponding current density is the HOR limiting 
current density.  

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑉𝑉𝑇𝑇 = 𝑖𝑖𝑒𝑒𝑒𝑒(𝜃𝜃 = 0) =

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑙𝑙0,𝑉𝑉

�1−𝜃𝜃0�
2

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0

1+
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑙𝑙0,𝑉𝑉

𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2�1−𝜃𝜃
0�2

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0

  (16a) 

We recognize the kinetics-limited HOR current density from 
equations (13b) and (14b) and (after multiplying both the 
nominator and denominator by ilim,H2) rewrite this as 

𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙,𝐻𝐻𝐻𝐻𝑅𝑅,𝑉𝑉𝑇𝑇 =

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘𝑙𝑙𝑛𝑛∙𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2

𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘𝑙𝑙𝑛𝑛+𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2

=
𝑐𝑐𝐻𝐻2
𝑏𝑏

𝑐𝑐𝐻𝐻2
0 � 1

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻2
0 + 1

𝑖𝑖𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘𝑙𝑙𝑛𝑛
�
−1

  (16b) 

Setting θ = 0 in equation (12a), i.e. C = 0, yields the same result. 
(The other possibility that corresponds to C = 0, θ  = -B/A, always 
yields coverage that is either negative or higher than one, and 
therefore unphysical.) The terms inside the parenthesis in 
equation (16b) correspond to the two reasons for the catalyst 
surface to be devoid of hydrogen: at currents near the mass 
transport limit (first term) there is no H2 in the electrolyte that 
could be adsorbed on the catalyst, whereas the kinetic limiting 
current density (second term, see also equation (14b)) 
corresponds to the rate at which the H2 molecules in the 
electrolyte are adsorbed and dissociated to hydrogen atoms on 
an empty catalyst surface. Note that the mass transport losses 
are determined by the mass transport limitation (equation (7)), 
not the total limiting current density. 
From equation (16b) we see that, when considering the HOR 
limiting current density, the mass transport and kinetic limits 
can be considered independently only, when either limiting 
current density is significantly higher than the other and the 
HOR limiting current density is (approximately) equal to the 
lower limitation. This dependence of the total limiting current 
density on the reaction kinetics and mass transport is analogous 
to the Koutecky-Levich equation 26 and it has been observed in 
both theoretical and experimental studies (e.g. 28,29,32,33,48). 
However, equation (16b) is limited to the HOR limiting current 
density of the V-T mechanism, and is not applicable to the 
limiting current densities in general. Additionally, unlike in the 
typical application of the Koutecky-Levich analysis, we did not 
neglect the effect of the reverse reaction or the hydrogen 
coverage in the derivation of equation (16b), so the errors 
associated with those simplifications do not affect our results 
30,49.  
The total limiting current densities calculated with the 
simulation parameters in Table 1 are shown in Figure 3. With 
low catalyst surface ratios, the electrode is limited by the 
reaction kinetics and with sufficiently high loadings by mass 
transport. In addition, there is also an intermediate region (in 
our case the fsurf range between 10-4 and 0.01) where the total 
current density limitation is noticeably lower than either limit 
alone. The largest difference occurs when the kinetic and mass 

transport limitations are approximately equal to each other 
(ilim,HOR,kin ≈ ilim,H2), in which case the combined limiting current 
density ilim.HOR.VT is about one half of the individual limits. The 
difference between figures 3A and 3B is the current density 
normalization. When current density per electrode area is 
considered (A), the mass transport limitation is independent of 
the amount of catalyst, whereas in the case of the current 
density per catalyst area (B), the kinetic limit is constant and 
mass transport limit depends on fsurf (as equation (1) indicates). 
Note that because in the model the mass transport limit arises 
purely from the 1D mass transport, which has a constant limit 
per electrode surface area (Figure 3A), the mass transport limit 
calculated per catalyst surface area (Figure 3B) tends to infinity 
as fsurf, and thereby the catalyst area, approaches zero (i.e. 
constant divided by zero). However, as this happens also the 
average distance between the catalyst particles becomes large 
and eventually similar to the diffusion layer thickness, breaking 
the assumption that the transport can be considered mainly 
one-dimensional. This leads to a situation where the transport 
limitation may be considered as a combination of spherical and 
1D mass transport limits, which could possibly be expressed in 
the same fashion as equation (16b), as Montero et al. 24 did. 
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Figure 3. The limiting current densities in equation (16b) as a function of fsurf in A) current density per electrode area and B) current density per catalyst area. Note the different 
vertical axis scales. Simulation parameters are given in Table 1. The filled circles mark the points where the current limitation transitions from kinetic control (red, fsurf = 10-4) to mass 
transport control (blue, fsurf = 10-2), and the intermediate region where the current is limited both by the kinetics and mass transport (black, fsurf = 10-3). These three characteristic 
cases can be identified also in the other figures as red, blue and black curves, respectively (Figure 5, 6, 7 and 8).

 
3.7. Simplified, analytical solutions 

So far we have discussed the interdependence of the current 
density and the hydrogen coverage of the catalyst together with 
the limiting current densities. As mentioned in Section 3.3., we 
solve the overpotential from the Volmer current density 
(equation (5)) after the current density and the hydrogen 
coverage are solved. Although the exact solution must be 
obtained numerically, we can derive analytical expressions for 
the overpotential in the micropolarization region and “Tafel-
equations” for high negative and positive current densities, 
similarly to how the corresponding expressions are derived 
from the B-V equation (Chapter 3.4.3 in 26). For the 
micropolarization range this gives 

𝜂𝜂𝜇𝜇′ = 2
𝑙𝑙𝑒𝑒𝑒𝑒
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�� 1−𝜃𝜃
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𝜃𝜃0
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𝑐𝑐𝐻𝐻+
𝑏𝑏

𝑐𝑐𝐻𝐻+
0 �1− 𝑙𝑙𝑒𝑒𝑒𝑒

𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙,𝐻𝐻+
�� 1−𝜃𝜃

1−𝜃𝜃0
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  (17a) 

The Tafel-equations for high negative and positive 
overpotentials are, respectively 

𝜂𝜂𝐻𝐻𝐻𝐻𝑅𝑅′ = −2 ln

⎝
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  (17b) 

𝜂𝜂𝐻𝐻𝐻𝐻𝑅𝑅′ = 2 ln � 𝑖𝑖𝑒𝑒𝑒𝑒𝜃𝜃0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖0,𝑉𝑉𝜃𝜃
�   (17c) 

The last expression (equation (17c)) is not needed, if fsurf and i0,V 
are high enough compared with ilim,HOR,VT that the limiting 
current density is achieved already in the micropolarization 
region, which equation (17a) describes accurately (Section 4.2.). 
As discussed in Section 3.3., θ is a function of the current density 

(equations (12) and (15)), or current density a function of θ 
although neither possibility is expressed in equation (17). In all 
our calculations, we have used either equation (11) or (12), thus 
the effect of the reaction kinetics is not neglected, as in 
equation (15). In the general form, without writing out the 
current density dependence on the surface concentrations (or 
any other dependencies of the physical quantities and 
simulation parameters), equations (17a) and (17b) would be 

𝜂𝜂𝜇𝜇′ = 2
𝑙𝑙𝑒𝑒𝑒𝑒
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𝑐𝑐𝐻𝐻+
𝑐𝑐𝐻𝐻+
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1−𝜃𝜃0
�

𝜃𝜃
𝜃𝜃0
+
𝑐𝑐𝐻𝐻+
𝑐𝑐𝐻𝐻+
0 � 1−𝜃𝜃

1−𝜃𝜃0
�

   (18a) 

𝜂𝜂𝐻𝐻𝐻𝐻𝑅𝑅′ = −2 ln�
−𝑖𝑖𝑒𝑒𝑒𝑒𝑐𝑐𝐻𝐻+

0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖0,𝑉𝑉𝑐𝑐𝐻𝐻+
�1−𝜃𝜃
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If we can assume that θ ≈ θ0 and 𝑐𝑐𝐻𝐻+ ≈ 𝑐𝑐𝐻𝐻+
0  , HER/HOR is 

described accurately by the concentration-independent B-V 
equation, and these expressions are simplified to the more 
familiar forms that depend only on the current density and the 
exchange current density (including fsurf). Equation (15) suggests 
that in the micropolarization range the hydrogen coverage is 
approximately constant, if the current density remains small 
compared with the H2 transport limitation, so the 
micropolarization range can probably be described with the 
simplified expression (the first term of the nominator in 
equation (17a)), if the electrode is not mass transport limited. 
Additionally, although in general the Tafel slope of the HER 
overpotential is not necessarily 120 mV/decade (at room 
temperature, i.e. η’/2 in the exponent in the B-V equation, as in 
equation (4b)), it may be approximately equal to that up to 
some overpotential that depends on how rapid the mass 
transport is (both protons and H2 through the surface hydrogen 
coverage). 
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4. Results and discussion 
4.1. Comparison with 2D simulations 

As can be seen in Figure 4, the analytical 1D model described in 
Section 3. matches accurately the 2D simulations with the 
model introduced in 1, for the whole catalyst loading range from 
0.01 ng/cm2 (fsurf ≈ 5.3∙10-6) to 1000 ng/cm2 (fsurf ≈ 0.53), except 
for the high HOR overpotentials and low catalyst loadings (1.0 
ng/cm2 or less). The match between the HER overpotentials is 
excellent, but at high overpotentials, the HOR limiting current 
densities differ, because at catalyst loadings below 1.0 ng/cm2 
(fsurf ≈ 5.3∙10-4) the distance between the particles and its effect 
on the mass transport cannot be neglected and therefore the 
1D approximation is no longer accurate. Although at the lowest 
fsurf values the 1D simulations differ from the 2D simulations due 
to inaccurate treatment of mass transport, the reduction in the 
HOR limiting current density, when fsurf is reduced, is due to the 
reduced kinetic limiting current density (Figure 3A and equation 
(16b)), not mass transport. 

 
Figure 4. The current density – overpotential –curves (iη-curves) for different Pt 
loadings simulated with the 1D model (lines, equation (5) and (11)) compared with the 
2D simulations (markers) 1. The colors indicate the different Pt loadings. 

Assuming that the mass transport behaves as described in the 
model in 24, the spherical diffusion becomes a significant factor, 
when its limiting current density becomes similar to the 1D 
limitation. The HOR mass transport limit for a hemispherical 
particle can be calculated from the well-known formula 23,26. For 
a particle with a 5 nm diameter (DH2 = 5.11∙10-5 cm2/s and cH2 = 
0.77 mM) this limit is about 3.1∙104 mA/cm2 per catalyst area. 
Because in our case almost the entire particle is exposed, the 
mass transport limitation per catalyst surface area would be 
about half of this, which coincidentally is approximately equal 
to the kinetic limitation with our simulation parameters (Figure 
3B). Therefore, the 1D and hemispherical mass transport 
limitations would be approximately equal when fsurf ≈ 10-3 
(Figure 3B). Considering that the HOR limiting current density of 
the 1D model becomes inaccurate between 1.0 ng/cm2 (fsurf ≈ 
5.3∙10-4) and 10 ng/cm2 (fsurf ≈ 5.3∙10-3, Figure 4), the 
comparison of the hemispherical mass transport limitation to 

the 1D limitation is probably a good criterion for estimating the 
lower limit of the fsurf range where the 1D model is accurate, 
although the size of the spherical mass transport region (and 
therefore its limiting current density 24) depends on fsurf. 
Because the limiting current density of the spherical mass 
transport depends on the particle size, also the fsurf range where 
our model is valid depends on it, with smaller particles allowing 
accurate simulations about lower catalyst surface area 
fractions. Intuitively, this can be understood so that smaller 
particles disperse a given surface area to more particles, 
creating a more homogeneous catalyst distribution. At the 
other extreme, if the same catalyst surface area corresponds to 
a single larger particle on the electrode surface, certainly mass 
transport must be considered in detail. 
Note that the point, where the 1D model becomes inaccurate 
depends on the 1D mass transport limitation, lower limiting 
current densities (i.e. thicker diffusion layer) being accurate at 
lower fsurf values. The reaction kinetics also affects the accuracy 
of the 1D model: In general, slower reaction kinetics (lower 
exchange current density) correspond to a lower kinetic limiting 
current density. Therefore, when the reaction kinetics is 
sufficiently slow, the mass transport limitation can be neglected 
entirely (Figure 3B and equation (16b)). For the HER/HOR, Pt in 
acid is therefore an extreme case, because the exchange 
current density, and thus probably also the kinetic limitation is 
the highest of the known catalyst materials, and therefore the 
results are more sensitive to the inaccuracies of the mass 
transport model than with any other catalyst.  
The excellent match between the 1D and 2D model means that 
the 1D model is accurate enough to describe the steady state 
behavior of these nanoparticle electrodes, especially for the 
HER. The match also implies that it should be possible to 
accurately extend 1D models derived originally for planar 
catalyst electrodes to describe also electrodes partially covered 
with catalyst particles, by scaling the exchange current density 
of those models with the catalyst surface area fraction that 
depends on the catalyst loading. Because of the excellent 
agreement in Figure 4, we use only the 1D model in the rest of 
the paper. 

4.2. The Micropolarization range and the Tafel equations 

Figure 5 compares the simplified solutions for the 
micropolarization range and Tafel-equation (equation (17)), 
with the full 1D solution of the current density – overpotential 
–curve (iη-curve). In all cases, the micropolarization curve is 
accurate when |η| < 50 mV, and the Tafel-equations are 
accurate for |η| > 100 mV. It is not evident from Figure 5, but 
the Tafel slope of the HER branch at high overpotentials (when 
current is not yet limited by the kinetics or proton transport) 
increases as the current density increases. For example, in the 
case of fsurf = 0.01 the slope is approximately 120 mV/decade up 
to about -0.12 V vs RHE and at about -0.15 V vs RHE it is 
approximately 150 mV/decade. Since the hydrogen coverage 
decreases with increasing current density, there are less free 
sites for proton adsorption when the HER rate increases. (The 
HER corresponds to the negative currents and HOR to positive.) 
Therefore (the absolute value of) the overpotential for a given 
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current is higher than a coverage-independent B-V equation 
would predict, corresponding to an increased Tafel-slope. 
Ultimately, the current density may become limited by the 
reaction kinetics rather than proton transport (Section 3.6.), as 
the fsurf values 10-4 – 0.1 illustrate.  

 
Figure 5. Comparison of the expression for the micropolarization range (µ, solid lines, 
equation (17a)) and Tafel equations (dashed lines, equations (17b) and (17c)) with the 
full 1D solution (markers, equation (5)). Colors of the lines and markers indicate the value 
of fsurf. 

4.3. HOR limiting current density 

As equation (7) illustrates, the H2 transport limitation is a crucial 
parameter, also when considering the HER, because it is the 
main descriptor of the mass transport losses. Since in the case 
of the V-T mechanism, the HOR limiting current density does 
not necessarily correspond to the H2 transport limitation, it may 
be possible to misestimate the mass transport limitation by 
assuming it to be equal to the measured HOR limiting current 
density. This could lead to erroneous estimates of the mass 
transport losses and kinetic overpotential. We therefore discuss 
this detail of the reaction kinetics, and the effect of the catalyst 
loading on it in the following. 
Figure 6A shows that the hydrogen coverage decreases sharply 
as the current density (iel) approaches the value of equation (16) 
(ilim.HOR.VT). This is true with both the low (fsurf < 10-4) and high 
(fsurf > 10-2) catalyst surface area ratios. Most importantly, the 
predicted limiting current density holds also in the intermediate 
range of fsurf values, where the kinetic and mass transport 
limitations are similar to each other (ilim,HOR,kin ≈ ilim,H2) and 
significantly higher than the combined limit ilim.HOR.VT (Figure 3). 
For example, in the case fsurf = 10-3 the mass transport limit has 
value 1.87 and the kinetic limit value 2.15 in the normalized 
current density scale of Figure 6. The fact that the overpotential 
increases rapidly at this limit, even in the intermediate case fsurf 
= 10-3 (Figure 6B), confirms that the HOR current density is 
limited by the combination of the reaction kinetics and mass 
transport.  
When the current density per catalyst area (icat) is considered, 
the 1D mass transport limitation is divided by fsurf, hence the 

limiting current density in the kinetics-limited low fsurf cases is 
significantly higher than in the mass transport limited cases 
(Figure 3B). Therefore, contrary to what Figure 6A may initially 
seem to allude to, the hydrogen coverage decreases slower 
when fsurf is reduced, as also equation (15) suggests, so the 
related discussion about the effect of fsurf is not contradicted.  
Figure 6B shows the normalized current density as a function of 
the overpotential. The curves have shapes similar to what 
would be expected of the combination of the classical B-V 
kinetics at low current densities and a sharp mass transport 
limitation at the high current densities (Section 3.3. in 26). This 
is well in line with Figure 3 and 6A and the theoretical 
description behind them. As the catalyst surface fraction 
increases, the iη-curve becomes less ‘S-shaped’, signifying the 
transition from kinetic to mass transport dominance (Figure 3). 
As the current density (iel) tends to the limiting current density 
ilim.HOR.VT, the overpotential increases sharply due to drop in the 
surface hydrogen coverage (equation (5)). The similarity of the 
shapes to the simple B-V kinetics with mass transport limitation 
means that it could be difficult to distinguish from experimental 
curves, whether their current limitation is due to mass transport 
or kinetics, unless the catalyst loading (surface ratio) was varied 
systematically in the experiment. The mass transport limited 
case can probably be recognized, because its iη-curve is 
determined by the mass transport limit alone 1,16,43,44, but other 
limiting current densities are likely more difficult to determine 
without data about several catalyst loadings. 
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Figure 6. A) The hydrogen coverage of the catalyst surface for different values of fsurf as a function of the current density (equation (11)) normalized with the total HOR limiting 
current density (equation (16b)) B) The normalized iη-curves for the same fsurf values that were shown in figure A). Note that in figure A) values 0.01 – 10 and in B) 1.0 and 10 overlap, 
hence they are not easily discernible. 

 
4.4. Validity of the model in the general Volmer-Heyrovsky-

Tafel case 

So far, we have considered only the V-T path, neglecting the 
Heyrovsky step. Although near the equilibrium the current 
density of the reaction dominated by the V-T path could be 
described accurately without considering the V-H path, it likely 
affects the current density, especially at high overpotentials 
15,32,47. Unlike the Tafel rate, the Heyrovsky rate is directly 
affected by the applied potential, thus its rate can be increased 
with the overpotential 15,28. Therefore, the total current density 
is limited only by the mass transport limitation, allowing the 
current density to exceed the V-T limit, which would be 
observed as an additional intermediate shoulder or plateau in 
the current iη-curve 15,28.  
Such shoulders in the HOR current density have been observed 
experimentally at least by Chen and Kucernak 48 and Elbert et 
al. 47. Wang et al. 15 interpreted the experimental results of Chen 
and Kucernak 48 in this way. Although our planar electrode 
model differs geometrically from the single Pt particle 
measurement setup 48,50, the effects of the particle size in the 
measurements and fsurf in our model are mathematically 
analogous: The limiting current density of mass transport per 
catalyst area depends on the inverse of both the particle radius 
(r) and fsurf 23,26,50, but neither of them affects the kinetic 
limitation.  
As discussed in the previous section, the limiting current density 
of the V-T path depends on fsurf, thus also the importance of the 
Heyrovsky step depends on it. With sufficiently high values, the 
HOR is limited by the H2 transport and the Heyrovsky step likely 
has little effect on the iη-curve, whereas with small catalyst 
surface areas, its contribution could be significant. In the 
following, we analyze the effect of the Heyrovsky step in more 
detail using the dual pathway model that takes into account all 

three elementary steps 1,15,28. The expressions of the kinetic 
model were given in the supporting information of our earlier 
paper 1. The concentrations, hydrogen coverage and 
overpotential of this reaction scheme were solved numerically 
as a function of iel. 
Figure 7 shows the iη-curves with low, but nonzero Heyrovsky 
exchange current density. The simulation parameters are the 
same as in Figure 6, except rH = 0.001 (rH = ν0,H/ν0,V as defined by 
Wang et al. 15, i.e. i0,H = 0.1 mA/cm2). The aforementioned 
shoulder is clearly discernible in the iη-curves, and occurs at 
current density iel ≈ ilim.HOR.VT (equation (16b)) regardless of the 
value of fsurf (Figure 7A). However, as Figure 6B indicates, with 
extremely low catalyst surface ratios the shoulder may occur at 
such a low current density that noise in measured curves may 
limit their usefulness 48. Up to the shoulder current density the 
V-T approximation is accurate, as the comparison of Figures 6B 
and 7A shows, but it fails at the current densities that exceed 
ilim.HOR.VT.  
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Figure 7. The HOR current densities normalized with A) the total HOR limiting current density (equation (17b)) and B) the mass transport limitation Simulations parameters are 
otherwise identical to Figure 6, except rH = 0.001. 

With the lowest fsurf values (10-4 and 10-3) the V-T limiting 
current density (ilim,HOR,VT) is reached approximately at the same 
potential around 0.4 V vs RHE. Because in the case of 10-4 the 
current density at this potential is approximately equal to the 
kinetic limiting current density of the V-T path (Figure 3), the 
overpotential decreases with increasing fsurf. However, for all 
smaller fsurf values the overpotential is approximately constant, 
because they, too, are kinetics limited and the shoulder 
corresponds to the same current density per catalyst area. The 
constant shoulder overpotential might help to distinguish the 
kinetics limited measurements from those affected by the mass 
transport. The shoulder potential naturally depends also on the 
reaction kinetics and, for instance, in the results of Chen and 
Kucernak 48 the shoulder occurred at about 0.1 V vs RHE.  
Figure 8 shows how the catalyst surface fraction affects the 
dependence of the hydrogen coverage on the current density. 
The shoulder clearly appears also here at iel = ilim,HOR,VT in all the 
cases, and as in the iη-curves (Figure 7), it is the smoothest with 
the lowest catalyst surface ratios, but turns sharply to a plateau 
at the high fsurf values. The shape of the curve depends on the 
relative magnitude of the mass transport limit ilim,H2 compared 
with ilim,HOR,VT, similarly to the current density in Figure 7. 
Increasing the catalyst surface fraction steepens the shoulder, 
and improves the accuracy of equation (16b), because a 
sufficiently high fsurf makes the shoulder current density mass 
transport limited, and prevents its further increase. In this case 
fsurf ≥ 0.1 are mass transport limited. Decreasing the Heyrovsky 
exchange current density would have a similar effect, because 
the fraction of the total current density that corresponds to the 
V-T path would be increased, thereby improving the accuracy of 
the V-T approximation and eventually leading to results similar 
to those in Figure 6.  
 

 
Figure 8. The effect of the catalyst surface fraction fsurf on the hydrogen coverage of the 
catalyst surface as a function of the normalized current density. The simulation 
parameters are the same as in the iη-curves in Figure 6. When fsurf  ≤ 0.01, the mass 
transport limitation is higher than the total V-T limiting current density (the vertical line). 

5. Conclusions 
We showed the general applicability of 1D models for planar 
electrodes with a wide range of catalyst surface areas. Although 
our mass transport model does not describe very sparse catalyst 
arrays accurately, the inaccuracies are limited to the HOR near 
the limiting current density. With catalyst loadings that are 
practical for solar energy conversion, the 1D model is as 
accurate as the full 2D model. Phenomenologically this means 
that the region of spherical mass transport near the particles 
can be neglected, which simplifies the mathematical analysis. In 
general, the operation of the planar nanoparticle array 
electrodes combines features from both the planar electrodes 
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and the single-particle electrodes. We showed how these cases 
can be used in a complementary way to model and analyze the 
operation of the catalyst arrays by considering the current 
density per electrode or catalyst area. 
Focusing on the special case of HER/HOR on Pt, we derived an 
analytical model for the electrode that takes into account also 
the surface hydrogen coverage of the catalyst. The usefulness 
of the hydrogen coverage as the starting point for the analysis 
of limiting current densities was also demonstrated. This 
method could be especially useful for reaction mechanisms that 
are limited by a combination of the reaction kinetics and mass 
transport similarly to HOR via V-T. Although this current density 
is not the limiting current density of the whole reaction when 
also the Heyrovsky step contributes to the current density, it 
can be observed as a shoulder or a plateau in the iη-curve. By 
simplifying the expression of the current density of the Volmer 
step, we derived analytical expressions for the 
micropolarization and high overpotential ranges of the iη-curve. 
Although neither simplified solution describes the overpotential 
range from 50 mV to 100 mV well, both are accurate in the 
overpotential ranges, where their underlying assumptions 
about the overpotential are valid.  
Because the 1D model is built on analytical expressions, it is not 
only computationally light, but also readily applicable to the 
analysis of experimental results. By showing the validity of the 
catalyst surface area –based approach for partially covered 
electrodes, we also showed that the partially covered 
electrodes can be studied with 1D models for planar electrodes 
that couple mass transport and reaction kinetics together. With 
an example case, we demonstrated how the analysis is 
performed in practice by varying the exchange current density 
or the limiting current density of the mass transport, depending 
on the used current density normalization. 
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