Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

1	1 $Zr_5Sb_{3-x}Ru_x$, a new superconductor in the W_5Si_3 structure type			
2				
3	Weiwei Xie†*, Huixia Luo†, Brendan F. Phelan†, and R.J. Cava†*			
4				
5	†Department of Chemistry, Princeton University, Princeton NJ 08540			
6				
7	Abstract			
8				
9	We report that at low Ru contents, up to $x = 0.2$, the Zr ₅ Sb _{3-x} Ru _x solid solution forms in			
10	the hexagonal Mn_5Si_3 structure type of the host (x=0), but that at higher Ru contents (x = 0.4 -			
11	0.6) the solid solution transforms into the tetragonal W_5Si_3 structure type. We find that tetragonal			
12	Zr ₅ Sb _{2.4} Ru _{0.6} is superconducting at 5 K, significantly higher than the transition temperature of			
13	hexagonal Zr_5Sb_3 (x=0), which has a T_c of 2.3 K. In support of a hypothesis that certain structure			
14	types are favorable for superconductivity, we describe how the W ₅ Si ₃ and Tl ₅ Te ₃ structure types,			
15	both of which support superconductivity, are derived from the parent Al ₂ Cu type structure, in			
16	which superconductors are also found. Electronic structure calculations show that in Zr ₁₀ Sb ₅ Ru,			
17	a model for the new superconducting compound, the Fermi level is located on a peak in the			
18	electronic density of states.			
19				
20				
21	Key words: Superconductivity; Structural transformations; W ₅ Si ₃ structure type			
22				
23	*Corresponding author: <u>rcava@princeton.edu</u> (Prof. Robert Cava);			
24	weiweix@princeton.edu (Dr. Weiwei Xie)			
25				
26				
27				
28				

Journal of Materials Chemistry C Accepted Manuscript

1 Introduction

Superconductivity is difficult to predict successfully from first principles in new 2 materials.¹ Some empirical guidelines, however, are useful in searching for new 3 superconductors.^{2,3} One such guideline is that a compound made from elements known to be 4 present in many superconductors, if found in a structure type that is known to support 5 superconductivity, has a good chance of superconducting. In other words, the combination of 6 7 favorable superconducting elements and a favorable superconducting structure type may yield a new superconductor. Based on finding superconductivity in Hf₅Sb_{3-x}Ru_x, we have 8 recently proposed that Ru and Sb may be a critical element pair for superconductivity in 9 intermetallics, making them favorable atoms when used together. In that material they are 10 present in an M₅X₃ compound with the tetragonal W₅Si₃ structure type, which implies that 11 the tetragonal W₅Si₃ structure type is favorable for superconductivity.⁴ 12

The early transition metal metal-rich compounds forming different binary A₅B₃ 13 phases are summarized in Figure 1.^{5,6,7,8,9,10,11} The many A_5B_3 phases that exhibit the 14 hexagonal Mn₅Si₃-type structure have a nearly unique ability to bind diverse heteroatoms Z 15 inside a "chimney" made from face sharing triangular antiprisms of A.¹² The Fermi energy in 16 most of these compounds is found in an electronic pseudogap, which makes them chemically 17 stable, but also is not optimal for superconductivity due to the resulting low density of 18 electronic states. Until now, only Zr₅Sb₃ in the Mn₅Si₃-type structure is a reported 19 superconductor, with $T_c = \sim 2.3 \text{ K}$.¹³ The compound W₅Si₃ in a different, tetragonal A₅B₃ 20 structure type, superconducts at 2.7 K.¹⁴ The W₅Si₃-type structure is adopted by various 21 phases, including mainly silicides, germanides and stannides,¹⁵ and most are only stable at 22 high temperature. For the antimonides, the linear chains present inside the square columns of 23 24 A are stabilized by having a near 1:1 mixture of transition metals plus Sb, which reduces antibonding interactions between Sb and Sb in the chains.¹⁵ The ternary compounds Zr₅Sb₃. 25 $_{\rm r}M_{\rm r}$ (M = Fe, Co and Ni) and the guaternary compounds Nb₄Pd_{0.5}Sb₂M_r (M = Cr, Fe, Co, Ni 26 and Si) have been synthesized and characterized as having this structure type.^{16,17} Motivated 27 28 by our recent discovery of superconductivity in Hf₅Sb_{2.5}Ru_{0.5}, we here examine the effect of moving from a 5*d*-based to a 4*d*-based compound. The new material $Zr_5Sb_{2,4}Ru_{0,6}$, is 29 superconducting with a T_c of 5 K. 30

1 Experiments and Calculations

Polycrystalline samples were synthesized by arc melting the elements in a water-cooled 2 3 copper crucible under an argon atmosphere. The starting materials, zirconium (powder, 99.2%, Alfa Aesar), antimony (powder, 99.9999%, Alfa Aesar) and ruthenium (sponge, 99.95%, Alfa 4 Aesar) were weighed in $Zr_5Sb_{3,2-x}Ru_x$ (x= 0, 0.2, 0.4, 0.6, 0.8 and 1.0) stoichiometric ratios (total 5 mass 300 mg), pressed into pellets, and arc melted for 10 seconds. The samples were turned and 6 7 melted several times to ensure good homogeneity. Weight losses during the melting process were less than 2%. The same procedure was used to synthesize the samples of nominal composition 8 $Zr_5Sb_{2,4}M_{0,6}$ (M=Rh, Pd, Ir and Pt). The products were not sensitive to air or moisture. The 9 samples were examined by powder X-ray diffraction for identification and phase purity on a 10 Bruker powder diffractometer employing Cu K α radiation (λ = 1.5406 Å). The diffracted 11 12 intensity was recorded as a function of Bragg angle (2θ) using a scintillation detector with a step of 0.02° 20 from 5° to 110°. Phase identification was made, and lattice parameters were refined 13 by a full-profile Rietveld refinement¹⁸ using Rietica¹⁹ from peaks between 10° and 60° in 20. 14 using the structural information from the single crystal X-ray measurements (see below). The 15 chemical composition was analyzed by an FEI Quanta 200 FEG Environmental SEM with 16 17 voltage at 20 kV; spectra were collected for 100 seconds.

Single crystals selected from partially crushed polycrystalline samples were employed for 18 the crystal structure determination of the superconducting compound. Room temperature 19 intensity data were collected on a Bruker Apex Phonon diffractometer with Mo radiation $K\alpha_1$ 20 (λ =0.71073 Å). Data were collected over a full sphere of reciprocal space with 0.5° scans in ω 21 with an exposure time of 10s per frame. The 2θ range extended from 4° to 60° . The SMART 22 software was used for data acquisition. Intensities were extracted and corrected for Lorentz and 23 polarization effects with the SAINT program. Empirical absorption corrections were 24 accomplished with SADABS, based on modeling a transmission surface by spherical harmonics 25 employing equivalent reflections with $I > 2\sigma(I)$.²⁰ Within the SHELXTL package, the crystal 26 structures were solved using direct methods and refined by full-matrix least-squares on F^{2,21} All 27 crystal structure drawings were produced using the program VESTA.²² 28

The magnetization measurements were performed in a 10 Oe applied field using a Quantum Design, Inc., superconducting quantum interference device (SQUID) magnetometer, over a temperature range of 1.8-6 K. The magnetic susceptibility is defined as $\chi = M/H$ where M is the measured magnetization in emu and H is the applied field in Oe. The resistivity and heat
capacity measurements were measured using a Quantum Design Physical Property Measurement
System (PPMS) from 2 to 300 K without and with applied field (5T).

- The Electronic structure of the model compound Zr₁₀Sb₅Ru was calculated using the 4 WIEN2k code, which has the full-potential linearized augmented plane wave method (FP-LAPW) 5 with local orbitals implemented.²³ $Zr_{10}Sb_5Ru$ is an ordered version of the superconducting solid 6 7 solution composition $Zr_5Sb_2 {}_5Ru_{0.5}$ in space group *I*422, where, to facilitate the calculations, the Ru and Sb are long-range ordered, rather than disordered as in the real material. For treatment of 8 the electron correlation within the generalized gradient approximation, the electron exchange-9 correlation potential was used with the parametrization by Perdew et. al. (i.e. the PBE-GGA).²⁴ 10 For valence states, relativistic effects were included through a scalar relativistic treatment, and 11 core states were treated fully relativistically. To illustrate the Ru orbital character of bands, the 12 fatband representation was used in which bands are drawn with a thickness representative of the 13 contribution of the Ru orbitals. The structure used to calculate the band structure was based on 14 the VASP^{25,26,27,28} structural optimization starting from the experimentally determined structure. 15 The conjugate gradient algorithm was applied and the energy cutoff was 500 eV. Reciprocal 16 space integrations were completed over a $5 \times 5 \times 10$ Monkhorst-Pack *k*-points mesh with the linear 17 tetrahedron method.²⁹ With these settings, the calculated total energy converged to less than 0.1 18 meV per atom. 19
- 20

21 Results and discussion

22 $Zr_5Sb_{3.2-x}Ru_x$ with x = 0.0 and 0.2 crystallizes in the hexagonal Mn₅Si₃-type structure 23 found in Zr_5Sb_3 . For x in the range from 0.4 to 0.6, the material adopts the tetragonal W₅Si₃-type 24 structure, whereas at higher doping levels ZrRu appears as a major phase in the products. The 25 tetragonal W₅Si₃-type Zr₅Sb_{3-x}M_x (M=Ru, Rh, Pd, Ir, Pt and $x \sim 0.6$) phases were found to exist 26 for many M atoms, at relatively high temperature (above 1300°C). Annealing samples below 27 1300°C made hexagonal Mn₅Si₃-type phases appear, consistent with previous research on 28 Zr₅Sb_{3-x}M_x (M=Fe, Co and Ni) systems. ¹⁶

To obtain insight into the crystal structure of the W_5Si_3 -type phase in the $Zr_5Sb_{3-x}Ru_x$ system, single crystals were investigated. The results of single crystal diffraction on a specimen extracted from the polycrystalline sample of nominal composition $Zr_5Sb_{2.4}Ru_{0.6}$ are summarized

1 in Tables 1 and 2, and the W₅Si₃-type structure of this material is shown in Figure 2. In the ternary phase $Zr_5Sb_{2,36(1)}Ru_{0,64}$ (refined formula) adopting the W_5Si_3 -type structure (space group 2 3 I4/mcm, Pearson Symbol t/32), the Zr atoms are located at the 16k and 4b sites corresponding to the W sites in W_5Si_3 , and the Sb atoms occupy 8h sites, in correspondence to Si in W_5Si_3 . No 4 disorder due to Ru or Sb on the Zr sites, or conversely Zr on the Sb or Sb+Ru sites, was detected. 5 The 4*a* sites are filled by a 60:40 random mixture of Ru and Sb. The chemical composition 6 7 determined in the refinements was confirmed by SEM-EDX analysis, which yielded $Zr_{5.0(1)}Sb_{2.5(1)}Ru_{0.5(1)}$; we refer to the material as $Zr_5Sb_{2.4}Ru_{0.6}$, based on the quantitative structure 8 determination. The structure is shown in Figure 2; Zr2 (16k) forms antiprisms around the Sb/Ru 9 mixed linear chains in the center of the cell, and tetrahedra of Sb2 (8h) around Zr1 (4b) are seen 10 along the *c*-axis. For analysis of the powder diffraction data for the material studied in the 11 characterization of the superconductivity for $Zr_5Sb_{2,4}Ru_{0,6}$, the tetragonal lattice parameters are a 12 = 11.0796(1) Å and c = 5.5840(1) Å, and the refined structure is a good fit to the W₅Si₃-type 13 structural model derived from the single crystal refinements (Figure 2 bottom). 14

The resistivity of Zr₅Sb_{2.4}Ru_{0.6} undergoes a sudden drop to zero at 5.0 K, characteristic of 15 superconductivity. In correspondence with $\rho(T)$, the magnetic susceptibility ($\chi_{mol}(T)$), measured 16 in a field of 10 Oe after zero field cooling, decreases from its normal state value at 5.0 K and 17 shows large negative values, characteristic of an essentially fully superconducting sample. The 18 zero resistivity and the large diamagnetic susceptibility indicate that Zr₅Sb_{2.4}Ru_{0.6} becomes a 19 bulk superconductor at 5.0 K. Critically, only the Ru doped compound shows the presence of 20 21 superconductivity; Zr₅Sb₂₄M_{0.6} (M=Mo, Rh, Pd, Re, Ir and Pt) don't show any superconductivity above 1.78K. This supports our earlier proposal³ that Ru and Sb form a special element pair for 22 superconductivity in intermetallics. To prove that the observed superconductivity is intrinsic to 23 the Zr₅Sb₂₄Ru_{0.6} compound, and is not a consequence of any impurity phases present, the 24 superconducting transition was characterized further, through specific heat measurements. The 25 specific heat for a Zr₅Sb₂₄Ru_{0.6} sample in the temperature range of 2.0 to 40 K is presented in 26 27 Figure 3(b). The main panel shows the temperature dependence of the zero-field and field-cooled electronic specific heat C_{el}/T . The good quality of the sample and the bulk nature of the 28 29 superconductivity are strongly supported by the presence of a large anomaly in the specific heat at $T_c = 4.9 \sim 5.0$ K, in excellent agreement with the T_c determined by $\rho(T)$ and $\chi_{mol}(T)$. The 30 electronic contribution to the specific heat, γ , measured in a field of $\mu_0 H = 5T$, which decreases 31

 T_c to 2.5 K but does not suppress the superconductivity completely (inset to Figure 3b), is 48.5 1 mJ/mol-K². The value of the specific heat jump at T_c is consistent with that expected from a 2 weak-coupling BCS superconductor; $\Delta C_p/\gamma T_c$ per mole Zr₅Sb_{2.4}Ru_{0.6} in the pure sample is 1.47. 3 This ratio is within error of the BCS superconductivity weak coupling value of 1.43 and is in the 4 range observed for many superconductors.³⁰ Because the measured sample contains about 15% 5 ZrRu, the superconducting characteristics derived from the analysis of the specific heat should be 6 considered as approximate. As an added check, we tested pure ZrRu down to 1.78 K and found 7 8 that it is not superconducting; that compound therefore could not give rise to the observed specific heat feature. Thus the observed superconductivity originates from $Zr_5Sb_2 Au_0 6$. 9

10 The results of the electronic structure calculations are shown in Figure 4. The calculations 11 show that most of the DOS curve between -2 eV and +2 eV belongs to the Ru and Zr 4*d* band. 12 There is a noticeable pseudogap just below -2 eV. The high DOS and flat bands in Zr₁₀Sb₅Ru 13 near Z and N in the Brillouin Zone indicate the presence of an instability in the electronic 14 structure that can lead to superconductivity ¹⁵; in the current case, T_c is 5 K.

Finally, we have identified a "parent-child" relationship between the parent material 15 Al₂Cu and "child materials" in the W₅Si₃ and Tl₅Te₃ structure types. Many superconductors, 16 such as W₂B ($T_c = 3.2 \text{ K}$)³¹, adopt the tetragonal Al₂Cu-type structure (Pearson symbol *tI*12). 17 Ti_5Te_3 crystalizes in the In₅Bi₃-type structure (Pearson symbol tI32), in the same space group, 18 I4/mcm.^{32,33} The novel crystal structure of Tl₅Te₃ can be viewed as the 1:2 intergrowth of two 19 imaginary partial structures along the c-axis: two Tl₂Te₄ in the Al₂Cu-type structure, plus 2 \times 20 21 Tl₈Te₂ fragments. Figure 5 (right) schematically illustrates the structural relationship. First, the Tl atoms, on the Cu sites in the parent Al₂Cu compound, move $\frac{1}{4}c$, transforming from 4a to 4c22 sites, and the space between layers is opened up. Then, the Tl_8Te_2 fragment slab is inserted in 23 this opening, bridging the two layers. Tl₅Te₃ and In₅Bi₃, which both have this structure, are 24 superconducting. Similarly, the structure of W_5Si_3 -type $Zr_5Sb_{3-x}Ru_x$ can be treated as the 1:4 25 intergrowth of two imaginary partial structures along the *ab*-plane rather than the *c*-axis: 26 $Zr_8(Sb/Ru)_4$ fragments in the Al₂Cu-type structure, plus four Zr_3Sb_2 fragments along *ab*-plane, as 27 illustrated in Figure 5 (left). W₅Si₃, and recently Hf₅Sb_{2.5}Ru_{0.5} and Zr₅Sb_{2.4}Ru_{0.6}, which are both 28 in this structure type, are superconducting. The Al₂Cu-type structure may therefore be considered 29 as the parent fragment for building up more complex superconducting compounds, supporting 30

the proposal that the fragment formalism is a useful chemical tool for the design of new
 intermetallic superconductors.³⁴

3

4 Conclusion

 $Zr_5Sb_{3-x}Ru_x$ was synthesized, structurally characterized, and analyzed by electronic 5 structure calculations. Resistivity, heat capacity and magnetic susceptibility measurements show 6 7 $Zr_5Sb_{2,4}Ru_{0,6}$ to be a superconductor with a $T_c \sim 5.0$ K. Based on the close structural relationships between Tl_5Te_3 and W_5Si_3 , the W_5Si_3 -type appears to be a good structure type for 8 superconductivity, and the Ru-Sb pair is again shown to be a good pair for superconductivity in 9 intermetallic compounds. The work described here shows that selection of potential 10 superconducting materials based an empirical guideline involving superconducting-favored 11 elements in superconducting-favored structures can be a useful design paradigm. 12

13

14 Acknowledgements:

The single crystal diffraction, resistivity and susceptibility measurements, and electronic structure calculations were supported by the Department of Energy, grant DE-FG02-98ER45706. The powder X-ray powder diffraction data acquisition and analysis, and the specific heat measurements and analysis, were supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4412.

20

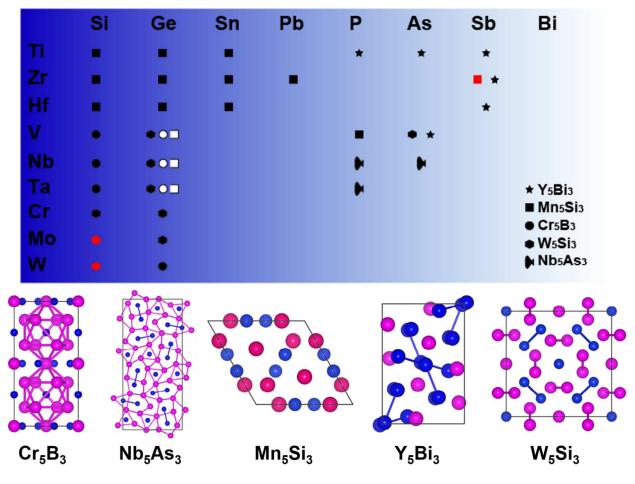
1 References

- Simón, R.; Smith, A. Superconductors: conquering technology's new frontier. p112,
 Plenum Publishing Company Limited, 1988.
- 4 2. Cava, R. J. Chem. Commun. 2005, 5373.
- Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.;
 Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. Sci. Tech. Adv. Mater. 2015, 16, 033503.
- 4. Xie, W.; Luo, H.; Seibel, E.; Nielsen, M.; Cava, R. J. Chem. Mater. 2015, DOI: 10.1021/acs.chemmater.5b01655.
- 10 5. Kwon, Y. U.; Sevov, S. C.; Corbett, J. D. Chem. Mater. 1990, 2, 550.
- 11 6. Aronsson, B.; Tjomsland, O.; Lundén, R.; Prydz, H. Acta Chem. Scand. 1955, 9, 1107.
- Morozkin, A. V.; Mozharivskyj, Y.; Svitlyk, V.; Nirmala, R.; Malik, S. K. *Intermetallics* 2011, 19, 302.
- 14 8. Pietzka, M. A.; Schuster, J. C. J. Alloys Compd. 1995, 230, L10.
- 15 9. Böttcher, P.; Doert, T.; Druska, C.; Bradtmöller, S. J. Alloys Compd. 1997, 246, 209.
- 10. Fukuma, M.; Kawashima, K.; Maruyama, M.; Akimitsu, J. J. Phys. Soc. Jpn. 2011, 80, 024702.
- 18 11. Laohavanich, S.; Thanomkul, S.; Pramatus, S. Acta Crystallogr. B 1982, 38, 1398.
- Corbett, J. D.; Garcia, E.; Guloy, A. M.; Hurng, W. M.; Kwon, Y. U.; Leon-Escamilla, E.
 A. *Chem. Mater.* **1998**, *10*, 2824.
- 13. Lv, B., Zhu, X. Y.; Lorenz, B.; Wei, F. Y.; Xue, Y. Y. Yin, Z. P.; Kotliar, G.; Chu, C. W.
 Phys. Rev. B 2013, *88*, 134520.
- 14. Kawashima, K.; Muranaka, T.; Kousaka, Y.; Akutagawa, S.; Akimitsu, J. J. Phys. Conf.
 Ser. 2009, 150, 052106.
- 25 15. Kleinke, H.; Ruckert, C.; Felser, C. *Eur. J. Inorg. Chem.* **2000**, 315.
- 26 16. Garcia, E.; Corbett, J. D. *Inorg. Chem.* **1990**, *29*, 3274.
- 27 17. Wang, M.; Sheets, W. C.; McDonald, R.; Mar, A. Inorg. Chem. 2001, 40, 5199.
- 28 18. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65.
- 29 19. Hunter, B. A. *Rietica a visual Rietveld program.* 2000.
- 30 20. Bruker. *SMART*. Bruker AXS Inc., 2007.
- 31 21. Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112.
- 32 22. Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272.
- 33 23. Schwarz, K.; Blaha, P. Comput. Mater. Sci. 2003, 28, 259.

- 1 24. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- 2 25. Kresse, G.; Hafner, J. *Phys. Rev. B* **1993**, *47*, 558.
- 3 26. Kresse, G.; Hafner, J. *Phys. Rev. B* **1994**, *49*, 14251.
- 4 27. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
- 5 28. Kresse, G.; Furthmüller, J. *Phys. Rev. B* **1996**, *54*, 11169.
- 6 29. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- 7 30. Monthoux, P.; Balatsky, A. V.; Pines, D. Phys. Rev. B 1992, 46, 14803.
- 8 31. Narlikar, A. V. Frontiers in Superconducting Materials. Springer Science & Business
 9 Media, 2005.
- 10 32. Nordell, K. J.; Miller, G. J. J. Alloys Compd. 1996, 241, 51.
- 33. Arpino, K. E.; Wallace, D. C.; Nie, Y. F.; Birol, T.; King, P. D. C.; Chatterjee, S.; Uchida,
 M.; Koohpayeh, S. M.; Wen, J.-J.; Page, K.; Fennie, C. J.; Shen, K. M.; McQueen, T. M.
 Phys. Rev. Lett. 2014, *112*, 017002.
- 34. Xie, W.; Luo, H.; Baroudi, K.; Krizan, J. W.; Phelan, B. F.; Cava, R. J. Chem. Mater.
 2015, 27, 1149.

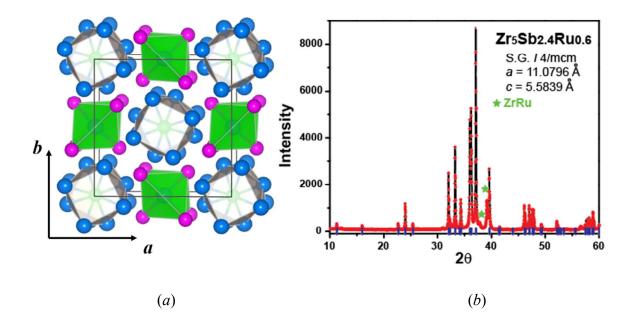
	Loading composition	$Zr_5Sb_{2.4}Ru_{0.6}$
	Refined Formula	Zr ₅ Sb _{2.36(1)} Ru _{0.64}
	F.W. (g/mol);	808.06
	Space group; Z	<i>I4/mcm</i> (No.140); 4
	<i>a</i> (Å)	11.083(3)
	<i>c</i> (Å)	5.575(2)
	$V(\text{\AA}^3)$	684.8(4)
	Absorption Correction	Multi-Scan
	Extinction Coefficient	None
	$\mu(mm^{-1})$	17.696
	θ range (deg)	3.677-29.576
	<i>hkl</i> ranges	$-15 \le h, k \le 15$
		$-7 \le l \le 7$
	No. reflections; R_{int}	5685; 0.0108
	No. independent reflections	284
	No. parameters	16
	R_1 ; wR_2 (all I)	0.0121; 0.0198
	Goodness of fit	1.175
	Highest peak and deepest hole $(e^{-}/Å^3)$	0.710; -0.749

1 Table 1. Single crystal crystallographic data for Zr₅Sb_{2.36(1)}Ru_{0.64} at 301(2) K.


2

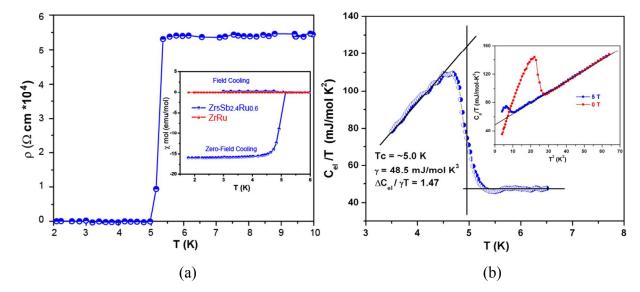
3

4 **Table 2.** Atomic coordinates and equivalent isotropic displacement parameters of 5 $Zr_5Sb_{2,36(1)}Ru_{0.64}$. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor (Å²).


6

Atom	Wyckoff.	Occupancy.	x	у	Ζ	U_{eq}
Zr1	4 <i>b</i>	1	0	1/2	1/4	0.0079(1)
Zr2	16 <i>k</i>	1	0.2141(1)	0.0760(1)	0	0.0085(1)
Sb3	8h	1	0.3368(1)	0.8368(1)	0	0.0079(1)
Ru/Sb4	0 4 <i>a</i>	0.64(1)/0.36	0	0	1⁄4	1/4 0.0106(1)

1


Figure 1. The binary A₅B₃ compounds found between the early transition metals and the main group elements. Upper panel, matrix of known materials: A atoms, vertical column; B atoms, horizontal column. Black symbol: compound reported with indicated structure type; Red symbol, superconductors; White symbol, high pressure phases. Lower panel, schematics of the crystal structures: A atoms are shown as pink spheres, B atoms as blue spheres.

2

1

Figure 2. The crystal structure of Zr₅Sb_{2.4}Ru_{0.6} in the W₅Si₃-type structure, and the phase
identification. (a) The crystal structure. Zr square antiprisms around the 1:1 Ru/Sb chains and
the tetrahedra surrounding Sb atoms are emphasized. (Green: Ru/Sb mixed chains; blue: Hf; pink:
Zr) (b) The powder x-ray diffraction data showing W₅Si₃-type Zr₅Sb_{2.4}Ru_{0.6}. Red solid line
shows the corresponding Rietveld fitting. The peaks near 37.5° and 39.5° (green stars) come
from the presence of ZrRu.

3 Figure 3. Characterization of the superconducting transition of Zr₅Sb_{2.4}Ru_{0.6}. (a) Resistivity vs. Temperature over the range of 2 to 300 K measured in zero applied magnetic field. Insert: 4 χ_{mol} (T) measured in 10 Oe applied magnetic field from 1.8K to 6K with zero-field cooling and 5 field cooling for $Zr_5Sb_{24}Ru_{0.6}$ and χ_{mol} (T) measured in 20 Oe applied magnetic field from 1.8K 6 to 6K with zero-field cooling for CsCl-type ZrRu. (b) (Main panel) Temperature dependence of 7 8 the electronic specific heat C_{el} of Zr₅Sb_{2.4}Ru_{0.6}. The sample was measured with (μ_0 H = 5T) and without magnetic field, presented in the form of C_p/T (T), and the electronic part was obtained 9 from heat capacity at $\mu_0 H = 5T$. (Insert) Temperature dependence of specific heat C_p of 10 Zr₅Sb_{2.4}Ru_{0.6} sample measured with (5T) and without magnetic field, presented in the form of 11 $C_p/T(T^2)$ 12

1

2

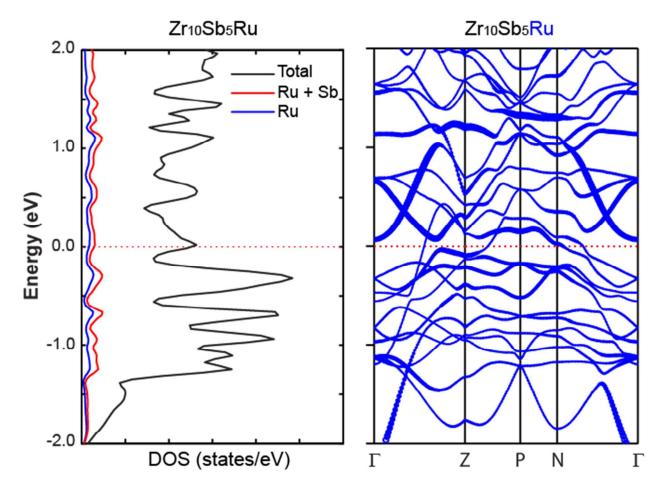


Figure 4. Results of the Electronic structure calculations for the model compound
 Zr₁₀Sb₅Ru. Total and partial DOS curves and band structure curves obtained from non-spin polarized LDA calculations.

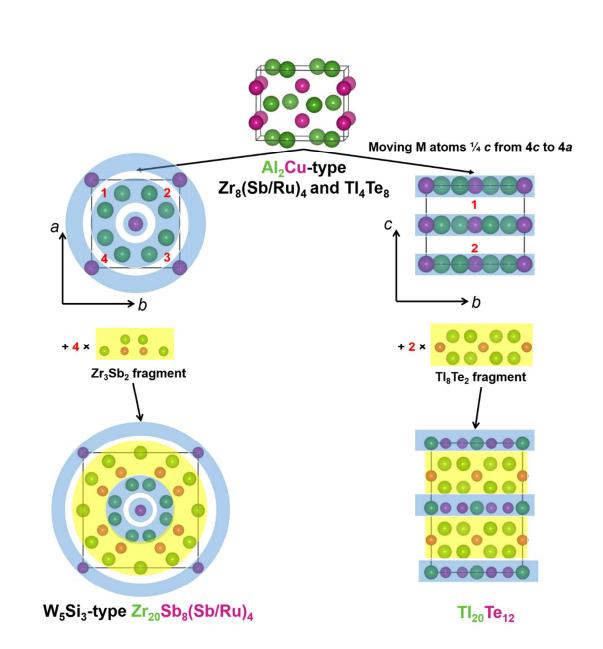
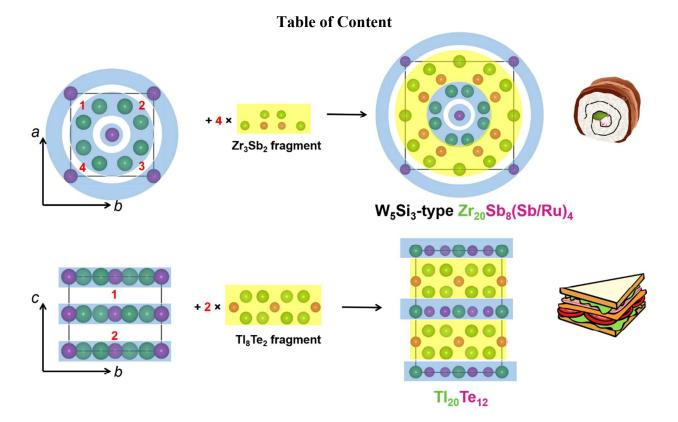



Figure 5. Schematic of the parent-child relations in a family of structurally related
superconductors. The "TM₂" (Al₂Cu) parent structure fragment is combined with T₃M₂ and
M₄T fragments oriented in different directions to form the W₅Si₃-type and Tl₅Te₃-type structures.
All three structure types support superconductivity.

7

 W_5Si_3 -type $Zr_5Sb_{3-x}Ru_x$ and Tl_5Te_3 structure types both supporting superconductivity, are derived from the parent Al₂Cu type structure.