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Interatomic Pair Potentials from DFT and Molecular
Dynamics for Ca, Ba, and Sr Hexaborides

Kevin M. Schmidt,∗a Alex B. Buettner,a and Victor R. Vasqueza†

Alkaline earth hexaborides are thermoelectric materials with unique thermophysical properties
that have a broad variety of applications with great potential for new uses in fields such as light-
weight armor development, gas storage, and n-type thermoelectrics. In this work, we introduce a
modeling framework to simulate the basic mechanical behavior of these materials with molecular
dynamics. We use a combination of density functional theory, molecular dynamics, and opti-
mization methods to produce a set of interatomic potentials which can describe accurately the
equilibrium energetics and mean-square displacements of atoms within these bulk hexaborides.
The model works particularly well for hexaborides with large cations.

1 Introduction
Alkaline earth hexaborides (AEB6) are a subset of the more gen-
eral class of metal hexaborides (MB6) containing a divalent metal
cation (e.g., Ca, Sr, Ba) located at the central site of a body-
centered cubic (BCC) type lattice. Like all other MB6 compounds,
they share in the attractive features of low density, low thermal
expansion coefficients, low work functions, chemical inertness,
high melting points, and high values of hardness1–10 and can be
synthesized in a variety of ways7,11–14. Current practical uses
for AEB6 materials include neutron radiation absorbents, pro-
tective surfaces, high temperature structures, and wear-resistant
parts14,15, and present research is aimed at finding new applica-
tions (e.g., light-weight armor16 and n-type thermoelectric mate-
rials17). One of the fascinating features of these materials is their
reaction to stoichiometric and structural inhomogeneities. Dop-
ing, vacancies, and impurities have been known to reduce work
functions and enhance thermionic emission18, modify lattice pa-
rameters13, promote ferromagnetism19,20, alter optical proper-
ties21, and affect thermal and electronic conduction13. All of
these suggest that specific characteristics can be fine-tuned by the
proper synthesis methods. Further understanding of these ma-
terials at atomic scales is necessary for optimization and appli-
cations development, and atomic/molecular modeling methods
have great potential to provide fundamental insight in the behav-
ior of these hexaborides.

From a molecular dynamics (MD) perspective, little is known
about the fundamental behavior of MB6 materials at atomic and
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molecular scales. Most modeling efforts are from density func-
tional theory (DFT), focusing on electronic behavior and elec-
tronic properties estimation studies. Applications that involve
controlling mass transport and molecular storage require an un-
derstanding of the transport mechanisms at molecular scales. It
is of particular interest to study how ions move in these materials
under the influence of external electrical fields with temperature
and pressure gradients. In this work, we propose a MD modeling
framework where the boron octahedral units in the MB6 structure
are constrained to their equilibrium volumes but are allowed to
move with rigid body dynamics, interacting with inter-octahedral
boron atoms and metal ions. We modeled the interatomic interac-
tions using pairwise potentials for inter-octahedral boron-boron,
metal-metal, and metal-boron atom pairs. These potentials are
developed from a combination of self-consistent DFT calculations
and MD simulations linked through a parameter optimization ap-
proach to capture the basic fundamental behavior and properties
of these hexaboride materials in a MD setting. We focus on re-
producing basic lattice properties such as equilibrium energetics
and mechanical properties as well as basic dynamic behavior de-
scribed by the mean-square-displacements (MSD) of the atomic
species in the structure. Our MD simulation results show excellent
agreement with results obtained from DFT calculations. To date,
there are no publications related to modeling AEB6 systems in
a MD setting, though numerous articles describing experimental
procedures (synthesis, thermophysical properties, thermoelectric
properties, etc.) or analysis of electronic structure calculations
exist11,12,14,15,17,18,22–34.

The crystal structure of MB6 is simple cubic with octahedral
space group Pm3̄m symmetry3. An octahedral unit is formed
by six boron atoms located on the 6 f (1/2, 1/2, z) Wyckoff sites
of the unit cell, and separate octahedra are bonded together at
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Fig. 1 General structure of metal hexaborides with central cation
(orange) and boron atoms (purple). Each unit cell contains a single
octahedron (eight shown) and ion. Octahedral faces are shown as green
surfaces. 1 = B–BinterOh bond, 2 = B–BintraOh bond, 3 = lattice
constant (a).

their apexes6 to form a three-dimensional network of covalently
bonded boron atoms. The metal cation occupies the interstices of
the boron framework at the 1a (0, 0, 0) Wyckoff site4. Due to the
symmetry of hexaborides (see Fig. 1), each unit cell of a binary
hexaboride is characterized solely by the lattice constant (a) and
positional parameter (z), where z is defined as

z =
B–BinterOh

2 ·a (1)

The pronounced stability of MB6 structures can be attributed to
the covalently bonded octahedral skeleton7,35, and elastic con-
stants are found to depend almost entirely on the boron sub-
lattice36. Formation of a MB6 generally requires metals with
first and second ionization potentials of less than 7 eV and 12
eV 37, respectively, and these two electrons are needed to pro-
duce a closed-shell configuration in the octahedral units38,39. For
the case of divalent metals, semiconductors with energy gaps of
0.1-0.4 eV typically result40, and various other properties (e.g.,
Pauli-paramagnetic, ferromagnetic, diamagnetic, conductive, su-
perconductive, and complex spin-ordered states) have been found
and depend on the type of cation41.

2 Modeling Approach

Metal hexaborides and bulk metals are first modeled with DFT to
perform structural optimization, obtain cohesive energy curves,
and produce MSD data for hexaborides using the quasi-harmonic
approximation (QHA). A lattice inversion technique and simple
nearest-neighbor approach are employed to extract initial pair-
wise potentials from cohesive energies for bulk metals and metal-
boron interactions, respectively. These are used as a guide for
optimizing Morse potentials to produce the correct equilibrium
data. MD simulations are then performed to modify the interac-
tions such that they can correctly reflect MSD values, generated
through DFT-QHA, at various temperatures.

2.1 Density Functional Theory
Electronic structure calculations are performed with the QUAN-
TUM ESPRESSO integrated suite of open-source computer
codes42. Pseudopotentials and plane-wave basis sets are used to
self-consistently solve the Kohn-Sham equations. This work em-
ploys ultrasoft pseudopotentials with the generalized-gradient ap-
proximation and Perdew-Burke-Ernzerhof exchange-correlation
functionals. A width of 0.02 Ry is given for Marzari-Vanderbilt
smearing functions, and energy and electron density cut-offs are
set to 80 Ry and 960 Ry, respectively. Self-consistent field calcu-
lations over the Brillouin zone use an 8× 8× 8 Monkhorst-Pack
grid for k-points, and thermodynamic properties derived from
the QHA utilize an 8× 8× 8 q-point mesh. All parameters are
checked for convergence before full-scale calculations are carried
out. To examine the reliability of these results, equilibrium lat-
tice constant values for bulk α-phases of the alkaline earth met-
als and their respective borides have been calculated with the ul-
trasoft pseudopotentials and tested against published experimen-
tal data7,43 (shown in Table 1). The MB6 lattice constants and
structural parameters have been optimized to aeq ± 0.005 Å and
zeq ±0.0001.

Table 1 Experimental and Calculated Lattice Parameters for MB6 and
Bulk Metals

Expt Calc
Boride a (Å) z a (Å) z
BaB6

† 4.2618 0.2047 4.2435 0.2046
α–Ba (BCC)‡ 5.0227 5.0302
CaB6

† 4.1514 0.2019 4.1446 0.2018
α–Ca (FCC)‡ 5.5884 5.5250
SrB6

† 4.1953 0.2031 4.1925 0.2032
α–Sr (FCC)‡ 6.084 6.0384

†From ref 7, ‡ From ref 43

2.2 Lattice Inversion
Assuming that pairwise interactions are sufficient to describe the
cohesion within this modeling framework, the total lattice energy
can be written as

Etot(a) = ∑
k

φ◦
k +

1
2 ∑

k
∑

i
φk

(
d(k)

i (a)
)

(2)

in which each sublattice “k” is represented by its isolated atomic
energy φ◦

k and a set of distances d(k)
i (a) dependent upon the lat-

tice constant, a. The set d(k)
i (a) is fixed once a sublattice geome-

try is chosen, and systems which expand isotropically produce a
reusable set when these displacements are normalized to the lat-
tice constant. Counting the degeneracy at each distance, Eq. (2)
can be re-written for a specific sublattice “k” as an infinite series
given by

Ek(a) = φ◦
k +

1
2

∞

∑
n=1

rk(n) ·φk (bk(n)a) (3)

where Ek refers to the total energy for sublattice “k”, rk(n) is the
number of atoms located in a spherical shell “n” at a distance
(bk(n) ·a) from some reference atom, and the set {bk(n)} increases
monotonically with “n”. This relationship between pairwise inter-
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action potentials and energy can be inverted through a Gaussian-
type elimination procedure proposed by Carlsson, Gelatt, and
Ehrenreich44 to yield potentials as a function of the lattice en-
ergy at varying distances. For systems which exhibit a high de-
gree of symmetry, one can alternatively employ the Chen-Möbius
inversion method45, which generates the interaction potential ac-
cording to

E
coh
k (a) =

1
2

∞

∑
n=1

rk(n) ·φk
(
b̃k(n)r a

NN
)

�

φk(r
a

NN) = 2
∞

∑
n=1

Jk(n)E
coh
k (bk(n)a) ,

(4)

where r a
NN represents the nearest-neighbor distance for a particu-

lar lattice constant a, the modified distance vector b̃k(n) is given
by

b̃k(n) =
bk(n) ·a

r a
NN

(5)

and the values of Jk(n) represent the Dirichlet inverse,

∑
bk(m)bk(n)=bk( j)

Jk(n)rk(m) = δ j,1 (6)

This method has the advantage of fast convergence along with
simplicity46 and is used in this work for metal-metal potentials.

It is important to note that the inversion processes described
are not valid for systems which expand anisotropically, and no
method currently exists for inverting cohesive energies for these
types of lattices. The metal-boron and inter-octahedral boron-
boron sublattices both fall into this category. For these two, it
is assumed that the first-shell of neighbors give rise to the only
interactions in order to generate a suitable approximation to the
curvature of the potential, and this potential is further optimized
using methods described later.

3 Interatomic Potentials

3.1 Metal Homatomic Interaction

The divalent alkaline earth metals used in this work produce
closed-shell configurations upon removal of two electrons to sat-
isfy the electron requirements of the boron octahedra. It is there-
fore assumed that the metal-metal potentials will be sufficiently
represented by a pairwise interaction. The metal sublattice within
a hexaboride is easily described by a simple-cubic structure, pro-
ducing a cohesive energy per atom of the form

E
coh
SC (a) =

1
2 ∑

(m,n,l)�=(0,0,0)
φSC

(√
m2 +n2 + l2 a

)
(7)

Initially, energy landscapes for theoretical simple cubic struc-
tures of the three metals were calculated and inverted. However,
the inverted potentials gave rise to unrealistic behavior exhibiting
multiple local minima, suggesting that this geometrical layout is
not suitable to describe bonding within these metals. Bulk α-
phases of barium, calcium, and strontium are therefore used to
generate the intermetallic cohesive energies and inverted poten-
tials, as they are the most stable at ambient temperature/pressure

and should give a fairly good approximation to the correct inter-
action curvatures.

The face-centered cubic (FCC) phases occurring for bulk cal-
cium and strontium have cohesive energies per atom arising from
pairwise potential summations of the form

E
coh
FCC(a) =

1
2 ∑

(m,n,l)�=(0,0,0)
φFCC

(√
m2 +n2 + l2 · a

)
(8)

+
3
2 ∑

(m,n,l)
φFCC

(√
(m− 1/2)2 +(n− 1/2)2 + l2 · a

)

Alternatively, α-barium occurs in a BCC lattice with a cohesive
energy per atom given by

E
coh
BCC(a) =

1
2 ∑

(m,n,l)�=(0,0,0)
φBCC

(√
m2 +n2 + l2 · a

)
(9)

+
1
2 ∑
(m,n,l)

φBCC

(√
(m− 1/2)2 +(n− 1/2)2 +(l − 1/2)2 · a

)

Both of these sublattices are easily inverted using the method de-
scribed in the previous section. The inversions, along with Morse
potentials optimized in Sec. 4, are shown in Fig. 2 for the three
metals.
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Fig. 2 Potentials for bulk α-phases of the three metals in this work
obtained through inversion of cohesive energies and Method II.

1–10 | 3

Page 3 of 11 Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t



3.2 Boron Homatomic Interaction

The boron framework is modeled in a different manner than typi-
cal non-bonded interactions. Evidence has shown that the octahe-
dral volumes are relatively unperturbed by metal substitution35

with variations in the interoctahedral (B–BinterOh ) distances be-
ing about 2.3 times greater than that of the intraoctahedral (B–
BintraOh ) bond lengths7. The homatomic boron potential is thus
estimated by taking into account only B–B interactions between
separate octahedra, keeping the octahedral volumes fixed at their
calculated equilibrium values through the use of rigid B–BintraOh

bonds. A similar methodology has been applied by Smith et al.47

when studying lattice dynamics of MB6. Upon analyzing Raman
scattering data, Smith et al.47 discovered that the internal modes
of the octahedra are of such a high frequency (20-38 T Hz) that
mixing with external modes is an unlikely event. Note that this
would require MD step sizes of at maximum 2.5 f s (though prob-
ably an order of magnitude smaller to be safe) to even attempt
capturing these effects, and there is doubt as to whether these
high frequency vibrations would give any further insight into the
macroscopic transport properties of these systems.

In order to produce a consistent set of pairwise potentials for
metal hexaborides, octahedral rotational perturbations and lat-
tice expansions are used to calculate energetics relating different
geometric layouts for a lattice of rigid octahedra lacking metal
cations. The φ◦

B6
energies are found by expanding the lattice until

the variation dE/da has reached a minimal value, and removal of
this energy is assumed to produce a cohesive energy dependent
upon B–BinterOh interactions only, as the intrinsic energy associ-
ated with isolated octahedrons is removed. Details of the pertur-
bations and calculations can be found in Schmidt et al.48.

3.3 Hetero-atomic Interaction

The pairwise potential approximation for non-bonded van der
Waals interactions leads to the following relationship for the total
system energy,

Etot(a) = φ◦
M +φ◦

B +EM·M(a)+EB·B(a)+EM·B(a)+Eelec (10)

in which the hetero-atomic interactions are given by the EM·B
and Eelec energies. In ionic systems, it is common for hetero-
atomic potentials to be described by a combination of an attrac-
tive Coulomb, repulsive van der Waals, and attractive van der
Waals interactions, the latter generally being negligible in com-
parison49. We should therefore expect the van der Waals compo-
nent of the hetero-atomic potentials to exhibit a repulsive char-
acter in nature once the electrostatic interactions have been re-
moved.

To aid in fully characterizing the energetics encountered during
dynamical motion, non-equilibrium structures are included when
parametrizing the M–B potential. The system is modeled in DFT
through a range of lattice constant values and translations of the
metal cation within the unit cell, (xM,i, 0, 0), in which xM,i ranges
from 0 to 1/2. This isolates the M–B interaction through a range of
interatomic separation distances, as the M–M and B–B sublattices
are identical in all translational perturbations.

Isolation of the van der Waals potentials for the M-B interac-

tions from the cohesive energy requires the removal of homatomic
interactions and the electrostatic potential energy. The former can
be calculated through a lattice summation using the interatomic
potentials derived in this work. Electrostatics tend to be more
complicated, though the smooth-particle mesh Ewald (SPME) of-
fers an attractive alternative for the system sizes used in this
work50. The use of fixed-volume octahedral units presents an
additional problem, as energy calculations of rigid bodies employ
different assumptions for electrostatic interactions in comparison
to systems composed entirely of free atoms. A simple Coulomb
potential would not have sufficed because the electrostatic energy
being calculated in a MD code is not equivalent to one determined
from a simple lattice summation. The calculation of electrostat-
ics for each change in M-coordinate and lattice size is therefore
handled with the SPME method in DL_POLY Classic51. The same
parameters listed in Sec. 4.2 are used in addition to prescribing
each metal cation with a +2 charge and boron charges −1/3 to give
net neutrality. The advantage of using DL_POLY Classic to calcu-
late electrostatics is that the DFT-derived cohesive energy should
be recovered once all of the potentials have been placed back into
a MD framework.

The cohesive energy for a M–B sublattice having fixed octahe-
dral volumes with the M ion at the origin is given by

EM·B(a) = 3
1

∑
k=0

∑
(m,n,l)

φM·B(Θkmnl(a)) (11)

with

Θkmnl(a) =
(√(

m+ ı2kΔz(a)
)2

+(n+ 1/2)2 +(l + 1/2)2 a
)

and

Δz(a) = 1/2+
(
zeq − 1/2

) aeq

a

Here, aeq and zeq refer to the equilibrium lattice constant and
positional parameter. Upon removal of the electrostatic and
homatomic contributions, the van der Waals interaction between
cation and boron atoms can be parametrized. As stated already,
there is no method for inverting a structure with “fixed-length”
unit cell parameters. An initial nearest-neighbor potential is
developed assuming the cation only interacts with the first 24
equidistant nearest-neighbor boron atoms. Although this is not
entirely accurate, it does provide a useful approximation for fur-
ther optimization — see sections below.

4 Pairwise Potentials Parametrization
In molecular dynamics simulations, it is convenient to have pair-
wise interactions described by simple mathematical forms such
as the Morse52 or Buckingham53 potentials. This convenience
arises from the fact that most MD computational platforms have
these and other forms already coded in their forcefields. Many
MD platforms also allow the use of tables or interatomic interac-
tion data for inputing forcefields. In principle, we could directly
use the pairwise interatomic potentials obtained from the lattice
inversion techniques, but we present a parametrization strategy
to obtain Morse parameters from lattice inversion and cohesive
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energy curves. Achieving this is not a simple task, mainly because
the parameter set is expected to produce a very specific behav-
ior — in addition to fitting the interatomic potential properly, the
Morse potentials should be able to reproduce the lattice energies
and MSD values for all atoms reasonably well if one wishes to
capture appropriate dynamics when performing MD simulations.

For this purpose, we divide the parameter optimization ap-
proach in three stages. The first stage—Method I, uses lattice in-
version potentials to obtain an initial set of Morse parameters that
reproduce the curvature of the inversion reasonably well, within
the limitations of the Morse potential model. However, different
mathematical forms of potential functions have different capaci-
ties and flexibility for fitting data sets. From experience, we find
that simply approximating the inversion curvature with a model
potential will not suffice. Small variations in the parameter space
can produce significant discrepancies in the calculation of the co-
hesive energies compared to those obtained from DFT calcula-
tions. The second stage—Method II, performs further parameter
optimization to obtain a better description of the cohesive ener-
gies, while, at the same time, maintaining good predictions of the
interatomic potentials. The last stage consists of performing dy-
namic relaxations of the system using MD simulations to further
optimize the parameter set with the objective of matching the
MSDs obtained from MD simulations to those obtained from DFT-
QHA. The subsections below describe in more detail the overall
optimization approach.

4.1 Equilibrium Energy

Morse potentials are chosen to represent the non-bonded interac-
tions with the form

φM(ri j) = E0

(
e−2k0(ri j−req)−2e−k0(ri j−req)

)
(12)

where E0 represents the dissociation energy, k0 is related to the
stiffness of the potential, and req is the interatomic separation at
which the force acting between the particles becomes null.

4.1.1 Method I

The potentials obtained for bulk metal α-phases and the metal-
boron interactions from Sec. 3 provide a target function onto
which a trial Morse potential can be parametrized. We chose to
constrain the values for equilibrium separation, req, and dissoci-
ation energy, E0, of the trial Morse potential to those given by
the target function, allowing optimization to occur through the
parameter k0. These values (req,E0) correspond to the local min-
imum of the target function and are easily found. An objective
function defined by

Eob j =
N

∑
i=0

exp
(
−φI(ri)

E∗

)(
φI(ri)−φM(ri,req,E0,k0)

)2 (13)

is then minimized for k0. The factor E∗ is a damping coefficient,
φI(·) is the target potential, φM(·) refers to the trial Morse poten-
tial for a specific value of k0, and i runs through all of the N data
points. The form of this weighting function allows for regions of
low energy to be given a greater relevance and excludes regions
of very high energy, as these are not likely to be encountered. This

approach is Method I.

4.1.2 Method II

We use Method I to produce an initial parameter set θ◦ for the
Morse potential model fM(r,θ), where the parameter space is
given by the array θ = [req, E0, k0]—see Eqn. (12) for details. The
initial parameter set θ◦ is perturbed randomly by up to ±100%
to populate an array of potential new parameter sets Sp

θ , where p
is the size of array—1200 in this work. These are used to com-
pute lattice energies with potential radial cutoffs of 12 Å, and an
objective function similar to Method I, exchanging φ(·) with E(·),
allows for an error estimate between calculated cohesive ener-
gies from DFT and lattice summations. The subset Ŝq

θ ⊂ Sp
θ of size

q—15 in this work, with the the lowest error in the objective func-
tion are then allowed to randomly change by ±50% for hundreds
of iterations, keeping a new set only if the error in lattice ener-
gies has been reduced. Once a pseudo-stationary state is found,
each parameter in the set is altered by ±0.05% while keeping the
other two constant, producing 6 new parameter sets for further
optimization. The change which allows for the largest decrease in
error is selected, and this simple single-step searching algorithm
is continued until a local optimum is found. It is common to see
that a majority of the q parameter sets relax to similar stationary
states of the objective function and the set with the best perfor-
mance is selected as the optimal θ∗. Recalculated lattice energies
for bulk metal phases can be seen in Fig. 3.
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Fig. 3 Cohesive energies for bulk α-phases of the three metals used in
this work from DFT and lattice summations with Method II potentials.
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Here we can see that the attractive wells are very well approx-
imated. Although the repulsive regions differ between the in-
verted and Method II Morse potentials, these offer a significant
improvement of the Method I calculated cohesive energies, which
are not able to predict the equilibrium lattice constants or well-
depths properly.

4.2 Dynamic Relaxation

The last step of the optimization process refines the parameters
to match target MSD values from the QHA results. The software
package DL_POLY Classic51 is used to perform MD calculations
on an 8× 8× 8 lattice of unit cells with equilibrated lattice pa-
rameters from DFT for each respective MB6. The total simulation
time during the optimization process is 11 ps including a 1 ps
equilibration. The microcanonical ensemble uses a Nosé-Hoover
thermostat with a τT = 0.5 and is integrated with the Velocity-
Verlet algorithm over 1 f s intervals. Electrostatics are calculated
using the SPME method with a precision of 10−8. The cut-off dis-
tance for non-bonded interactions is 12 Å to be congruent with
the pair-potential development. Temperature varies between 100
K and 900 K.

An initial simulation is performed using potentials generated
from Method II over the temperature range from 100K to 900K,
and MSD values are calculated from the trajectory data to give
MSDi,avg(T ) for each atom “i”. Only the final 8 ps of each run
is analyzed in order to mitigate any post-equilibration effects af-
ter thermostatic switching. Sample and origin intervals of 10 f s
and array lengths of 4 ps are used, allowing each time point to
be an average of approximately 200,000 and 1,200,000 single
atom trajectories for the cation and boron, respectively. An objec-
tive function is used which incorporates the deviations in average
MSD values and the slope and curvature of MSDi,avg(T ) between
MD- and DFT-calculated results. Each parameter p j for the M–
B potential is then modified by a percentage α j, where α j < 5
and changes throughout the process depending on how the dif-
ference Δp j affects the error to provide for better estimations of
step sizes. Simulations are carried out for each single-parameter
change p j ±Δp j over the range of temperatures, and the best-
fitting parameter set is chosen to be recycled back into this pro-
cess until a local minimum is found in the objective function. Con-
straints are additionally placed on the parameter values to favor
those which minimized errors in calculated lattice energies.

The boron MSD values are given preference in the objective
function with the assumption that these values should be similar
in all cases. The dominant behavior of boron in providing stabil-
ity to the hexaboride structure supports this claim. Experimental
work by Tanaka et al.36 has shown that elastic constants of a hex-
aboride system depends almost entirely on the boron lattice. In
addition to resisting large deviations with substitution of metal
cations, X-ray diffraction data of boron octahedra showed almost
no change in Debye temperatures for boron octahedra with rare
earth hexaborides of atomic numbers 57–61 and 63–6654, sug-
gesting that MSD values should also be fairly constant. Boron
MSD values calculated through DFT within the QHA for four hex-
aborides are shown in Fig. 4 along with MD-calculated displace-
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Fig. 4 Calculated boron MSDs from DFT and MD for four hexaboride
structures.

ments for the LaB6
48 system. Note that the oscillation amplitudes

for LaB6 from MD nearly capture the entire range of values for
the four hexaborides. Using the hetero-atomic potentials for opti-
mization, Table 2 shows the finalized parameters for each system.

Table 2 Finalized Parameters for Interatomic Morse Potentials with
Alkaline-Earth Hexaborides

Interaction M Charge req (Å) E0 (eV ) k0 (Å−1)
Ba–Ba +2 5.2070 0.07833 0.6690
Ba–B +2 3.8964 0.06655 1.3142
Ca–Ca +2 4.4104 0.04349 0.8432
Ca–B +2 3.8431 0.08011 1.2287
Sr–Sr +2 4.7578 0.03824 0.7914
Sr–B +2 3.8034 0.09163 1.2628
B–B +2 1.5160 2.21657 2.5688

5 Results
5.1 Mean-Square Displacements
The three metal hexaboride systems are simulated at 50K and
between 100K and 1000K at 100K intervals in DL_POLY Classic.
All parameters for performing simulations aside from simulation
times are given in Sec. 4.2. Each run is carried out for 50 ps,
which includes a 10 ps equilibration period. The final 40 ps are
used to calculate MSDs for both atom types with array lengths
of 5 ps and sample and origin intervals of 10 f s. An example
of the hexaboride MSDs is given for BaB6 to show similarities
between MD- and DFT-calculated values in Fig. 5. To allow for
comparison, results for boron and cations within each hexaboride
structure can be found in Fig. 6 and Fig. 7, respectively. Note that
these values are normalized to MSD values generated by QUAN-
TUM ESPRESSO.

The boron MSD values all follow the same pattern, predicting
displacements more accurately as temperature is increased. The
deviations in the lower temperature regions are believed to be
the result of quantum effects, and can be explained from a sim-
ple argument on the principles of molecular dynamics. Zero-point
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Fig. 5 Barium and boron MSD values for BaB6 calculated within MD
and DFT-QHA.

motion (ZPM) is a quantum mechanical effect which cannot man-
ifest itself in a classical framework based upon the solution of the
Newtonian equations of motion. The ZPM is more pronounced for
the smaller boron atoms, and the magnitude of these low temper-
ature displacements has been found neccesary to correctly predict
the thermodynamic stability of bulk boron55. The error in this re-
gion is therefore unavoidable, as classical motions should always
drop off at zero temperature.

The three metals are seen to follow the correct trends with
regard to the relationship between thermal kinetic energy and
displacements, the predictions being very well for barium and
decreasing in accuracy with atomic size. This appears to be an
added effect of the M–B and B–B potentials. The B–B interaction
was developed by parametrizing a Morse potential to accurately
reflect the equilibrium energetics and MSD values, owing to the
fact that there are currently no appropriate methods to invert co-
hesive energies for systems with anisotropic lattice expansions. It
has been found that a Morse potential which reproduces the cor-
rect lattice energies generally has the same shape but a smaller
and more dispersed energy well than the corresponding inverted
potential. This effect can be seen in Fig. 2 for the metal-metal
potentials. If one assumes that the B–B interaction follows the
same relationship, a larger value of E0 and k0 would give rise to a
more stable boron cage whose motion is less susceptible to metal
contact.

In addition, we believe that the size of the metal-boron contact
distance has a stabilizing effect on the octahedral lattice, allowing
a weak B–B bond to be sufficient in damping thermal motion of
the boron atoms. To illustrate the point, metal-boron potentials
for the three atoms are shown in Fig 8. The equilibrium contact
distances and associated energies for each atom correctly appear
to decrease with decreasing size and molecular weight, but there
is a constant repulsion between the boron and metal ions. This
forces the motion of any metal ion around its equilibrium posi-
tion to exponentially increase the system’s configurational energy
unless both atom types move synchronously, a result which acts
to favor states with similar displacements and is observed here.
A stronger B–B interaction would allow for smaller M–B req val-
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Fig. 6 Boron MSD values for BaB6, CaB6, and SrB6. Values and
deviations are normalized to DFT values for each system. Temperature
values for BaB6 and SrB6 have been shifted from the correct (CaB6)
values to reflect differences.
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Fig. 8 Metal-boron potentials developed in this work (solid lines) and
equilibrium M–B contact distances (dotted lines).

ues and hence a lower resistance to asymmetric displacements.
Uncoupling the MSDs should not have any detrimental effects, as
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displacements tend to increase with decreasing mass and balance
the effective momentum felt by the octahedra.

The choice to fit MSD values favoring boron displacements
came with a loss in accuracy for the metal MSDs but also pro-
vides insight into how the potentials can be improved. At the end
of each optimization step using MD (Sec. 4.2), a 40 ps simulation
is performed with the optimal parameter set from that step to
evaluate the accuracy and stability of MSDs generated during the
11 ps simulation. This not only serves as an indication of whether
the system has fully equilibrated, but gives an illustration of the
independence between the motions of the two atom types as the
parameters are modified. Analysis of the MSDs from these 40 ps
simulations shows a trend in the relationship between cation and
boron MSDs – as the MSD for one atom type increased, the other
appeared to do so proportionally. Therefore, the only way to in-
crease the lower molecular weight atom MSD values would be to
also increase boron MSDs, giving further evidence that the atoms
in these systems were not nearly as independent as they need to
be to create the profiles found from ab initio data.

5.2 Cohesive Energy

Electrostatics calculated via the SPME method are used in con-
junction with lattice summations to produce cohesive energy
curves for the three systems. These are shown along with DFT
calculations in Fig. 9. These results are reasonable for the equi-
librium structures and energies. It is worthwhile to note that
the majority of non-electrostatic cohesive energy near the equi-
librium lattice constant comes from the B–B bonding energies;
therefore, deviations from the equilibrium values are expected to
be small. These can be observed in Table 3, where the calculated
equilibrium cohesive energies and lattice constants are shown for
pair-potential (PP) lattice summations and DFT-calculations. The
error in lattice constants is always less than 1% and cohesive en-
ergy errors seem to increase with decreasing ion size, though they
are fairly accurate given the amount of non-equilibrium data used
during parametrization. The trends in Fig. 9 indicate that a por-
tion of the attractive well (a = 4.5 – 9 Å) is not accounted for
within this model. This is probably due to the use of the elec-
trostatics calculated with the SPME. It is known that the majority
of cohesion in ionic crystals is due to electrostatic interactions56,
forcing the cohesive energy to be heavily dependent on the form
of this potential. When using SPME in DL_POLY Classic, the non-
bonded radial cutoff rcut = 12 Å is not incorporated in the elec-
trostatic calculation to avoid discontinuities in the force. Rather
than tapering off to zero at rcut , the Coulomb potential has a fairly
large and constant slope for the entire range. In order to produce
a more accurate represenation of the lattice energy in this ionic
system, one would benefit from alternative methods for electro-
static calculations which incorporate smoothing functions and ra-
dial cutoffs. An example of this is the method proposed by Wolf
et al.57.

5.3 Mechanical Properties

To investigate how the change in curvature between the classical
model and ab initio calculations affects the mechanical proper-
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Fig. 9 Cohesive energies for each of the three systems modeled from
DFT-calculations and lattice summations using the SPME for
electrostatics.

Table 3 Equilibrium Lattice Values for MB6 from DFT and Current Model

Lattice Constant, a Cohesive Energy, E
Crystal DFT (Å) PP (Å) Err (%) DFT (eV ) PP (eV ) Err (%)
BaB6 4.2435 4.2198 0.558 −18.313 −18.338 0.137
CaB6 4.1446 4.1370 0.183 −17.965 −16.801 6.479
SrB6 4.1925 4.1766 0.379 −17.933 −17.309 3.480

Note: PP = Pair Potentials, Err = |1− (PP/DFT)|

ties of the three materials investigated, the bulk modulus Bo is
calculated for each of the six cohesive energy curves, using the
Murnaghan equation of state58 to determine the value of Bo. We
note that the use of fixed octahedra will have some effect on the
actual values, but the errors are expected to be small—the varia-
tion in inter-octahedral boron-boron bond lengths is much larger
than intra-octahedral bonds. This fact supports the idea that the
inter-octahedral bonds will provide less resistance to compression
and expansion; therefore, a majority of the bond-length deforma-
tions are expected in these bonds. The calculated bulk moduli can
be found in Table 4 for DFT and lattice summations using the cur-
rent pair-potentials. The three AEB6 systems show similar trends
in the errors between DFT and lattice summation values for Bo

and errors given in Table 3, having better agreement for larger
cations. A published experimental value of 169.9 GPa for the bulk
modulus of CaB6 has been determined through X-ray diffraction
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Table 4 Bulk Moduli Calculated from Murnaghan EOS for MB6 from
DFT and Current Model

Crystal DFT (GPa) PP (GPa) Err (%)
BaB6 152.680 140.128 8.22
CaB6 168.377 140.263 16.70
SrB6 160.265 140.561 12.29

Note: PP = Pair Potentials, Err = |1− (PP/DFT)|

studies59, in excellent agreement with our DFT calculations. Un-
fortunately, experimental data is sparse in the academic literature
for the mechanical properties of these systems, so comparison is
mainly limited to ab initio calculations. Theoretical calculations
of Bo were found for BaB6

60 (162 GPa), CaB6
60–62 (147.83–159

GPa), and SrB6
60,63 (149.87–160 GPa), which are in agreement

with the values obtained from both DFT calculations and the clas-
sical model used in this work.

6 Conclusions
In this work, we developed a modeling framework for metal hex-
aborides to estimate inter-atomic pair potentials for use in molec-
ular dynamics simulations. The framework uses a combination of
the DFT and MD techniques to obtain pairwise potentials that can
be readily applied to the analysis of atomic movement in these
type of materials. Mean square displacements (MSD) and equi-
librium energetics can be predicted fairly very well for calcium,
barium, and strontium hexaborides. The metal-boron potentials
seem to work better for larger cations such as Ba and Sr. For cal-
cium, the deviations between calculated MSDs from MD and QHA
estimations are larger.

In the neighborhood of the equilibrium regions, the cohesive
energies estimated with the pair potentials developed in this work
are in excellent agreement with those estimated from DFT calcu-
lations. This is important and required if one wants to capture ap-
propriate dynamic behavior of these materials in a molecular dy-
namics setting. Additionally, the modeling framework proposed
provides better insight on the nature of the atomic interactions in
these crystals. Using rigid body dynamics for the octahedral units
reduces the complexity significantly of using molecular dynamics
to study these materials at larger scales than those typical of DFT
calculations.
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Pairwise potentials are developed using DFT and MD methods for a new
model to describe energies and dynamics in alkaline-earth hexaborides.
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