# ChemComm 

Accepted Manuscript


## ChemComm



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

## Journal Name

# Efficient Multi-Click Approach to Well-Defined Two-Faced Octasilsesquioxanes: The First Perfect Janus Nanocube 

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Alberto Blázquez-Moraleja, ${ }^{\text {a }}+\mathrm{M}$. Eugenia Pérez-Ojeda, ${ }^{\text {b }}+$ Jose Ramón Suárez, ${ }^{a}$ M. Luisa Jimeno, ${ }^{\text {c }}$ and Jose Luis Chiara**

[^0]functionality. ${ }^{4}$ Among cubic molecules, octasilsesquioxanes are arguably the most versatile, due to their ready availability and facile functionalization of their pendant organic groups. ${ }^{5}$ Pioneering synthesis of Janus-type silsesquioxanes have been attempted from "half-cage" (cyclic tetrasiloxanetetraol) precursors ${ }^{6}$ and by partial functionalization of homooctafunctional cages. ${ }^{7}$ However, these routes either suffered from reproducibility problems or tended to afford complex statistical mixtures of multifunctionalized cubes that are difficult to separate. ${ }^{8} \ddagger$ Other examples have been constructed by covalently connecting two different silsesquioxane cages, ${ }^{2 c, 9}$ which greatly avoid the purification problems, but yield dumbbell-like nanostructures with higher conformational flexibility and larger (and fluctuating) spatial separation between the two sets of functional groups than in a perfect two-faced Janus cube.

Our group has recently shown that readily available octakis(3-azidopropyl)octasilsesquioxane (1) ${ }^{10}$ (Figure 1) can be selectively mono-functionalized in high yield with a variety of terminal alkynes through a stoichiometry-controlled, ligandaccelerated CuAAC reaction to yield structurally well-defined hetero-bifunctional octasilsesquioxane cubes, without formation of polysubstituted products. ${ }^{11}$ These bifunctional building blocks having orthogonally reactive substituents can be used for the synthesis of symmetric or asymmetric (Janustype) dumbbell-shaped silsesquioxane dyads and more complex 3D constructs. ${ }^{12}$ Based on this previous work, we describe herein an efficient route to heterosubstituted cubic silsesquioxanes, including a Janus-type system, by simultaneous click multifunctionalization with an almost perfect control of regioselectivity. To this end, we have employed tethered polyalkynes $\mathbf{2}^{13}$ and $\mathbf{3}^{14}$ (Figure 1), which are conformationally constrained and present an appropriate symmetry and relative spatial distribution and orientation of the triple bonds.

Using our previously optimized "click" conditions, ${ }^{100,11,15}$ the CuAAC reaction of 2 with a 5 -fold molar excess of 1 using $\left[\mathrm{Cu}\left(\mathrm{C} 18_{6}\right.\right.$ tren $\left.)\right] \mathrm{Br}{ }^{16}$ as catalyst in toluene at $50{ }^{\circ} \mathrm{C}$ afforded the corresponding "on-edge" bis-triazolyl silsesquioxane 4a in 65\% yield (Scheme 1), accompanied by minor amounts of two dimeric
silsesquioxane products (see ESI for details), as determined by HPLC-ESI analysis of the reaction crude. None of the possible "facediagonal" nor "cube-diagonal" regioisomers 4b and 4c, respectively, could be detected in the reaction crude by HPLC-ESI analysis in spite of the fact that both regioisomers are geometrically and energetically attainable. The observed regioselectivity of this click annulation reaction was much higher than that expected on a purely statistical basis (4a/4b/4c = 3:3:1) for a stepwise click process. This probably reflects the higher kinetic constant of the intramolecular cycloaddition that forms the smallest ring. In addition, the alternative pathways leading to $\mathbf{4 b}$ and $4 \mathbf{c}$ are expected to have lower kinetic constants due to unfavorable interactions with an increased number of neighboring silicon chains interposed between the cyclization termini. The structure of $\mathbf{4 a}$ could be readily assigned by a combination of HRMS spectrometry and multinuclear 1D and 2D NMR spectroscopy (see ESI). In particular, the 2:1:1 intensity pattern distribution of the ${ }^{29} \mathrm{Si}$ NMR signals confirmed the regiochemistry of $\mathbf{4 a}$ from molecular symmetry considerations. ${ }^{17} \S$


2


3

Figure 1 Structures of the octa-azido silsesquioxane and polyalkynes used in this work.


Scheme 1 Reaction conditions: 2 ( 0.2 equiv), [ $\mathrm{Cu}\left(\mathrm{C}_{18}\right.$ tren)]Br, $i \mathrm{Pr}_{2} \mathrm{NEt}$, toluene, $50^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

After having successfully attained the simultaneous difunctionalization of 1, we next assayed the corresponding tetra-functionalization with tetralkyne 3. As in the previous case, this multi-click transformation is expected to occur
through a stepwise process. Considering the symmetry of both reagents, the relative spatial arrangement of the alkyne groups in 3, and the high on-edge selectivity observed for the difunctionalization of 1 with the paralelly-oriented dialkyne 2, we anticipated that the tetra-click reaction should proceed with very high "on-face" selectivity. Thus, after the initial intermolecular mono-click attachment of both reagents, the subsequent intramolecular cycloaddition steps are expected to proceed with increasing "on-edge" selectivity for both partners due to the growing conformational restriction of the forming adduct, to finally yield the tetrasubstituted silsesquioxane with very high or complete "on-face" selectivity. In line with these predictions, the reaction of $\mathbf{1}$ and $\mathbf{3}$ using the same optimized conditions as above afforded the tetra-triazolyl silsesquioxane 5 in an impressive 82\% yield and with complete selectivity, without formation of any of the other six possible regioisomeric tetra-functionalized cubic products (Scheme 2). Again, the structure of 5 could be readily assigned by a combination of HRMS spectrometry and multinuclear 1D and 2D NMR spectroscopy (see ESI). To our knowledge, compound 5 is the first structurally well-defined and fully characterized nanocube with a perfect two-sided (Janus-type) substitution pattern, i.e. with two chemically distinct opposed faces.


Not observed


Scheme 2 Reaction conditions: 3 ( 0.2 equiv), $\left[\mathrm{Cu}\left(\mathrm{C}_{18}\right.\right.$ tren $\left.)\right] \mathrm{Br}$, $i \mathrm{Pr}_{2} \mathrm{NEt}$, toluene, $50^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

Interestingly, the ${ }^{1} \mathrm{H}$ NMR spectra of 5 in $\mathrm{CDCl}_{3}$ at different temperatures (Figure 2) are indicative of a dynamic conformational equilibrium in this molecule. At $25^{\circ} \mathrm{C}$, two separate sets of signals with very different half-widths (Figure 2b) are observed. The set with sharper signals corresponds to the hydrogens of the four "unreacted" $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}_{3}$ chains of the silsesquioxane moiety (multiplets at 3.28, 1.71 and 0.79 ppm ) and the inter-ring bridging methylene groups of the calix[4]arene system (two doublets at 4.30 and 3.25 ppm ). The later correlate with a single ${ }^{13} \mathrm{C}$ peak at 31.6 ppm in the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQC spectrum that confirms the expected cone conformation of the calixarene system in $5 .{ }^{18}$ The remaining signals were considerably broadened and included the aromatic and tertbutyl protons of the calixarene and the protons of the four linking
branches connecting the oxygen atoms of the calixarene to the silicon atoms of the silsesquioxane cube. Increasing the


Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra ( 400 MHz ) of 5 in $\mathrm{CDCl}_{3}$ at different temperatures.
temperature to $55^{\circ} \mathrm{C}$ sharpened the spectrum (Figure 2a), which appeared to be compatible with the expected (time-averaged) $C_{4 v}$ molecular symmetry of a perfect Janus cube, although the triazole proton signal still showed a considerable broadening at this temperature. Lowering the temperature to $-50^{\circ} \mathrm{C}$ led to splitting of all the broadened signals into pairs of equal intensity (Figure 2c), which were compatible with a $C_{2 v}$ molecular symmetry. As previously reported for other tetrasubstituted calix[4]arenes, this coalescence behavior and the observed shielding of half of the aromatic hydrogens (two singlets of equal intensity at 6.40 and 7.07 ppm ) at low temperatures provided evidence for the existence of a dynamic equilibrium between two equivalent pinched-cone conformers ${ }^{19}$ of the calixarene fragment in this molecule with a $C_{2 v}$ symmetry. The conformers interconvert in solution via a $C_{4 v}$ symmetrical cone transition-state, which corresponds to the timeaveraged structure observed in the ${ }^{1} \mathrm{H}$ NMR spectrum at high temperature. This conformational movement is mechanically transmitted to the linking branches connecting the calixarene to the silsesquioxane cube, which explains the split pattern of signals observed also for the corresponding protons. The splitting was particularly remarkable for the triazole protons, which appeared as a strongly shielded singlet at 6.95 and a strongly deshielded singlet
at 8.69 ppm at $-50{ }^{\circ} \mathrm{C}(\Delta \delta=1.74 \mathrm{ppm}) .{ }^{20} \S \S$ In order to obtain the activation barrier for this conformational equilibrium, rate constants were determined from the ${ }^{1} \mathrm{H}$ NMR spectra over the temperature range $223-323 \mathrm{~K}$ (see ESI for details). The values obtained for $\Delta H^{\ddagger}=7.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S^{\ddagger}=-19.6 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ are within the range of those described for the equilibrium between pinched-cone conformers in other calix[4]arenes. ${ }^{19}$ The fact that almost identical rate constants were obtained using different proton signals in the lineshape analysis is a clear evidence for the coupled conformational movement of the calixarene and the branches that connect it to the silsesquioxane.

In an attempt to understand the observed conformational equilibrium and the large chemical shift separation between the two types of triazole protons observed in the ${ }^{1} \mathrm{H}$ NMR spectrum at low temperature, we have carried out a simple molecular modeling study of 5 in vacuum (see ESI for details). The minimum energy conformer optimized using the semiempirical PM3 method (Figure 3) showed the required $C_{2 v}$ symmetry observed in the NMR studies at low tempereature, with the calixarene in a pinched-cone conformation (see Figure 3 , right view). In this structure, the calixarene is connected to the silsesquioxane core through two alternated pairs of linking chains: one pair having all-trans propyl chains bonded to the parallely oriented aryl rings of the pinched cone; the other pair, with propyl chains in a $\mathrm{SiCH}_{2}-\mathrm{CH}_{2} \mathrm{C}$ gauche conformation and bonded to the flattened oriented aryl rings. In the latter case, the triazole hydrogen (see the triazole rings that are closer to the $C_{2}$ symmetry axis in Figure 3) is disposed under the center of the triazole ring of the non-equivalent vicinal chain, which will exposed it to ring current effects that shield its ${ }^{1} \mathrm{H}$ NMR signal. In the other pair of linking branches, the triazole hydrogen points to the nitrogens of the vicinal triazole of the non-equivalent chain, which will deshield its proton signal, thus explaining the observed ${ }^{1} \mathrm{H}$ NMR. Dynamic exchange between the two equivalent pinched-cone conformers of the calixarene system simultaneously interconverts both sets of alternating linking chains.


Figure 3. Minimum energy conformer of 5 optimized using the semiempirical PM3 method, showing the observed $C_{2 v}$ symmetry with the calixarene in a pinched-cone conformation.

In conclusion, we have described the synthesis of the first Janus nanocube having two chemically distinct opposed faces. The approach is based on a symmetry-controlled multi-click
functionalization of an octa-azido octasilsesquioxane with a tethered tetra-alkyne reagent having an appropriate symmetry and spatial orientation and distribution of the triple bonds. This compound is ready for further functionalization on its tetra-azide face with a diverse array of terminal alkynes to enhance its functional utility, which could be used to modulate its solubility in organic or aqueous solvents and self assembling properties or to prepare it for selective attachment to appropriate surfaces or particles with an expected tight packing thanks to its cuboid-type structure. The presence of the calixarene system and the imposed preorganization of the triazole rings by their covalent attachment to the calixarene and the silsesquioxane cage, together with their known metal and anion complexation properties, ${ }^{22}$ enables to envisage promising applications for this Janus-type hybrid construct as selective molecular sensor for ion and biomolecular recognition. Work is in progress in our group for the preparation of related systems that could allow the selective detachment of the calixarene to afford a Janus cubic silsesquioxane with two sets of orthogonally reactive functional groups.

We gratefully acknowledge financial support by the Spanish Ministerio de Ciencia e Innovación (project MAT2010-20646-C04-03) and Ministerio de Economía y Competitividad (project MAT2014-51937-C3-1-P). We also acknowledge the Spanish Ministerio de Economía y Competitividad for a FPI contract to A. B., and CSIC for a JAEDOC contract to J.R.S. and a JAEPRE contract to M. E. P.-O.

## Notes and references

$\ddagger$ The intermolecular functionalization of a cubic octasilsesquioxane using a 4:1 stoichiometric mixture of functionalization reagent relative to starting cube will statistically produce the tetra-functionalized product in a maximum yield of $27 \%$, accompanied by smaller amounts of other multisubstituted cubes and a trace amount of unreacted cube (ref. 11b). The tetrasubstituted product is in fact a mixture of seven different cubic regioisomers, including a pair of enantiomers (Scheme 2). Assuming that each of these isomers is formed with equal probability, it follows that the Janus-type one will be produced in $<4 \%$ yield.
$\S$ The bis-cycloaddition reaction changes the symmetry of the molecule from $O_{\mathrm{h}}$ in the initial octa-azide 1 to $C_{2 v}$ in the final bistriazolyl product 4a.
$\S \S$ The triazol hydrogen appears at 7.84 ppm in $\mathrm{CDCl}_{3}$ at room temperature in similar, but conformationally unrestricted, triazolyl derivatives of 3 (ref. 21).
1 P. G. De Gennes, Angew. Chem. 1992, 104, 856-859.
2 a) F. Wurm, A. F. M. Kilbinger, Angew. Chem., Int. Ed. 2009,
48, 8412-8421; b) S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer, S. Granick, Adv. Mater. 2010, 22, 1060-1071; c) Y. Li, W.-B. Zhang, I. F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S. Z. D. Cheng, J. Am. Chem. Soc. 2011, 133, 10712-10715; d) G. Loget, A. Kuhn, J. Mater. Chem. 2012, 22, 15457-15474; e) A. Walther, A. H. E. Mueller, Chem. Rev. 2013, 113, 5194-5261; f) X. Pang, C. Wan, M. Wang, Z. Lin, Angew. Chem., Int. Ed. 2014, 53, 55245538; g) Y. Song, S. Chen, Chem. - Asian J. 2014, 9, 418-430.
3 a) C. Wang, C. Xu. In Janus particle synthesis, self-assembly and applications; The Royal Society of Chemistry: 2012, p 2953; b) H. Liu, C.-H. Hsu, Z. Lin, W. Shan, J. Wang, J. Jiang, M.

Huang, B. Lotz, X. Yu, W.-B. Zhang, K. Yue, S. Z. D. Cheng, J. Am. Chem. Soc. 2014, 136, 10691-10699.
4 E. R. Chan, X. Zhang, C.-Y. Lee, M. Neurock, S. C. Glotzer, Macromolecules 2005, 38, 6168-6180.
5 a) P. D. Lickiss, F. Rataboul, Adv. Organomet. Chem. 2008, 57, 1-116; b) D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081-2173; c) D. B. Cordes, P. D. Lickiss, Adv. Silicon Sci. 2011, 3, 47-133; d) R. M. Laine, M. F. Roll, Macromolecules 2011, 44, 1073-1109; e) K. Tanaka, Y. Chujo, J. Mater. Chem. 2012, 22, 1733-1746.

6 a) K. A. Andrianov, V. S. Tikhonov, G. P. Makhneva, G. S. Chernov, Bull Acad. Sci. USSR, Div. Chem. Sci. 1973, 22, 928928; b) M. Z. Asuncion, M. Ronchi, H. Abu-Seir, R. M. Laine, C. R. Chim. 2010, 13, 270-281; c) S. Tateyama, Y. Kakihana, Y. Kawakami, J. Organomet. Chem. 2010, 695, 898-902.
7 R. M. Laine, M. Roll, M. Asuncion, S. Sulaiman, V. Popova, D. Bartz, D. J. Krug, P. H. Mutin, J. Sol-Gel Sci. Technol. 2008, 46, 335-347.
8 For selected recent examples on the partial multifunctionalization of octasilsesquioxanes, see: a) Y. Li, K. Guo, H. Su, X. Li, X. Feng, Z. Wang, W. Zhang, S. Zhu, C. Wesdemiotis, S. Z. D. Cheng, W.-B. Zhang, Chem. Sci. 2014, 5, 1046-1053; b) S. Wang, S. Guang, H. Xu and F. Ke, RSC Adv. 2015, 5, 1070-1078; c) X.-M. Wang, Q.-Y. Guo, S.-Y. Han, J.-Y. Wang, D. Han, Q. Fu and W.-B. Zhang, Chem. - Eur. J. 2015, 21, 15246-15255.
9 a) Z. Wang, Y. Li, X. Dong, W.-B. Zhang and S. Z. D. Cheng, PMSE Prepr. 2012, No pp. given; b) K. Wu, M. Huang, K. Yue, C. Liu, Z. Lin, H. Liu, W. Zhang, C.-H. Hsu, A.-C. Shi, W.-B. Zhang and S. Z. D. Cheng, Macromolecules 2014, 47, 46224633.

10 a) B. Trastoy, M. E. Perez-Ojeda, R. Sastre, J. L. Chiara, Chem. - Eur. J. 2010, 16, 3833-3841; b) S. Fabritz, D. Heyl, V. Bagutski, M. Empting, E. Rikowski, H. Frauendorf, I. Balog, W.-D. Fessner, J. J. Schneider, O. Avrutina, H. Kolmar, Org. Biomol. Chem. 2010, 8, 2212-2218.
11 a) M. E. Perez-Ojeda, B. Trastoy, I. Lopez-Arbeloa, J. Banuelos, A. Costela, I. Garcia-Moreno, J. L. Chiara, Chem. Eur. J. 2011, 17, 13258-13268; b) M. E. Perez-Ojeda, B. Trastoy, A. Rol, M. D. Chiara, I. Garcia-Moreno, J. L. Chiara, Chem. - Eur. J. 2013, 19, 6630-6640.
12 X. Wang, Y. Yang, P. Gao, D. Li, F. Yang, H. Shen, H. Guo, F. Xu and D. Wu, Chem. Commun. 2014, 50, 6126-6129.
13 B. Venugopalan, K. K. Balasubramanian, Heterocycles 1985, 23, 81-92.
14 E.-H. Ryu, Y. Zhao, Org. Lett. 2005, 7, 1035-1037.
15 B. Trastoy, D. A. Bonsor, M. E. Perez-Ojeda, M. L. Jimeno, A. Mendez-Ardoy, J. M. Garcia-Fernandez, E. J. Sundberg, J. L. Chiara, Adv. Funct. Mater. 2012, 22, 3191-3201.
16 a) G. Barre, D. Taton, D. Lastecoueres, J.-M. Vincent, J. Am. Chem. Soc. 2004, 126, 7764-7765; b) N. Candelon, D. Lastecoueres, A. K. Diallo, J. Ruiz Aranzaes, D. Astruc, J.-M. Vincent, Chem. Commun. 2008, 741-743.
17 B. J. Hendan, H. C. Marsmann, J. Organomet. Chem. 1994, 483, 33-38.
18 C. Jaime, J. De Mendoza, P. Prados, P. M. Nieto, C. Sanchez, J. Org. Chem. 1991, 56, 3372-3376.
19 M. Conner, V. Janout, S. L. Regen, J. Am. Chem. Soc. 1991, 113, 9670-9671.
20 S. Cecioni, S. E. Matthews, H. Blanchard, J.-P. Praly, A. Imberty, S. Vidal, Carbohydr. Res. 2012, 356, 132-141.
21 S. Cecioni, S. E. Matthews, H. Blanchard, J.-P. Praly, A. Imberty, S. Vidal, Carbohydr. Res. 2012, 356, 132-141.
22 a) V. Haridas, S. Sahu, P. P. Praveen Kumar, A. R. Sapala, RSC Adv. 2012, 2, 12594-12605; b) B. Schulze, U. S. Schubert, Chem. Soc. Rev. 2014, 43, 2522-2571.


[^0]:    a. Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006

    Madrid, Spain
    ${ }^{\text {b. }}$ Instituto de Química-Física "Rocasolano", IQFR-CSIC, Serrano 119, 28006 Madrid, Spain.
    c. Centro Nacional de Química Orgánica "Manuel Lora Tamayo", CENQUIOR-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
    $\dagger$ These authors have contributed equally to this work.
    Electronic Supplementary Information (ESI) available: synthetic details, full characterization data of the new compounds (multinuclear 1D and 2D NMR spectra and HPLC-MS profiles of the reaction products), and details of the dynamic NMR study and modelling calculations of 5. See DOI: 10.1039/x0xx00000x

