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ABSTRACT 

The human ether-a-go-go related gene (hERG) plays an important role in cardiac 

action potential. It encodes an ion channel protein named Kv11.1, which is related to 

long QT syndrome and may cause avoidable sudden cardiac death. Therefore, it is 

important to assess the hERG channel blockage of lead compounds in early drug 5 

discovery process. In this study, we collected a large data set containing 1163 diverse 

compounds with IC50 values determined by patch clamp method on mammalian cell 

lines. The whole data set was divided into 80% as the training set and 20% as the test 

set. Then, five machine learning methods were applied to build a series of binary 

classification models based on 13 molecular descriptors, five fingerprints and 10 

molecular descriptors combining fingerprints at four IC50 thresholds to discriminate 

hERG blockers from nonblockers, respectively. Models built by molecular descriptors 

combining fingerprints were validated by an external validation set containing 407 

compounds collected from the hERGCentral database. The performance indicated that 

the model built by molecular descriptors combining fingerprints yielded the best 15 

results and each threshold had its best suitable method, which means that hERG 

blockage assessment might depend on threshold values. Meanwhile, kNN and SVM 

methods were better than the others for model building. Furthermore, six privileged 

substructures were identified using information gain and frequency analysis methods, 

which could be regarded as structural alerts of cardiac toxicity mediated by hERG 20 

channel blockage. 
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1. Introduction 

The human ether-a-go-go related gene (hERG) encodes a tetrameric potassium 

channel named Kv11.1, which plays an important role in cardiac action potential.1 

Inhibition of hERG channel may result in long QT Syndrome (LQTS), and cause 

avoidable sudden cardiac death.2 Meanwhile, undesirable hERG related cardiotoxicity 5 

will lead to failure of drug development, and is also the main reason for drug 

withdrawl from the market, such as terfenadine, cisapride, sertindole, thioridazine, 

and grepafloxacin.3 Therefore, it is important to assess chemical blockage of hERG 

channel in early drug discovery process. 

In vitro evaluation of hERG binding drugs is a valuable method to identify 10 

potential hERG blockage in drug discovery.4 Hence, a variety of in vitro methods are 

developed, including rubidium-flux assays, radioligand binding assays, 

electrophysiology measurements, and fluorescence-based assays. The half maximal 

concentration (IC50) blockage of hERG channel is a surrogate marker for 

LQTS-related proarrhymic properties of chemicals and as a considered test for cardiac 15 

safety of drugs or drug candidates.5 However, in vitro hERG binding assays are time 

consuming, expensive and labor-intensive. Therefore, there is an increasing demand 

to develop in silico models and improve pattern recognition methods for prediction of 

drug-hERG interaction. 

  Since the crystal structure of hERG channel has not been determined yet, 20 

ligand-based prediction models are the main tools for predicting chemical blockages 

of hERG channel.
2
 In recent years, a series of computational models have been 

developed to classify hERG blockers and nonblockers. In 2002, Ekins et al. reported 

the first pharmacophore model for hERG blockers based on a training set of 15 

compounds.6 Cavalli et al. also presented a pharmacophore model along with CoMFA 25 
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study based on a training set of 32 drugs for a series of hERG blockers, and tested by 

five drugs collected from literatures.7 

In recent years, QSAR models have been widely used for prediction of hERG 

blockage. For example, Li et al. built binary classification models based on 495 

compounds using support vector machine (SVM) classifier combined with 5 

pharmacophores based on GRIND descriptors in 2008.
8
 The models were applied to 

different IC50 thresholds from 1 to 40 µM, and threshold at 40 µM exerted best 

performance with an overall accuracy up to 94% by leave-one-out cross-validation. 66 

compounds from WOMBAT-PK database and PubChem hERG bioassay data set 

were applied as two external validation sets and achieved 72% and 73% accuracy, 10 

respectively. In 2010, Su et al. built a continuous partial least-squares (PLS) model 

and an optimized binary classification model using a set of 250 compounds.9 The 

binary model achieved 91% accuracy for the training set, 83% and 77% for two 

external test sets, one containing 876 compounds from PubChem and the other 

including 106 compounds collected from literatures. In 2011, they also reported an 15 

SVM model based on 1668 PubChem bioassay compounds using the same methods.
10

 

The model achieved 95% and 87% accuracy for the training set and an external test 

set containing 365 compounds, respectively. 

 In 2010, Doddareddy et al. described in silico hERG models generated by 2644 

compounds using linear discriminant analysis (LDA) and SVM methods. The area 20 

under curve (AUC) values of all models ranged from 0.89 to 0.94 by 5-fold 

cross-validation, and the SVM model was much better than the LDA model. Then, the 

models were experimentally validated, and worked as a pre-filtering tool to reduce the 

number of compounds with hERG liabilities.11 In 2012, Wang et al. established 

binary classification models using naive Bayes (NB) classification and recursive 25 
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 5

partitioning methods based on a diverse set of 806 hERG inhibitors.
12

 With molecular 

descriptors and ECFP_8 fingerprints, the NB model yielded 85% accuracy for the test 

set of 120 compounds, 89.4% and 86.1% accuracy for two additional external 

validation sets, WOMBAT-PK and PubChem, respectively. In 2014, Liu et al. also 

built NB classification models using similar methods based on Doddareddy’s data set 5 

containing 2644 compounds.
13

 The best model achieved 91% accuracy for the test set 

and 58% for external validation set containing 60 compounds.  

Though ligand-based computational methods are widely used for prediction of 

hERG blockage, most published models have limitations at the number of open 

source data sets, qualities of data points and lack of specific and rational thresholds to 10 

distinguish hERG blockers from nonblockers. Herein, we collected a large and open 

source data set with IC50 values determined by patch clamp method on mammalian 

cell lines. Then, machine learning methods were applied to build binary classification 

models based on molecular descriptors (MD), fingerprints and their combination at 

four IC50 thresholds, respectively. The models were then validated by an external data 15 

set containing 407 chemicals that collected from the hERGCentral database. 

Furthermore, privileged substructures which would be significantly correlated with 

hERG blockage were identified by information gain (IG) and frequency analysis 

methods. 

2. Materials and methods 20 

2.1. Data preparation 

The original chemicals with experimental IC50 values were collected from two 

publications11, 12 and ChEMBL database (version 18, target_ID: CHEMBL240).14, 15 

Only patch clamp determined IC50 values on different mammalian cell lines were 

collected in this study, such as HEK, CHO, COS and XO (Xenopus laevis oocytes) 25 
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 6

cell lines. Since we aimed to create qualitative rather than quantitative models for 

hERG blockage prediction, the differences of activities among various cell lines were 

ignored. 

After that, the whole data set was carefully prepared. Inorganic compounds, 

noncovalent complexes and mixtures were removed from the data set. Salts were 5 

converted to their corresponding acidic or basic forms, and water molecules were 

removed from the hydrates. Then, duplicates were treated using canonical SMILES 

by a simple principle. If duplicates had the same IC50 values, they were merged as one 

molecule; if their IC50 values were in one order of magnitude, the averaged IC50 

values were used after removing duplicated molecules; otherwise, all the duplicates 10 

were removed. Finally, molecules with molecular weight greater than 40 but less than 

800 were kept.16, 17 

Since there is lack of specific thresholds to discriminate hERG blocker from 

nonblockers, we tested four IC50 values, namely 1 µM, 5 µM, 10 µM and 30 µM as 

thresholds to find the most suitable threshold for our data set.12 For model building, 15 

the whole data set was randomly divided into 80% as the training set and 20% as test 

set, respectively. In additional, 407 chemicals with IC50 values were collected from 

hERGCentral database18, 19 and used as an external validation set to evaluate the 

predictive abilities of all models. The statistics of training set, test set and external 

validation set were summarized in Table 1. All compounds with SMILES are 20 

available in Supplementary Materials 2. 

2.2. Calculation of molecular descriptors 

In our study, 13 molecular descriptors which were widely used in ADMET 

prediction20, 21 were calculated and evaluated, including octanol−water partitioning 

coefficient AlogP, logD, molecular weight (MW), molecular solubility (logS), the 25 
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 7

number of nitrogen and oxygen atoms in the molecule (NplusO), the number of 

rotatable bonds (nROT), the number of rings (nR), the number of aromatic rings 

(nAR), the number of hydrogen bond acceptors (nHBA), the number of hydrogen 

bond donors (nHBD), molecular surface area (MSA), molecular polar surface area 

(MPSA), and molecular fractional polar surface area (MFPSA). All the descriptors 5 

were calculated using Discovery Studio version 3.5.
22

 

Meanwhile, five commonly used fingerprints were calculated by 

PaDEL-Descriptor,23 including Estate Fingerprint (Estate), CDK Fingerprint (FP), 

Substructure Fingerprint (FP4), MACCS Fingerprint (MACCS), and PubChem 

Fingerprint (PubChem). The detailed descriptions of these fingerprints could be found 10 

elsewhere.
23, 24

 The advantage of fingerprints is that they are generated directly from 

chemical structures, and could be easily translated into two-dimensional fragments.25  

2.3. Model building 

The whole data set was randomly divided into 80% as the training set and 20% 

as test set. Using the data sets, a series of binary classification models were developed 15 

based on molecular descriptors, fingerprints or their combination at four thresholds, 

respectively. All models were validated by 5-fold cross-validation. Models built by 

molecular descriptors combining fingerprints were then applied to the external 

validation set to evaluate predictive abilities of the models, and the best performance 

threshold could be acted as the reference to discriminate hERG blockers from 20 

nonblockers. 

Five machine learning methods including SVM, NB, k-nearest neighbors (kNN), 

random forest (RF), and classification tree (CT) were applied to develop models. The 

SVM algorithm was provided by the open source LIBSVM (LIBSVM2.9 package),26 

and other four methods were performed using Orange (version 2.7, freely available at 25 
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http://orange.biolab.si/ ). 

NB is a simple classification method based on the Bayes rule with strong 

independence assumptions for the conditional probability. Based on the equal and 

independent contribution of attributes, it can categorize instances in a data set. In this 

study, the prior probability estimates from the training set and the marginal 5 

probability are ignored, since it is the same to all of the classes.
27

 Orange with the 

default setting was applied to perform the NB classifier in this work. 

kNN is a non-parametric method to classify objects based on closest training 

examples in the feature space.28 k value is a user-defined constant. An object is 

classified to the class that the object is assigned to the most common among its k 10 

nearest neighbors. A distance-weighted method is applied to weaken the impact of k 

value. The Hamming distance is an estimate of error used in telecommunication to 

count the number of flipped bits in a fixed-length binary word, which was commonly 

used in kNN method. Therefore, the Hamming distance was selected for distance 

metric. The k value was set to 5, which was determined after a series of k values were 15 

tested and compared by the performance in this study. 

RF is an ensemble learning method developed by Breiman.29 The forest is 

ensemble by lots of trees. In the forest, a new object from an input vector is putted 

down each of trees. Each tree gives a defined class, which means the tree “vector” for 

the class. The forest chooses the classification having the most vectors over all the 20 

trees in the forest with the trees grow up to the maximum size.  

CT algorithm is used to predict the member of cases and objects in the classes of 

a category-dependent variable from their measurements on one or more predictor 

variables. In this study, information gain was opted as the first attribute selection 

criterion. In the pre-pruning process, the minimal instance in leaves was set to 2, and 25 
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 9

stop splitting nodes with few instances than 5. And in the post-pruning process, 

pruning with m-estimate was selected and m was equal to 2. Other parameters of CT 

in Orange was default. 

The SVM method is aimed to minimize the structural risk under the frame of VC 

theory and it is also a widely used binary classification and regression method based 5 

on different kernel functions.
30

 This method has been successfully applied in ADMET 

properties prediction by our group.16, 31, 32 In this field, each chemical structure was 

described as binary string and treated as an eigenvector. Then the eigenvector was 

trained by SVM algorithm, and a decision function was given for classification. In 

order to obtain the optimal performance model, the Gaussian radial basis function 10 

(RBF) was applied to seek the penalty parameter C and different kernel parameter γ, 

using grid search strategy based on a 5-fold cross-validation. 

2.4. Performance evaluation of models 

All models were evaluated by the 5-fold cross-validation and validated by the 

external validation set to test the predictive ability. In addition, models were assessed 15 

by counting the numbers of true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) of each class, respectively. Sensitivity (SE), specificity (SP), 

overall predictive accuracy (Q), and Matthews correlation coefficient (C) were also 

calculated by following equations.25, 33 

)FNTP/(TPSE +=   (1) 20 

FP)TN/(TNSP +=  (2) 

FN)FPTNTN)/(TP(TPQ ++++=  (3) 

))()()(( FPTNFNTNFPTPFNTP

FPFNTNTP
C

++++

×−×
=  (4) 

The values of Q and C are two important evaluation indicators for the 
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 10

classification models. The above indicators were calculated for training set, test set 

and external validation set. The areas under the receiver operating characteristic (ROC) 

curve (AUC) were also calculated. The AUC value is the probability of active 

compounds being ranked earlier than the negative compounds, which shows the 

separation ability of a binary classifier iteratively setting the positive classifier 5 

threshold. 

2.5. Identification of privileged substructures 

The privileged structure was first defined as “a single molecular framework able 

to provide ligands for diverse receptors” by Evans and co-workers in 1988.34 In 

toxicology research area, privileged substructures are defined as structure fragments 10 

in chemicals that are known to bring the toxicity. Herein, the privileged substructures 

were analyzed using information gain (IG) method and substructure frequency 

analysis methods.31,35 The IG value of each substructure feature is calculated based on 

the information entropy theory. Features with no or lower IG values are discarded 

according to a predetermined threshold, and the remaining patterns compose a 15 

multidimensional vector to represent each molecule. The important substructure 

features which are major contributions to the classification system could be identified. 

In this study, 10 µM was used as the standard threshold to divide hERG blockers from 

nonblockers. If a substructure was more frequently presented in hERG blockers than 

that in hERG nonblockers, the substructure was called privileged substructure for 20 

hERG blockage. The frequency of a substurcture was defined as following: 

NN
NN

classtotalresubstructu

totalclassresubstructu
FresubstructuaofFrequency

×

×

=

_

_
)(

 

( 5 ) 

 

Where N classresubstructu _  
is the number of compounds containing the substructure 
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in each class; N total  
is the total number of compounds; N totalresubstructu _  

is the total 

number of compounds containing the substructure; and N class  
is the number of 

compounds in each class. 

3. Results 

3.1. Data collection and chemical space analysis 5 

After careful data preparation, a large diverse and high quality of hERG 

blockage database was constructed, which contained 1570 unique compounds with 

IC50 values determined by the patch clamp assay on mammalian cell lines. To our 

knowledge, this is the largest open source database for hERG blockage at present. To 

reduce the mechanism complexity of hERG blockage, the experimental IC50 values 10 

measured on mammalian cell lines were applied as the endpoint for model building in 

this study. Differences among various cell lines were ignored, since we aimed to 

create qualitative rather than quantitative models for hERG blockage prediction. 

Therefore, different cell lines IC50 values were collected, such as HEK, CHO, COS 

and XO (Xenopus laevis oocytes) cell lines. 15 

As we known, chemical diversity is important for model building. In this study, 

the chemical space distribution defined by MW and AlogP of training set and test set 

was shown in Figure 1A, which indicated that the data set was relatively diverse. The 

molecular weights range from 94.11 to 780.94, and the AlogP values range from -5.23 

to 11.51. The test set shares a similar chemical space of training set. To further 20 

explore the chemical diversity of the data set, Tanimoto similarity index of the entire 

data set was calculated using MACCS fingerprint. The Tanimoto coefficient uses the 

ratio of the intersecting set to the union set as the measure of similarity, which is 

widely used to evaluate similarities among chemicals. As shown in Figure 1B, the 

whole data set was separated into 100 clusters and the heat map of molecular 25 
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similarity was plotted by tanimoto similarity index of cluster center molecules of the 

100 clusters. The average tanimoto similarity index was 0.338, indicating that the 

chemical diversity of the data set was significant. 

3.2. Performance of different models 

Five machine learning methods were used to develope the models and the  5 

5-fold cross-validation technique was used to evaluate the model robustness. Model 

performance was assessed by counting the numbers of TP, TN, FP, and FN of each 

class, respectively. SE, SP, Q, and C were also calculated. 

At first, the binary classification models were built using the 13 molecular 

descriptors. Performances of descriptor-based models were summarized in Table S1 10 

of Supplementary Materials 1. In general, the SVM method yielded the best 

performance among the 5 model building methods at the 4 hERG blockage thresholds, 

while the overall accuracy of the best model (kNN model) reached to 0.8347 for the 

test set among all of the models. 

Then, binary classification models were built using five fingerprints. 15 

Performances of fingerprint-based models were shown in Table S2 of Supplementary 

Materials 1. It is easy to see from Table S2 that three fingerprints namely FP, MACCS 

and PubChem yielded the best predictive performances. The SVM model based on FP 

fingerprint at 30 µM threshold had the best predictive ability for test set and yielded 

overall accuracy to 0.8475. 20 

The combination of molecular descriptors and fingerprints were also used to 

build models. The best performances models for each threshold were shown in Table 

2 and the detail performances of all combinatorial classification models were 

summarized in Table S3 of Supplementary Materials 1. The Q values ranged from 

0.6257 to 0.8393 for training set based on 5-fold cross-validation, which yielded 25 
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0.5551 to 0.8475 for the test set containing 236 compounds at different hERG 

blockage thresholds. The best model using SVM method based on molecular 

descriptors combining FP fingerprint yield the highest Q value of 0.8475 for test set. 

To compare the above-mentioned three types of classification models, the 

average and standard deviation (SD) of Q and C values for different models on 5 

different thresholds were also calculated (Table 3). According to Table 3, we could 

find that models built using molecular descriptors combining fingerprints were better 

than others. 

3.3. Performance of external validation 

To test the robust and prediction ability of the models, an external validation set 10 

containing 407 compounds which was collected from the hERGCentral database was 

applied to the best models with various thresholds. The performances of the external 

validation set was shown in Table 4. According to Table 4, we could find that the Q 

values range from 0.5528 to 0.8550 among the four thresholds and the best model is 

(FP+MD)-SVM model which yielded the accuracy of 0.8550 at threshold 30 µM. 15 

Moreover, we can find that there are suitable fingerprints and model building methods 

for each hERG blockage threshold. It indicates that models building for hERG 

blockage depend on the thresholds, and hERG blockage assessments should be case 

by case. 

3.4. Privileged substructure for hERG blockage 20 

Besides models building, we used IG and frequency analysis methods along with 

FP4 fingerprint to identify privileged substructures which were involved in chemical 

hERG blockage. In this process, the IC50 equal to 10 µM was used as the threshold to 

discriminate hERG blockage. The higher value IG is, the more important the 

substructure is. 25 
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Some privileged substructures and representative compounds of hERG blockage 

were shown in Table 5, and the detailed IG values of all FP4 fragments were listed in 

Table S4 of Supplementary Materials 2. In Table 5, six substructures are listed. They 

are diarylthioether, tertiary mixed amine, imide acidic, amidine, arylchloride, and 

sulfonamide. The six fragments reflect the common features of chemicals which have 5 

the potential of hERG blockage and could be used as substructure alerts for 

cardiotoxicity mediated by hERG channel in drug discovery and development 

processes.  

4. Discussion 

4.1. Quality of hERG blockage database 10 

The quality of a chemical database defines its modelability in cheminformatics 

or QSAR studies.
36

 Three factors to affect the quality of a chemical database are data 

size, mechanism complexity and chemical structure diversity. In our study, the three 

factors were carefully checked in order to obtain a high quality database for hERG 

blockage modeling. All the data were collected from recent publications11, 12 and the 15 

largest bioactive molecular database ChEMBL14, 15 to guarantee the wide range of 

data points. Then, only data points with experimental IC50 values were kept. After that, 

all chemicals were carefully checked and prepared with the general criteria for 

chemical database quality.37, 38 Furthermore, to check the chemical diversity of the 

database, MW and AlogP of the training set and test set were plotted and tanimoto 20 

similarity index based on MACCS fingerprint was also calculated.39, 40 The results 

indicated that the collected hERG blockage database had a high diversity. 

4.2. Relevance of molecular properties to hERG blockage 

Molecular properties are important for ADMET prediction and model 

optimization. Herein, we systematically examined the relationships between eight 25 
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molecular properties and hERG blockage. They are AlogP, logD, MW, logS, nROT, 

nHBA, nHBD, and MPSA. The distributions of these molecular properties for hERG 

blockers and nonblockers at the threshold of 10 µM were shown in Figure 2. From 

Figure 2, we could find that the distributions of these molecular properties were quite 

different between hERG blockers and nonblockers at this threshold. That is to say, 5 

these molecular properties might play key roles in hERG blockage and could be used 

to simply distinguish hERG blockers from hERG nonblockers. That is also the reason 

why we choose these properties as molecular descriptors to build models. In addition, 

linear correlations of these molecular properties versus IC50 values of the whole data 

set were presented in Figure 3, which also indicated that these molecular properties 10 

would have significant relationships with hERG blockage. In some cases, SAR 

analyses were established just using these molecular properties.2, 41 

4.3. Comparison of different category methods 

The average and standard deviation (SD) of Q and C values for models at 

different thresholds were used to compare the above-mentioned three types of 15 

classification models. According to Table 3, we could find that models built by 

molecular descriptors combining fingerprints yielded the best performance among the 

three molecular description methods. In other words, models based on molecular 

descriptors combining fingerprints reached the best results at the four hERG blockage 

thresholds. Therefore, these models were used for external validation data set 20 

evaluation and could also be applied in hERG blockage prediction for new chemicals 

or drug candidates in preclinical process of drug discovery and development. 

Furthermore, comparing the five category methods, we found that kNN and 

SVM methods performed better than the others. Meanwhile, kNN and SVM methods 

also led better performance among the three different molecular description methods, 25 
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which indicates that kNN and SVM methods would be more suitable for hERG 

blockage prediction in this study. The two modeling methods are easy to use than the 

others when apply to the actual hERG blockage assessments, since the number of 

independent variables in the model are easy to organize. Additionally, these results 

are in agreement with our previously published work that SVM algorithm is a good 5 

category method for chemical toxicity prediction.
16, 17, 40, 42, 43

  

4.4. Relevance of thresholds to hERG blockage 

One of the challenges for hERG blockage prediction is lack of definite threshold 

for discrimination of hERG blockers from nonblockers.2, 44 To solve the problem, we 

chose four IC50 values, namely 1 µM, 5 µM, 10 µM, and 30 µM, as thresholds for 10 

model building according to published studies.
2, 12

 The results revealed that for each 

model building method, the threshold 30 µM achieved the best performance. However, 

models at threshold 1 µM seemed to perform equally as those at 30 µM in comparison 

of overall accuracies. Hence, there are suitable category methods for each threshold of 

hERG blockage modeling, for example (PubChem+MD)-SVM model yielded 15 

accuracies of 0.8350, 0.8136, 0.8501 for the training, test and external validation sets 

at threshold 1 µM, respectively, whereas (FP+MD)-SVM model reached accuracies of 

0.7832, 0.8475, 0.8550 for the three data sets at threshold 30 µM. The reason was that 

each threshold led to different numbers of hERG blockers and nonblockers, and the 

difference of positive and negative compounds had huge impacts on the performance 20 

of QSAR models.
45

 That is to say, hERG blockage prediction depended on the 

thresholds to distinguish hERG blockers from nonblockers. Therefore, for hERG 

blockage prediction, there is no universal threshold for hERG blockage. We should do 

it case by case. And there is meaningless to discuss which is better for hERG 

blockage prediction despite its thresholds. 25 
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4.5. Analysis of privileged substructures for hERG blockage  

To understand the common chemical features of hERG blockers, IG method 

along with frequency analysis were used to identify privileged substructures of hERG 

blockers based on FP4 fingerprint.31 From the results of IG values and frequency 

analysis of all fragments in FP4 fingerprint, six privileged substructures for hERG 5 

blockers were recognized. In general, the six substructures have some common 

features. They are large groups and may connect to aryl groups. Large groups and aryl 

groups might block potassium ions to pass through the channel because there are two 

couples of aryl residues Tyr652 and Phe656 in the potassium channel of hERG protein 

structures.46, 47 The four residues control the open and close of potassium channel and 10 

the flux of potassium ions. Hence, chemicals interacting with these residues have 

potential of hERG blockage. Structures containing aryl groups are easy to form 

interactions with these residues and block potassium transit. Such structures also have 

high molecular weight, hydrophobicity and large stereoscopic space. All the six 

privileged substructures have such features. That are why the molecular properties 15 

MW and AlogP have higher correlation with hERG blockage.  

Three of the six privileged substructures imide acidic, amidine, sulfonamide are 

acidic and negative electronics groups, they are easy to interact with the residues by 

other interactions, such as hydrogen bonds and electrostatic interactions. These 

substructures could also capture potassium by negative electronic group and block the 20 

ion channel. The above characteristics indicate that our privileged substructure 

identification method is credible, and the six privileged substructures reflect the 

common chemical structure features actually. These finds could be a guideline for 

hERG blockage assessment during drug discovery and development processes. 

5. Conclusions 25 
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In this study, we focused on three aspects of hERG blockage: data quality, hERG 

blockage thresholds and prediction models. We built a hERG blockage database 

containing 1570 compounds, which were the largest available hERG blockage 

database until now. Besides, we constructed a workflow to obtain high quality data. 

Therefore, all data points in our hERG blockage have high quality with simple 5 

mechanisms and high diversity. Then, hERG blockers from nonblockers were 

distinguished by four common used thresholds and series binary classification models 

were built based on thirteen molecular descriptors, five common used fingerprints and 

molecular descriptors combining fingerprints using five machine learning methods, 

respectively. After systemic evaluated all models, we found that each threshold had its 10 

best category methods and hERG blockage assessments depend on its thresholds. The 

method could be used for hERG blockage assessment and solved the three challenges 

of hERG blockage studies. Models developed in this study will provide critical 

information and useful tools for hERG blockage assessment of new drug candidates. 

Furthermore, IG method combining frequency analysis were applied to identify six 15 

privileged substructures of hERG blockers. The six privileged substructures reflect 

the common chemical structure features and explained the mechanisms hERG 

blockage of compounds. They could be treated as alert substructures for hERG 

blockage assessments during safety evaluation process of drug discovery.  

 20 
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The performance of the descriptor-based models and fingerprint-based models 

were summarized in Table S1 and S2 and  the performance of all combinatorial 

classification models were summarized in Table S3 of Supplementary Materials 1. 10 

The details of all compounds with SMILES were available in Supplementary 

Materials 2 and IG values of each pattern in the FP4 fingerprint were also listed in 

Table S4 of Supplementary Materials 2.  
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Tables 

Table 1 The statistics of chemicals in the training set, test set and external validation set. 

data sets 
thresholds (µM) 

total 
(0, 1] (1, 5] (5, 10] (10, 30] (30, ∞） 

training set 233 214 115 159 206 927 

test set 60 60 33 36 47 236 

external validation set 57 97 90 149 14 407 

total 350 371 238 344 267 1570 
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Table 2 Performance of classification models for the taining set and test set using different modeling methods based on molecular descriptors (MD) combining fingerprints  

thresholds (µM) modeling methods 
training set  test set 

Q SE SP AUC C Q SE SP AUC C 

1 (Estate+MD)-kNN 0.7993 0.5622 0.8790 0.8144 0.4534 0.7712 0.6000 0.8295 0.8326 0.4167 

 (Estate+MD)-SVM 0.8091 0.4721 0.9222 0.8306 0.4482 0.7881 0.4167 0.9148 0.8389 0.3847 

 (FP+MD)-kNN 0.8220 0.5837 0.9020 0.8402 0.5086 0.8008 0.6667 0.8466 0.8366 0.4957 

 (FP+MD)-SVM 0.8177 0.4807 0.9308 0.8529 0.4724 0.8305 0.6333 0.8977 0.8414 0.5436 

 (FP4+MD)-kNN 0.8004 0.5279 0.8919 0.8065 0.4444 0.8136 0.6167 0.8807 0.8312 0.5030 

 (FP4+MD)-SVM 0.8393 0.4893 0.9568 0.8680 0.5342 0.8263 0.5500 0.9205 0.8472 0.5129 

 (MACCS+MD)-kNN 0.8058 0.5579 0.889 0.8177 0.4656 0.8051 0.6500 0.8580 0.8255 0.4975 

 (MACCS+MD)-SVM 0.8123 0.4592 0.9308 0.8264 0.4534 0.8220 0.5500 0.9148 0.8511 0.5028 

 (PubChem+MD)-kNN 0.8079 0.5837 0.8833 0.8314 0.4784 0.7754 0.6500 0.8182 0.8397 0.4445 

 (PubChem+MD)-SVM 0.8350 0.5150 0.9424 0.8570 0.5250 0.8136 0.5667 0.8977 0.8416 0.4879 

5 (Estate+MD)-kNN 0.7422 0.7427 0.7417 0.8152 0.4842 0.7288 0.7750 0.6810 0.7955 0.4583 

 (Estate+MD)-SVM 0.7131 0.6913 0.7333 0.7771 0.4250 0.7331 0.7250 0.7414 0.7691 0.4663 

 (FP+MD)-kNN 0.7249 0.7271 0.7229 0.7927 0.4497 0.7500 0.7667 0.7328 0.8243 0.4998 

 (FP+MD)-SVM 0.7400 0.7025 0.7750 0.8120 0.4791 0.7627 0.7750 0.7500 0.8349 0.5252 

 (FP4+MD)-kNN 0.7368 0.7315 0.7417 0.7950 0.4731 0.6102 0.7167 0.5000 0.6546 0.2221 

 (FP4+MD)-SVM 0.7389 0.7047 0.7708 0.8079 0.4769 0.7415 0.7333 0.7500 0.8004 0.4833 

 (MACCS+MD)-kNN 0.7586 0.7539 0.7625 0.8095 0.5163 0.7288 0.7500 0.7069 0.8062 0.4574 

 (MACCS+MD)-SVM 0.7691 0.7293 0.8063 0.8286 0.5377 0.7585 0.7583 0.7586 0.8261 0.5169 

 (PubChem+MD)-kNN 0.7487 0.7517 0.7458 0.8032 0.4972 0.7627 0.7833 0.7414 0.8243 0.5253 

 (PubChem+MD)-SVM 0.7605 0.8416 0.6356 0.8270 0.4901 0.7712 0.7750 0.7672 0.8425 0.5422 

10 (Estate+MD)-kNN 0.7304 0.7989 0.6247 0.7817 0.4292 0.7542 0.8627 0.5542 0.8030 0.4416 

 (Estate+MD)-SVM 0.7152 0.7972 0.5890 0.7867 0.3943 0.7627 0.8497 0.6024 0.7947 0.4670 

 (FP+MD)-kNN 0.7433 0.8096 0.6411 0.8109 0.4566 0.7542 0.8039 0.6627 0.8335 0.4641 
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 (FP+MD)-SVM 0.7411 0.8327 0.6000 0.7876 0.4400 0.7924 0.8693 0.6506 0.8122 0.5351 

 (FP4+MD)-kNN 0.7336 0.8185 0.6027 0.8039 0.4323 0.7331 0.8301 0.5542 0.8147 0.3985 

 (FP4+MD)-SVM 0.7476 0.8345 0.6137 0.8215 0.4616 0.7500 0.8301 0.6024 0.7729 0.4420 

 (MACCS+MD)-kNN 0.7325 0.806 0.6192 0.7960 0.4325 0.7203 0.9000 0.5345 0.8052 0.4682 

 (MACCS+MD)-SVM 0.7584 0.8310 0.6466 0.8268 0.4869 0.6737 0.9000 0.4397 0.8063 0.3839 

 (PubChem+MD)-kNN 0.7498 0.8167 0.6466 0.8160 0.4700 0.7415 0.8366 0.5663 0.7935 0.4178 

 (PubChem+MD)-SVM 0.7605 0.8416 0.6356 0.8270 0.4901 0.7797 0.8693 0.6145 0.8197 0.5036 

30 (Estate+MD)-kNN 0.7843 0.8821 0.4417 0.7522 0.3433 0.8347 0.9365 0.4255 0.7638 0.4223 

 (Estate+MD)-SVM 0.7961 0.9570 0.2330 0.7334 0.2829 0.8347 0.9735 0.2766 0.7554 0.3764 

 (FP+MD)-kNN 0.7875 0.8946 0.4126 0.7540 0.3371 0.7881 0.8730 0.4468 0.7579 0.3251 

 (FP+MD)-SVM 0.7832 0.9501 0.1990 0.7325 0.2246 0.8475 0.9894 0.2766 0.7988 0.4355 

 (FP4+MD)-kNN 0.7918 0.8877 0.4563 0.7418 0.3654 0.7966 0.9048 0.3617 0.7469 0.2994 

 (FP4+MD)-SVM 0.7994 0.9612 0.2330 0.8002 0.2943 0.839 0.9471 0.4043 0.7631 0.4274 

 (MACCS+MD)-kNN 0.8015 0.9015 0.4515 0.7607 0.3846 0.8220 0.9259 0.4043 0.7899 0.3802 

 (MACCS+MD)-SVM 0.7853 0.9417 0.2379 0.7842 0.2510 0.8347 0.9577 0.3404 0.7855 0.3939 

 (PubChem+MD)-kNN 0.7972 0.896 0.4515 0.7821 0.3750 0.8051 0.9101 0.3830 0.7562 0.3293 

 (PubChem+MD)-SVM 0.7853 0.932 0.2718 0.7421 0.2675 0.8432 0.9577 0.3830 0.8338 0.4345 
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Table 3 Average and standard deviation (SD) of overall accuracy (Q) and C values for different models based on different thresholds 

  training set test set 

thresholds (µM) descriptors Q C Q C 

  Average SD Average SD Average SD Average SD 

1 MD* 0.7666 0.0346 0.3131 0.1266 0.7559 0.0431 0.3270 0.0981 

 Fingerprints 0.7689 0.0465 0.3430 0.1224 0.7741 0.0432 0.3846 0.1148 

 Fingerprints+MD 0.7797 0.0404 0.3923 0.0805 0.7715 0.0488 0.4081 0.0828 

5 MD 0.6522 0.0716 0.3177 0.1183 0.6390 0.0738 0.3016 0.1084 

 Fingerprints 0.6902 0.0405 0.3813 0.0804 0.6920 0.0607 0.3872 0.1200 

 Fingerprints+MD 0.6998 0.0429 0.3991 0.0843 0.6914 0.0577 0.3876 0.1088 

10 MD 0.6677 0.0369 0.2876 0.0962 0.6797 0.0154 0.2754 0.0707 

 Fingerprints 0.6957 0.0380 0.3550 0.0801 0.7214 0.0355 0.4027 0.0708 

 Fingerprints+MD 0.7050 0.0404 0.3810 0.0791 0.7191 0.0403 0.3984 0.0721 

30 MD 0.7819 0.0217 0.3165 0.0202 0.7983 0.0294 0.3017 0.0459 

 Fingerprints 0.7736 0.0294 0.2757 0.0720 0.8059 0.0300 0.3225 0.0688 

 Fingerprints+MD 0.7810 0.0237 0.3303 0.0524 0.8007 0.0340 0.3353 0.0758 

* MD represents molecular descriptors. 
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Table 4 Performance of classification models for the external validation set based on molecular properties (MD) combining fingerprints 

thresholds(µM) modeling methods Q SE SP AUC C TP TN FP FN 

1 (Estate+MD)-kNN 0.7445 0.3333 0.8114 0.5714 0.1236 19 284 66 38 

 (Estate+MD)-SVM 0.8329 0.1930 0.9371 0.6550 0.1654 11 328 22 46 

 (FP+MD)-kNN 0.7641 0.4912 0.8086 0.6744 0.2460 28 283 67 29 

 (FP+MD)-SVM 0.8059 0.3333 0.8829 0.7033 0.2116 19 309 41 38 

 (FP4+MD)-kNN 0.7961 0.4211 0.8571 0.7050 0.2503 24 300 50 33 

 (FP4+MD)-SVM 0.8354 0.1228 0.9514 0.6984 0.1094 7 333 17 50 

 (MACCS+MD)-kNN 0.7789 0.6667 0.7971 0.7753 0.3635 38 279 71 19 

 (MACCS+MD)-SVM 0.8452 0.3158 0.9314 0.7857 0.2820 18 326 24 39 

 (PubChem+MD)-kNN 0.7150 0.4737 0.7543 0.6826 0.1767 27 264 86 30 

 (PubChem+MD)-SVM 0.8501 0.2456 0.9486 0.7179 0.2504 14 332 18 43 

5 (Estate+MD)-kNN 0.6069 0.6364 0.5889 0.6279 0.2185 98 149 104 56 

 (Estate+MD)-SVM 0.5921 0.6169 0.5771 0.6320 0.1881 95 146 107 59 

 (FP+MD)-kNN 0.5528 0.5649 0.5455 0.5948 0.1071 87 138 115 67 

 (FP+MD)-SVM 0.6093 0.5519 0.6443 0.6389 0.1922 85 163 90 69 

 (FP4+MD)-kNN 0.5921 0.5974 0.5889 0.6308 0.1809 92 149 104 62 

 (FP4+MD)-SVM 0.6413 0.5909 0.6719 0.6610 0.2577 91 170 83 63 

 (MACCS+MD)-kNN 0.5799 0.6623 0.5296 0.6552 0.1869 102 134 119 52 

 (MACCS+MD)-SVM 0.6437 0.6753 0.6245 0.6786 0.2909 104 158 95 50 

 (PubChem+MD)-kNN 0.5971 0.6364 0.5731 0.6345 0.2032 98 145 108 56 

 (PubChem+MD)-SVM 0.6364 0.5844 0.6680 0.6426 0.2474 90 169 84 64 

10 (Estate+MD)-kNN 0.6216 0.7172 0.4785 0.6314 0.1997 175 78 85 69 

 (Estate+MD)-SVM 0.5995 0.7746 0.3374 0.6307 0.1236 189 55 108 55 

 (FP+MD)-kNN 0.5872 0.6926 0.4294 0.5972 0.1249 169 70 93 75 

 (FP+MD)-SVM 0.5971 0.7336 0.3926 0.6029 0.1329 179 64 99 65 
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 (FP4+MD)-kNN 0.6216 0.7213 0.4724 0.6081 0.1982 176 77 86 68 

 (FP4+MD)-SVM 0.6192 0.7459 0.4294 0.6356 0.1835 182 70 93 62 

 (MACCS+MD)-kNN 0.6118 0.7254 0.4417 0.6259 0.1727 177 72 91 67 

 (MACCS+MD)-SVM 0.6241 0.7828 0.3865 0.6520 0.1838 191 63 100 53 

 (PubChem+MD)-kNN 0.6044 0.7295 0.4172 0.5950 0.1529 178 68 95 66 

 (PubChem+MD)-SVM 0.6020 0.7008 0.4540 0.6289 0.1579 171 74 89 73 

30 (Estate+MD)-kNN 0.8084 0.8193 0.5000 0.7600 0.1497 322 7 7 71 

 (Estate+MD)-SVM 0.8501 0.8626 0.5000 0.7870 0.1851 339 7 7 54 

 (FP+MD)-kNN 0.7764 0.7913 0.3571 0.6160 0.0660 311 5 9 82 

 (FP+MD)-SVM 0.8550 0.8753 0.2857 0.7201 0.0872 344 4 10 49 

 (FP4+MD)-kNN 0.7961 0.8066 0.5000 0.7197 0.1387 317 7 7 76 

 (FP4+MD)-SVM 0.8182 0.8346 0.3571 0.7172 0.0926 328 5 9 65 

 (MACCS+MD)-kNN 0.8157 0.8244 0.5714 0.7817 0.1842 324 8 6 69 

 (MACCS+MD)-SVM 0.8526 0.8702 0.3571 0.7846 0.1203 342 5 9 51 

 (PubChem+MD)-kNN 0.7887 0.8041 0.3571 0.6511 0.0733 316 5 9 77 

 (PubChem+MD)-SVM 0.8182 0.8372 0.2857 0.7561 0.0600 329 4 10 64 
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Table 5 Some privileged substructures for hERG blockage based on information gain (IG) and frequency analysis 

Description SMARTS General Structure IG 

Frequency in 

positive (hERG 

blockers) 

Frequency in 

negative (hERG 

nonblockers) 

Representative Compound 

Diarylthioether [c][SX2][c] 
 

R1=aryl 

R2=aryl 

0.0018 1.4097 0.3461 

 

IC50 = 0.363µm 

Tertiary mixed amine 
[NX3H0+0,NX4H1+;$([N]([c])([C])[

#6]);!$([N]*~[#7,#8,#15,#16])] 

 

R1=alkyl, aryl 

R2=alkyl, aryl 

R3=alkyl, aryl 

0.0014 1.2056 0.6719 

 

IC50 = 0.605µm 

Imide acidic 

[#6X3;$([H0][#6]),$([H1])](=[OX1])[

#7X3H1][#6X3;$([H0][#6]),$([H1])](

=[OX1]) 

N

R2 R3

O O

R1

 

R1=H 

R2=alkyl, aryl 

0.0017 1.4639 0.2596 

N

N
N

O

H
N O

N

 

IC50 = 0.19µm 
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R3=alkyl, aryl 

Amidine 
[NX3;!$(NC=[O,S])][CX3;$([CH]),$(

[C][#6])]=[NX2;!$(NC=[O,S])] 

 

R1=alkyl, aryl 

R2=H, alkyl, aryl 

R3=H, alkyl, aryl 

R4=H, alkyl, aryl 

0.0044 1.3663 0.4154 

 

IC50 = 0.089µm 

Amidine 

[#7X3v3;!$(N([#6X3]=[#7X2])C=[O,

S])][CX3R0;$([H1]),$([H0][#6])]=[N

X2v3;!$(N(=[#6X3][#7X3])C=[O,S])] 

0.0056 1.4458 0.2884 

Arylchloride [Cl][c]  0.0026 1.1725 0.7247 

Cl

Cl

N
N+

O

Cl Cl

Cl

Cl

 

IC50 = 0.03µm 

Sulfonamide 

[SX4;$([H1]),$([H0][#6])](=[OX1])(=

[OX1])[#7X3;$([H2]),$([H1][#6;!$(C

=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])

])[#6;!$(C=[O,N,S])])] 

 
R1=alkyl, aryl 

R2=H, alkyl, aryl 

R3=H, alkyl, aryl 

0.0008 1.2037 0.6750 
 

IC50 = 0.01µm 
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Figure Captions 

Figure 1. Diversity analysis of hERG blockage data set. (A) Chemical space defined 

by MW and AlogP for training set and test set. (B) Heat map of molecular similarity 

plotted by tanimoto similarity index of cluster center molecules of the 100 clusters 

using MACCS fingerprint. 

Figure 2. Distributions of eight molecular properties of AlogP, logD, MW, logS, 

nROT, nHBA, nHBD, MPSA for hERG blockers and nonblockers chemicals at the 

threshold of 10 µM. Nonlinear Gaussian curve fitting was appled to analyse frequency 

distribution of these molecular properties. 

Figure 3. Correlations of eight representative chemical descriptors AlogP, logD, MW, 

logS, nROT, nHBA, nHBD, MPSA versus IC50 values of 1163 chemicals. 
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Figure 1 
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Figure 2 
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Figure 3 
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Graphical Abstract 

 

Series models of hERG blockage were built using five machine learning methods 

based on 13 molecular descriptors, five types of fingerprints and molecular 

descriptors combining fingerprints at four blockage thresholds.  
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