Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

1		
	0	
1		
	U	
	()	
	C	
2	\geq	
1		
	D	
1	Ľ	
	Q	
	3	1
	X	
	U	
	0	
	L	
	>	
		Ĩ
1		
	0	
	C	
	Φ	
	ž	
	0	
1		
	()	
	Π	
ł		
	U	
1	Ũ	
	g	
ļ		
ĺ	\geq	
į.		
	O	
1		
	2	
	2	
	$\mathbf{\nabla}$	
ľ	7	

Journal of Materials Chemistry A Deformable fibrous carbon supported ultrafine nano-SnO₂ as a high 1 volumetric capacity and cyclic durable anode for Li storage 2 3 Renzong Hu^{1,2}, Hanyin Zhang¹, Jiangwen Liu¹, Dongchang Chen², Lichun Yang¹, Min Zhu¹*, 4 and Meilin Liu²* 5 6 7 8 ¹Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of 9 Materials Science and Engineering, South China University of Technology, Guangzhou, 10 510640, China E-mail: memzhu@scut.edu.cn 11 12 ² School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 13 14 30332-0245, US 15 E-mail: meilin.liu@mse.gatech.edu 16 17 18 Keywords: lithium ion battery, deformable fibrous carbon, tin dioxide, stress release, *in*-situ 19 Raman spectrum 20 21 Abstract: 22 Multidimensional fibrous carbon scaffolds, derived from carbonized filter papers (CFP), was 23 used to support SnO2 nanocrystals (NC, with size of 4~5nm) to form a free-standing 24 SnO2NC@CFP hybrid anode for Li-ion batteries. The SnO₂NC particles are well accreted on 25 the surfaces of 1D carbon fibers and 2D ultrathin carbon sheets while maintaining 3D 26 interconnected pores of the carbon matrices for fast ionic transport. The SnO₂NC@CFP 27 hybrid electrode exhibits long-term higher energy density than the commercial graphite anode, 28 and excellent rate capability, due mainly to good dispersion of SnO₂ in the multidimensional 29 conductive carbon. In particular, the reversible deformation of the flexible fibrous carbon 30 matrices, as inferred from *in* situ Raman spectroscopy and SEM image analysis, facilitates

31 stress release from the active SnO_2NC during discharge-charge cycling while maintaining

structure integrity of the self-supported SnO₂NC@CFP anode. These demonstrate that rational
 combination of multidimensional architecture of deformable carbon with nanoscale active
 materials is ideally suited for high-performance Li–ion batteries.

- 35
- 36
- 37
- 38
- 39

Journal of Materials Chemistry A Accepted Manuscript

1 1. Introduction

2 To meet the power demands of many emerging applications such as electric vehicles and smart grids, it is necessary to significantly increase the capacity/energy densities and prolong 3 4 the lifespan of the existing lithium ion batteries (LIBs); this is a great challenge to the battery industries and the scientific communities^[1]. To overcome this challenge, various intriguing 5 6 designs and strategies have been proposed for dramatically enhancing the performance of the electrodes ^[2]. As one of the most promising alternative anode materials, tin dioxide (SnO₂) 7 8 has attracted much attention due to its high theoretical capacities and moderate operating potential for Li storage in comparison to graphite and other transition metal oxides^[3-10]. It is 9 well known that SnO_2 stores Li^+ by a two-step process, a conversion reaction 10 $(SnO_2+Li^+ \leftrightarrow Sn+Li_2O)$ followed by an alloying reaction $(Sn + xLi^+ \leftrightarrow Li_xSn)$, 11 corresponding to a theoretical capacity of 711 and 783 mAhg⁻¹, respectively ^[5, 11]. Thus, the 12 theoretical capacity (1,494 mAhg⁻¹) is about four times of that of graphite (372 mAhg⁻¹). 13 14 However, severe capacity fading during cycling is still the greatest challenge for SnO₂ anode 15 to be commercially viable, due mainly to disintegration of the electrode structure resulted 16 from the huge volume change and serious aggregation of Sn particles during the alloying reaction^[5, 12], as well as poor electron/ion conductivity of the oxides. Further, SnO₂ based 17 18 anodes have large initial capacity loss, due primarily to the irreversibility of Li_2O in the 19 conversion reaction, in addition to other Li-consuming irreversible reactions on new surfaces of electrodes^[6, 13, 14]. Accordingly, nanoparticles of SnO₂ have been integrated with different 20 forms of carbonaceous (C) matrices ^[15-24] to enhance the structural stability and reaction 21 22 reversibility of SnO₂ anodes.

The function of the carbonaceous additives in a SnO_2 -C hybrid electrode is twofold; it may act as a matrix to buffer the volume change of SnO_2 and to enhance the conductivity of the electrode. However, the specific morphology and architecture of the carbon supports dramatically affect the performance of the hybrid electrode ^[25-28]. 1D carbon structures (e.g.,

nanowire, nanotube, and electrospun microfiber) could achieve fast Li⁺ transport kinetics in 1 2 one direction, but offer low loading of SnO2 and thus low electrode capacity due to small surface areas ^[20, 29-31]. For 2D carbon matrices with higher surface areas (such as grahene, 3 ultrathin carbon sheets, and carbon coating), more SnO_2 particles could be loaded with good 4 electrical contact, resulting in higher capacity and enhanced cycleability^[28, 32-34]. However, 5 6 large initial irreversible capacity loss was inevitable due to the high surface areas of the hybrids ^[35]. In contrast, 3D interconnected carbon structures (e.g., porous carbon, fiber 7 networks, and fiber papers) with continuous transport pathways allow fast Li⁺/e⁻ transport in 8 any dimensions while maintaining a superior structural integrity for the SnO₂^[36-38]. 9 10 Nevertheless, the volumetric capacity of the 3D porous hybrids is relatively low due to the 11 large-sized pores of the carbon skeletons. Furthermore, it was found that Li₂O may be partly 12 decomposed, yielding higher reversible capacity if ultrafine SnO₂ particles were well combined with nanosized carbon^[28, 39]. Accordingly, new electrode architectures are required 13 14 to mitigate the problems associated with the existing hybrid electrodes. An effective approach 15 could be a rational combination of multidimensional (1D, 2D, 3D) carbon with well-dispersed 16 nanoisized SnO₂ phases.

17 It is found in a previous study that the deformability (or superelasticity) of a supporting 18 matrix is vital to effectively accommodating the volume change of Sn-based active materials during Li⁺ insertion and extraction^[40]. Accordingly, a deformable carbon frame may help to 19 20 suppress the volume expansion effect of lithiated SnO_2 . Here we demonstrates the rational 21 design of a multidimensional SnO₂-C hybrid electrode by simply using carbonized filter paper 22 (CFP), which has a 3D porous structure consisting of 1D micro /nanosized carbon fibers and 23 2D ultrathin carbon sheets. The electrode was prepared by electrodepositing SnO₂ 24 nanocrystals (NC) on CFP, which was different strategy to those previously reported work that usually using filter papers as templates to form SnO_2-C nanofibers^[41, 42]. This unique 25 26 SnO₂NC@CFP hybrid electrode was used as a self-supporting anode excluded the additional

3

Journal of Materials Chemistry A Accepted Manuscript

binder and current collectors, in which the carbon scaffolds were deformable and flexible to

1

23

24

25

26

2 release the stress induced by lithiation of SnO₂, displaying high gravimetric and volumetric 3 capacity, excellent rate capability and long cycling life. 4 **2. Experimental Sections** 5 Fabrication of porous carbonized filter papers (CFP): The commercial filter paper sheets 6 (Hang Zhou Filter paper Co. Ltd) were placed in an alumina boat in a horizontal tube furnace, 7 and carbonized at 450°C for 4 hour as a H₂/Ar gas mixture (92%Ar+8%H₂) was flowed 8 through the tube to form black CFP sheets. 9 Electrodeposition of SnO_2 nanocrystals on CFP sheets ($SnO_2NC@CFP$): The solution 10 (250mL) for electro-deposition was composed of 20 mM tin dichloride (SnCl₄, 99.8%), 100 11 mM sodium nitrate (NaNO₃, ~99%), 75 mM nitric acid (HNO₃), and distilled water. A 12 rectangle piece of CFP (1×1.5cm) was used as the working electrode, which was soaked in the 13 above solution for 2h before electrodeposition. A conventional three-electrode cell was used 14 for the electro-deposition in which a platinum (Pt) metal plate was used as the counter 15 electrode with a separation from the working electrode by 2 cm. A saturated calomel electrode 16 (SCE) was used as the reference electrode. SnO_2 were deposited using a potentiostat (CHI600E, China) with working potential of -0.2V (vs. SCE). The SnO₂ loading in CFP 17 18 matrix was dependant on the depositing time and the concentration of Sn-based solution. 19 However, It was also found that the morphology in different samples were dramatically 20 different. Duration of 30 min for electrodeposition had been chosen after optimization. The 21 deposits were washed with water and then immersed in deionized water to leach the 22 remaining chloride impurity. The specimens were dried at 200 °C for 4h in a drum wind

were also collected and dried at 200 $^{\circ}$ C for 4h in a drum wind drying oven. 4

drying oven, and finally the brown self-supporting SnO₂NC@CFP hybrids were obtained.

Pure SnO₂NC powders (with average crystal size 4-5nm, see Figure S5, Supporting

Information) formed during the deposition, in the solution near under the working electrodes,

Synthesis of a physical mixture of pure SnO₂NC powders and CFP (SnO₂NC+CFP mixture):
 20mg SnO₂NC powders and 30mg CFP powders were put together in an agate mortar, and
 then grinded by hand for 30 min to form a mixture of SnO₂NC and CFP.

4 *Materials characterization:* The morphologies of the samples were characterized using a Carl 5 Zeiss Supra 40 field emission scanning electron microscope (SEM) and a JEOL JEM-2100 6 transmission electron microscope (TEM) operating at 200kV. The phase variations of the 7 samples were determined using a Philips X-ray diffractometer (XRD) with Cu-Ka radiation 8 and a Raman spectrometer (Raman, Horiba) with a 632.81nm excitation laser. The electronic 9 states of O in the electrodes were determined by an AXIS Ultra DLD X-ray photoelectron 10 spectrometer (XPS) using Al- K_{α} radiation. Raman spectra were obtained using a Renishaw 11 RM 1000 spectromicroscopy system with an air-cooled Ar laser emmited 446nm. 12 Thermogravimetric (TG) analysis was performed under O_2 on NETZSCH STA409 with a heat 13 rate of 10℃/min.

14 *Electrochemical measurements:* The discharge–charge cycling performance of the samples 15 was investigated using a cell test system (LAND-CT2001A) with CR2016 coin-type cells, 16 while the specific capacities of all reported composites were calculated from their total mass. 17 The binder-free CFP (1cm \times 1cm, ~ 4 mg), SnO₂NC@CFP sheets (1cm \times 1cm, ~6.5mg), and 18 commercial graphite anode coated on Cu foil (MTI Cooperation) were directly used as the 19 working electrodes. For the SnO₂NC electrode slurry-coated on Cu foil substrates, it was 20 consisted of 80 wt% of the active material, 10 wt% conductivity additives (Super-P), and 10 21 wt% binder polyvinyldifluoride. Lithium foil was used both as counter electrode and as 22 reference electrode in the half cells. The electrolyte was LiPF₆ (1 mol/L) in a mixture of 23 ethylene carbonate (EC)/diethyl carbonate (DEC)/ethyl methyl carbonate (EMC) with a 24 volume ratio of EC/DEC/EMC=1:1:1 (Shanshan Tech Co., Ltd.). The cells were tested at 25 various current rates between 0.01 and 2.0 V at room temperature. For in-situ Raman 26 observation, the SnO₂NC@CFP and pristine CFP sheets were acted as the working electrodes

Journal of Materials Chemistry A Accepted Manuscript

in a spectroelectrochemical cell (MTI Cooperation). A small hole was made in the lithium foil and separator in order to observe the electrode surface. The electrolyte mixture of 1M LiBOB in PC was used in the *in*-situ Raman cells due to the serious fluorescence effects of LiPF₆ weaken the Raman signal of carbon and SnO₂. The *in*-situ Raman cell was galvanostatically tested using a Solatron Analytical 1470E potentiostat. At the same time, an *in*-situ timeresolved study was conducted by placing the laser spot on the same location, with the laser slightly out of focus to cover a larger area of about 5µm in diameter.

8 **3. Results and Discussion**

9 It is well known that the filter papers (FP, actually the cellulose) possess porous network 10 structure with complicated hierarchical morphology. The carbonization of FP in N_2 had been previously reported^[43] but the final carbon paper was dense and without fibrous morphology, 11 12 owing to the coalescence effect of the carbon species formed during the carbonization process 13 of cellulose. In this study, we carbonized commercial FP sheets differently, in a rapid flow of 14 a H₂/Ar mixture rather than in N₂. The surface hydroxyl groups could be quickly removed 15 from cellulose to avoid coalescence of carbon under a reducing atmosphere H_2 . Thus, the 16 rapid H_2/Ar flow helped to maintain 3D porous structure in CFP. Furthermore, the rapid H_2/Ar 17 flow could also help to thin the fibers and create pores in the carbon scaffolds (see detailed 18 microstructure observation below and Figure S1, Supporting Information). In the 19 preparation of hybrid anode, the CFP sheets were first immersed in an acidic electrolyte 20 solution (with SnCl₄, NaNO₃ and HNO₃) for 2h to allow the solution to fully fill inside the 21 pore space of the CFP due to the capillary force. During 30 minutes electrodepositing, 22 Sn(OH)₄ formed and precipitated inside the pores and on surfaces of the CFP because of its 23 low solubility. Finally, the Sn(OH)₄ was dehydrated at 200°C to form SnO₂ nanocrystals in 24 the CFP to yield a $SnO_2NC@CFP$ hybrid. The hybrid contained ca. 39wt% of SnO_2 as 25 determined from thermogravimetric (TG) analysis (Figure S2, Supporting Information).

26

The resultant SnO₂NC@CFP hybrid sheets possessed morphological characteristics of

1 the original CFP except for a little change in shape due to stress induced by SnO_2 deposition. 2 As shown in the right top inset of Figure 1a, the SnO₂NC@CFP hybrid sheets were self-3 supporting with a thickness of ~110µm (see in Figure 6 later). Analysis of the XRD patterns 4 of CFP, SnO₂NC powder, and SnO₂NC@CFP hybrid, as seen in Figure 1a, suggests that 5 carbon in the CFP was amorphous before and after electrodeposition. The weak and broad 6 peaks at 26.5°, 33.7° and 51.6° are an indication of the nanocrystalline nature of SnO_2 in both 7 the pure SnO₂NC and hybrid sheet. XPS analysis also revealed the existence of Sn (14.5at %) 8 in hybrid and increase of oxygen from 13.9at % for CFP to 39.1at % for the hybrid (Figure S3 9 and Table S1, Supporting Information).

11

12 Figure 1. (a) XRD patterns of (i) CFP bulk material, (ii) pure SnO₂ nanocrystals collected 13 from precipitation near the working electrodes, and (iii) binder-free SnO₂NC@CFP; the 14 insets are the images for CFP (lower right) and SnO₂NC@CFP sheets (top right), respectively; 15 (b) O1s XPS spectra of CFP and SnO₂NC@CFP sheets. (c) Raman shits for the self-16 supporting CFP before and after depositing of SnO₂NC.

Journal of Materials Chemistry A Accepted Manuscript

1

2 Additionally, as shown in Figure 1b, the O1s spectra suggested a dramatic increase of C-O and C=O bonding in the SnO₂NC@CFP hybrid in comparison with the CFP, which should 3 4 be generated from the interface between SnO_2 and the carbon matrix. These interfaces were 5 expected to enhance the bonding between SnO₂ and carbon in CFP. The C-O bonding should 6 be generated from the interface between SnO_2 and the carbon matrix, which were expected to 7 enhance the bonding between SnO₂ and carbon in CFP. However, the increase in C=O 8 bonding should be attributed to the residual cellulose inside the fibers, which was exposed 9 through the cracks formed in fibers during SnO₂ deposition and the subsequent heat-treatment 10 in Air. It could be seen from the change in Raman features shown in **Figure 1c** that, after the 11 deposition of SnO_2 on CFP, the intensity ratio of the D band to G band of carbon (I_D / I_G) 12 increased to 0.81 from 0.53 for the pristine CFP, implying a change in the structure of the $carbon^{[44]}$. Thus, the deposition of SnO₂ may lead to deformation and /or surface defects in the 13 14 multidimensional carbon scaffolds. The C-O bonding at the interface between SnO_2 and carbon may also contribute to the increased I_D / I_G ratio. In addition, the E_g , A_{1g} , and B_{2g} band 15 for crystalline SnO₂ are clearly seen at 472, 620 and 775cm⁻¹, respectively, in the Raman 16 spectrum of the hybrid electrode while an obvious peak at around 556 cm⁻¹ is attributed to 17 amorphous SnO₂, ^[45] suggesting that a mixture of nano-crystalline and amorphous SnO₂ was 18 19 formed on the CFP.

Figure 2a displays a typical SEM image for the CFP bulk material (inset in low right corner in Figure.1a). It clearly revealed the interconnected 3D porous structure (large amount of microsized holes and free-spaces) of the CFP, which consisted of random arrangement of the microsized fibrous carbon. As seen in the SEM images shown in Figure 2b and c, there were many 2D ultrathin carbon sheets (Figure 2b and Figure S1, Supporting Information) covered on the fibers, while micro-fibers were rolled up to form hollow tubes /grooves (Figure 2c). The 1D micro/nanofibers and the interconneted porous structure of the interlayer

1	of the CFP, as well as their amorphous nature were also identified by TEM observations
2	(Figure S1, Supporting Information). These confirmed that the hierarchical structure of the
3	initial FP was maintained, in addition to the multidimensional architecture after treating under
4	a reducing Ar/H ₂ atmosphere. It should be noted that this unique structure of CFP is quite
5	different from the previously reported carbonized filter paper treated in nitrogen ^[43] . However,
6	more controlled experiments need to be carried out to further study their formation processes.
7	Figure 2d reveals the SEM image of the resultant SnO ₂ NC@CFP hybrid bulk sheets. It is
8	clearly shown that the SnO ₂ deposits were dispersed on the CFP while the 3D porous network
9	and fibrous structure were maintained. Also, the higher magnification SEM images indicated
10	that all the surfaces of the micro/nano-fibers (Figure 2e and f) as well as the ultrathin carbon
11	sheets (Figure 2g) were completely accreted with ultrafine and uniform SnO_2 particles.
12	Furthermore, careful examination of the hybrid suggests that the microfiber bundles were
13	divided to nano-fibers (Figure 2e, and Figure S4, Supporting Information), resulted likely
14	from the release of large stresses induced by SnO_2 growth on the surface of CFP.

1

Figure 2 (a) SEM images of 3D porous CFP yielded by calcinations of commercial filter paper under a Ar/H_2 atmosphere; (b) and (c) large magnification SEM images reveal the existence of 2D ultrathin carbon sheets and hollow tubes;(d) typical SEM image of the asprepared SnO₂NC@CFP sheet; (e) and (f) higher magnification SEM images showing the surface morphology of micro-size fibers after depositing of SnO₂NC; (g) Enlarged SEM image for zone arrowed in (d), showing the coverage of ultrafine SnO₂ particles on the 2D ultrathin carbon sheets.

1

Figure 3 (a) TEM images for the 2D ultrathin carbon sheets in the SnO₂NC@CFP hybrid, insert: the corresponding SAED pattern; (b) enlarge image, and (c) HRTEM image for the zone arrowed in (b); (d) TEM image for the inner porous layer of the hybrid, arrows indicated the deposits in pores; (e) and (f) enlarge TEM image and its SAED pattern for zone arrowed in (d).

7

8 The TEM image of the SnO₂NC@CFP hybrid (Figure 3a) clearly shows the variation 9 of the 2D ultrathin carbon sheets in the CFP after SnO_2 loading and the heat treatment. The 10 continuous rings in the selected-area electron diffraction (SAED) pattern (inset of Figure 3a) 11 further confirmed the presence of polycrystalline SnO₂. Enlarged TEM and HRTEM images 12 (Figure 3b and c) revealed that uniform SnO_2 nanocrystals (4-5nm) were homogeneously 13 distributed in the ultrathin carbon sheets. High dispersion state of ultrafine SnO_2 on 14 micro/nano-fibers in the SnO₂NC@CFP hybrid was also observed, in comparison with the 15 pure SnO₂NC (Figure S4 and S5, Supporting Information). TEM image in Figure 3d indicated that the inner layer of the CFP remained the porous structure in the electrodeposited hybrid, whereas most of the micro-pores were also filled with deposits (indicated by arrows). However, it was found that most of the deposits were aggregated in the pores rather than dispersed on their inner surfaces (Figure S4, Supporting Information). Enlarged image in Figure 3e showed that the aggregations were also ultrafine SnO₂ nanocrystals, with distinguishable (110) and (101) diffraction rings as indicated in Figure 3f, while the pores had free-space to accommodate the volume variation of these nanosized SnO₂ aggregates.

Journal of Materials Chemistry A Accepted Manuscript

8

9 Figure 4 (a) Illustration for the flexibility (shape variation) of the multidimensional fibrous 10 carbon, induced by the stress resulted from volume expansion of SnO₂ during reacting with Li. 11 The 1D nanofibers and 2D carbon sheets could be bendable, while the microfibers were 12 expected to split to be flexible nanofibers, to maintain the integration of SnO_2 layers. (b) In-13 situ Raman spectrum of the SnO2@CFP electrode collected at different lithiation state for the 14 1st cycle. (c) *In*-situ Raman spectrum of the CFP electrode collected at different lithiation state 15 for the first two cycles. (d) Comparison the I_D/I_G of the CFP and SnO₂@CFP at different 16 potential states. 17

1 Based on the above observations, our designed concept, i.e., the multidimensional 2 configuration and interconnected porous structure of the SnO₂NC@CFP self-supporting 3 anode, has been successfully achieved, in which SnO₂ nanocrystals homogenously bonded on 4 the surfaces of 1D micro/nanosized fibers and 2D ultrathin carbon sheets, and stored inside 5 the 3D interconnected pores. Thus, the 1D and 2D fibrous carbon matrixes were expected to 6 be deformable under the stress resulted from volume change of SnO₂ during charge/discharge 7 cycling. There, as illustrated in **Figure 4a**, the 1D nanofibers and 2D carbon sheets could be 8 bendable to buffer the volume change of SnO_2 , while the microfibers could split to flexible 9 nanofibers (see SEM images in Figure 7 and Figure S8) to release the internal stress of SnO₂ 10 layer, avoiding its serious disintegration. We have also examined the fibrous carbon in a 11 hybrid electrode during SnO₂ lithiation using *in*-situ Raman spectroscopy performed on a cell 12 with a quartz window. Figure 4b shows a series of Raman spectra of $SnO_2@CFP$ electrode 13 collected at different potentials during the first cycle. Clearly, the SnO₂ bands disappeared 14 when it was discharged to 0.5V, accompanyed by an obvious increase in I_D/I_G from 0.81 to 15 1.18 (Figure 4d). As mentioned earlier, a higher value of D/G band intensity ratio reflects 16 more microstructure defects in the carbon. Thus, an increase in I_D/I_G may be attributed to 17 more edge distortions and new surface formation in the carbon matrix due mainly to local deformation of fibrous carbon in the hybrid electrode^[44]. Most notably, as seen in **Figure 4b**, 18 19 the G band of carbon disappeared (and dramatically red-shifted) when the hybrid electrode 20 was discharged to 0.01V, leaving only one broader band centered around 1400 cm^{-1} . The 21 essential spectral features remained the same even after the hybrid electrode was recharged to 0.4V. However, as more Li⁺ ions were extracted from the electrode so that the potential 22 23 recharged 2.0V, the G band was nearly restored and the I_D/I_G ratio changed to 1.30 (Figure 24 4d), suggesting that there is a large, partially-reversible structure deformation in the fibrous carbon of the hybrid electrode during Li⁺ insertion and extraction. The structural deformation 25 26 is induced by the large volume change associated with the conversion reaction (between SnO_2)

1 and Li₂O) and the Li-Sn alloying/de-alloying reaction in the SnO₂@CFP hybrid electrode. 2 The structural deformation is not induced by lithium insertion into in the fibrous carbon in the 3 CFP frame, as corroborated by the in situ Raman study of a CFP sample under the identical 4 conditions (Figure 4c and d). In contrast, the variations in the I_D/I_G ratio at different lithiation 5 states are relatively small, as seen from the Raman spectra shown in **Figure 4c**; this is 6 consistent with studies of other pure carbon anode materials [44, 46]. These results confirmed 7 that lithiation of SnO_2 actually leaded to sever deformation in the multidimensional carbon 8 scaffolds, which could in turn effectively release the stress and prevent the pulverization of 9 SnO₂ layers. Thus, the hybrid anode supported by multidimensional carbon scaffolds showed 10 excellent performance.

11

Figure 5 (a) The first-cycle charge–discharge curves for the slurry-coating pure SnO₂NC, binder-free CFP and SnO₂NC@CFP electrodes; (b) discharge capacity vs. cycle number of CFP, the slurry-coating SnO₂NC+CFP mixture, SnO₂NC@CFP electrodes cycling between 0.01 and 2V at current rate of 0.25Ag⁻¹; (c) rate capability of SnO₂NC@CFP hybrid after cycling 150times shown in (b); (d) the first and second discharge-charge curves of the SnO₂NC@CFP after prelithiation treatment and then cycling with constant-potential charging (at 2V, until I<0.02mA).

1 Figure 5a shows the first charge-discharge cycle curves for the binder-free SnO₂NC@CFP anodes at current rate of 0.25Ag⁻¹ between 0.01 and 2V vs. Li/Li⁺, together 2 with those of the pure SnO₂NC and CFP electrodes for comparison. It could be observed that 3 there were similar plateau regions for lithiation of SnO_2 in the discharge profiles of the 4 5 SnO₂NC and SnO₂NC@CFP. The SnO₂NC@CFP sheet (1cm²) delivered an initial discharge capacity of 1,316 mAhg⁻¹ with initial coulombic efficiency (CE) of 53.4%, which was near to 6 7 that (53.3%) of the slurry-coating SnO₂NC electrode. The initial irreversible capacity of SnO₂NC@CFP was ~613 mAhg⁻¹, while most of them should be attributed to the solid 8 9 electrolyte interphase (SEI) formation and especially the irreversible reactions on CFP because there was also a large initial irreversible capacity of 452 mAhg⁻¹ in the pure CFP 10 sheet. Nevertheless, the discharge-charge curves of the subsequent cycles (e.g., 2nd-5th, 50th, 11 and 100th) were almost overlapped for SnO₂NC@CFP anode (Figure S6, Supporting 12 Information), suggesting high reversibility of Li⁺ insertion/extraction reactions in the hybrid. 13 14 As recorded in Figure 5b, after the initial 10 cycles, the SnO₂NC@CFP electrode retained excellent capacity retention. Stable capacities of 510 mAhg⁻¹ still remained after 150 cycles. 15 16 Another SnO₂NC@CFP hybrid, with a lower SnO₂ content of 23wt%, could also deliver stable reversible capacities around 400 mAhg⁻¹ (Figure S7, Supporting Information). They 17 18 were much higher than those of the SnO₂NC+CFP mixture electrode with which only 160 mAhg⁻¹ was retained after 120 cycles, while the CFP sheet yielded stable but very low 19 reversible capacities (about 100mAh g⁻¹). These results suggest that the combination of SnO₂ 20 21 nanocrystals with multidimensional fibrous carbon could lead to high capacity and superior 22 cycleablitiy.

Moreover, the SnO₂NC@CFP hybrid displayed high rate capability. The electrode which had finished 150 cycles at a constant rate of 0.25Ag^{-1} (**Figure 5b**) was further cycled at varied current rates. As shown in **Figure 5c**, a reversible capacity of 652 mAh g⁻¹ was obtained at the end of five charge/discharge cycles at 0.1Ag^{-1} . The capacity at 1.0Ag^{-1} was 480 mAh g⁻¹,

and decreased to 230 mAh g^{-1} at a rate of 10Ag^{-1} . Surprisingly, a higher capacity 1 2 (580 mAh g^{-1}) was restored when the current returned to 0.25Ag^{-1} , and a very stable capacity of 460mAh/g was yielded at a rate of 2.0Ag⁻¹ after 100 cycles. The long-term cycling of the 3 SnO₂NC@CFP anodes were repeated at high current rate of 2.0A g⁻¹ (Figure S6, Supporting 4 Information), also showing good cycle performance with 350 mAh⁻¹ after 1000 cycles with 5 6 upper limit potential at 2.0V. Here, it needs to be pointed out that, although many SnO₂-C 7 nanocomposites could present much higher and even general increasing capacities among wide potential range of $0-3V^{[14, 18, 28]}$, quite a large amount of capacities should be generated 8 9 at the expense of electrolyte decomposition at high potential (from 2.0 to 3.0V). Furthermore, 10 the capacities among potential range of 2.0-3.0V would be less meaningful for batteries using 11 now commercial cathodes^[47].

12 Beyond those, more attention was brought to the CE of the self-supporting 13 SnO₂NC@CFP anode. As shown in **Figure 5d**, the initial irreversible capacity loss could be further suppressed by a prelithiation treatment^[20, 48] for the hybrid and cycling with constant-14 15 potential charging (at 2V, until I < 0.02mA), which leads to a higher initial CE of 74.7% and 16 lower initial capacity loss of 229 mAhg⁻¹. This suggested that the initial irreversible capacity in the SnO₂NC@CFP anode was mainly attributed to the large amount of Li⁺ consumed 17 18 irreversibly by the defects of the carbon matrix. During prelithiation, these defects would 19 store enough Li by diffusion and/or chemical reaction as Li foil directly contacting with the hybrid, and they would not further accept Li⁺ and generate irreversible capacity loss in the 20 21 electrochemical cycling afterwards. Furthermore, some Li may also react with the SnO₂NC as 22 Li foil was in contact with hybrid, leading to less SnO₂ lithiation at the initial discharge. This 23 is the main reason that the initial discharge-charge curves of the as-prepared electrode have 24 different shapes from those of the electrode after pre-lithiation treatment (Figure 5a and d). The differential discharge curves also revealed that less SnO₂ reacted with Li during initial 25 26 discharge in the prelithiation electrode (Figure S8, Supporting Information). Nevertheless,

1 as implied by the cyclic voltammograms, stable reactions of SnO₂ and Li were found in the 2 SnO₂NC@CFP anode at the second and the subsequent cycles (**Figure S8**). Some SnO₂ 3 restored after recharging to 2.0V could be also observed by *in*-situ Raman spectrum 4 (**Figure.4b**). Thus, the reversibility of the SnO₂NC had been dramatically enhanced by 5 loading on multidimensional fibrous carbon matrices in this hybrid.

6

7 Fig.6 (a) Long-term cycle performance (specific capacity vs. cycle number) of the self-8 supporting SnO₂NC@CFP electrode in comparison with a commercial graphite anode 9 coating on Cu foil. Red line is evaluated based on the mass of the graphite layer, while the 10 green pine is based on the mass of the electrode including the Cu foil. (b) Comparison of the 11 energy density of the self-supporting SnO₂NC@CFP anode with graphite anode based on 12 the thickness of electrodes. (c) Comparison of cycle performance for the self-supporting 13 SnO₂NC@CFP and other reported free-standing SnO₂-carbon fiber and SnO₂-graphene 14 hybrid anodes. (d) SEM images for cross-sections of the self-supporting SnO₂NC@CFP 15 electrode and commercial graphite anode.

1 Figure 6 compares long-term capacity density of a prelithiated SnO₂NC@CFP anode and 2 a commercial graphite anode coated on Cu foil. The cross-sectional SEM images in Figure 6d 3 reveal that the commercial anode consisted of a 63 μ m thick graphite layer and a 34 a μ m thick Cu foil. The corresponding mass is 7.8 mg cm⁻² for the graphite layer and 21.2 mg cm⁻² 4 5 for the whole electrode (graphite and Cu foil). In contrast, the self-supporting SnO₂NC@CFP anode (with a thickness of 110 μ m) has a mass of 6.5 mg cm⁻². As shown in Figure 6a, the 6 7 treated SnO₂NC@CFP anode yielded a bit higher capacities than the anode without prelithiation (Figure 5b). It delivered a specific capacity of 903 mAh g⁻¹ in the first cycle, 8 which was declined to 630 mAhg⁻¹ after the first 15 cycles. Afterward, the cycleability was 9 excellent and the capacity slowly decreased to 526 mAhg⁻¹ at the 500th cycle, corresponding 10 11 to a very small decay rate (ca. 0.03% per cycle), which is superior to that of the graphite 12 anode. As compared in Figure 6a, the graphite anode has much lower specific capacities, just around 300 mAh g^{-1} (when the Cu foil is neglected) and 100 mAh g^{-1} (when the Cu foil is 13 14 included). Regarding the volumetric capacity, as shown in **Figure 6c**, the self-supporting SnO₂NC@CFP anode demonstrated a stable capacity of ~400 mAh cm⁻³, which is close to 15 16 that of the graphite layer alone (when the Cu foil is neglected) but much higher than that of 17 the entire electrode, ~200mAh cm⁻³(when the Cu foil is included). These results indicate that 18 the self-supporting SnO₂NC@CFP hybrid anodes have much higher capacity (both 19 gravimetric and volumetric) than the commercial graphite anodes. It needs to be pointed out 20 that the increasing capacities of the graphite anode during the initial cycles should be resulted 21 from the gradually soaking of electrolyte in the coating electrode. The electrolyte could not 22 diffuse to the inner layer of the electrode due to the absence of effective transport paths, and 23 thus not all the graphite could react with lithium during the first several cycles. In contrast, the 24 SnO₂@CFP hybrid could deliver stable high capacities throughout the cycling, which should 25 be attributed to the fast transport of electrolyte and lithium ion diffusion in the 3D 26 interconnected porous carbon matrix. Furthermore, as shown in Figure 6d, we also compared

the cycling performance of this $SnO_2NC@CFP$ hybrid anode with many other free-standing SnO₂-C electrodes supported by 1D carbon nanofibers $(CNFs)^{[49]}$ or 2D graphene nanosheets^[50-52]. Among them, the SnO₂NC@CFP anode demonstrated the best cycling stability, attributed mainly to the combination of 1D, 2D, and 3D configuration of the fibrous carbon in the CFP. In particular, the deformable carbon scaffolds and the strong bonding of ultrafine nano-size SnO₂ with carbon are the main attributes that help to effectively maintain the structure integrity of the SnO₂ during cycling.

Figure 7 (a) SEM image for the binder-free SnO₂NC@CFP hybrid after150 cycles; (b) Raman shits for the carbon in the hybrid before and after 150 cycles; (c) Enlarge SEM image for the zone circled in (a); (d) TEM image for the 2D ultrathin carbon in the cycled hybrid.

13

14 The detailed microstructure variation of a SnO₂NC@CFP electrode after 150 cycles was

Journal of Materials Chemistry A Accepted Manuscript

1 examined, while here the electrode was taken out from the cell and cleaned before testing. It 2 was found that the interconnected porous structure was maintained in the hybrid sheets 3 (Figure S9, Supporting Information). However, as shown in Figure 7a, there was obvious 4 deformation inside the 1D microfiber scaffold, where part of the carbon had been split to form 5 many nanofibers. Actually the split zones were very common in the microsized fibers and the 6 ultrathin carbon sheets (Figure S9), which should be driven by the severe stress due to 7 volume change of the SnO_2 layers during cycling. The structure variation of the fibrous 8 carbon was also reflected by their Raman shifts shown in Figure 7b. A noticeable increase in 9 the I_D / I_G of fibrous carbon (from 0.83 to 1.40) was also observed for hybrid after cycling 150 10 times. Figure 7c shows the enlarged SEM image for the square area in Figure 7a, where the 11 active SnO₂ particles still homogeneously dispersed and tightly covered on the microfibers. 12 TEM and HRTEM analysis, as shown in **Figure 7d** and **Figure S9** (Supporting Information), 13 further revealed that the homogeneous distribution of SnO₂ /Sn nanocrystals in 2D ultrathin 14 carbon sheet was maintained, without obvious increase of particle size. This suggested that 15 the fibrous carbon effectively suppressed the aggregation of SnO₂/Sn nanoparticles during 16 cycling, which could be responsible for the long-term cycleability of this self-supporting 17 hybrid anode.

18

19 4. Conclusions

In summary, SnO_2 nanocrystals were deposited on carbonized filter papers to form a deformable self-supporting $SnO_2NC@CFP$ hybrid anode. The SnO_2NC particles were homogenously accreted on the surfaces of micro/nanosized carbon fibers and ultrathin carbon sheets as well as inside the interconnected pores of the multidimensional matrices. The $SnO_2NC@CFP$ hybrid electrode exhibited long cycling life and excellent rate capability, and superior capacity density than the commercial graphite anode, which were attributed mainly to the good dispersion of SnO_2 nanocrystals in 1D and 2D conductive carbon and the fast Li⁺

transport in the 3D porous structure. In particular, the deformable fibrous carbon matrices, which facilitate stress release from the active SnO₂ during discharge-charge cycling, helped greatly to maintain good structure integrity of the SnO₂NC@CFP binder-free anode. This demonstrated that multidimensional architecture of deformable carbon matrices combining with nanoscale active materials would be a desirable approach to realize good cycle performance in high capacity Li storage materials. Furthermore, binder-free anode should also be an alternative way to achieve high energy density in batteries.

8 Acknowledgements

10 The work was supported by the National Science Foundation of China (No.51201065 and

11 51231003), the Doctorate Foundation of Ministry of Education (20120172120007), the

12 Foundation for the Author of Excellent Doctoral Dissertation of Guangdong Province

13 (SYBZZXM201309), and the Fundamental Research Funds for the Central Universities

14 (2014ZM0002). R.Z.Hu was supported by China Scholarship Council (201406155009).

15

9

16 Supporting Information

- 17 Supporting Information is available online or from the author.
- 18

19 **Reference**

- 20 [1] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy & Environmental 21 Science, 4 (2011) 3243-3262.
- 22 [2] M.G. Kim, J. Cho, Advanced Functional Materials, 19 (2009) 1497-1514.
- 23 [3] P.A. Connor, J.T.S. Irvine, Journal of Power Sources, 97-98 (2001) 223-225.
- 24 [4] L. Yuan, K. Konstantinov, G.X. Wang, H.K. Liu, S.X. Dou, Journal of Power Sources,
- 25 146 (2005) 180-184.
- 26 [5] J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S.
- Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science, 330 (2010)
 1515-1520.
- [6] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science, 276 (1997) 1395 1397.
- 31 [7] A. Nie, L.-Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li, C. Dong, R. Tao, F. Mashayek,
- 32 H.-T. Wang, U. Schwingenschlögl, R.F. Klie, R.S. Yassar, ACS Nano, 7 (2013) 6203-6211.
- 33 [8] P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Nano Letters, 9
- 34 (2009) 612-616.
- 35 [9] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Advanced Materials, 18 (2006) 36 2325-2329.

- 1 [10] Y. Wang, H.C. Zeng, J.Y. Lee, Advanced Materials, 18 (2006) 645-649.
- 2 [11] R. Retoux, T. Brousse, D.M. Schleich, Journal of The Electrochemical Society, 146 3 (1999) 2472-2476.
- [12] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chemistry of Materials, 17 (2005) 3297-3301. 4
- 5 [13] T. Brousse, R. Retoux, U. Herterich, D.M. Schleich, Journal of The Electrochemical 6 Society, 145 (1998) 1-4.
- 7 [14] X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M.
- 8 Cai, M.W. Verbrugge, Advanced Functional Materials, 22 (2012) 1647-1654.
- 9 [15] X. Li, A. Dhanabalan, L. Gu, C. Wang, Advanced Energy Materials, 2 (2012) 238-244.
- 10 [16] S. Ding, J.S. Chen, X.W. Lou, Advanced Functional Materials, 21 (2011) 4120-4125.
- 11 [17] G. Chen, Z. Wang, D. Xia, Chemistry of Materials, 20 (2008) 6951-6956.
- 12 [18] D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, Energy &
- 13 Environmental Science, 6 (2013) 2900-2906.
- 14 [19] L. Zhang, H.B. Wu, B. Liu, X.W. Lou, Energy & Environmental Science, 7 (2014) 1013-15 1017.
- [20] R. Hu, W. Sun, H. Liu, M. Zeng, M. Zhu, Nanoscale, 5 (2013) 11971-11979. 16
- 17 [21] J. Liang, X.-Y. Yu, H. Zhou, H.B. Wu, S. Ding, X.W. Lou, Angewandte Chemie
- 18 International Edition, 53 (2014) 12803-12807.
- 19 [22] J.S. Chen, X.W. Lou, Small, 9 (2013) 1877-1893.
- 20 [23] X.W. Lou, C.M. Li, L.A. Archer, Advanced Materials, 21 (2009) 2536-2539.
- 21 [24] J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, X.W. Lou,
- 22 The Journal of Physical Chemistry C, 113 (2009) 20504-20508.
- [25] M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, Advanced Functional 23 24 Materials, 18 (2008) 455-461.
- 25 [26] J. Wang, W. Li, F. Wang, Y. Xia, A.M. Asiri, D. Zhao, Nanoscale, 6 (2014) 3217-3222.
- 26 [27] F. Ye, B. Zhao, R. Ran, Z. Shao, Chemistry – A European Journal, 20 (2014) 4055-4063.
- 27 [28] X. Zhou, L.-J. Wan, Y.-G. Guo, Advanced Materials, 25 (2013) 2152-2157.
- 28 [29] Y. Wang, D. Su, C. Wang, G. Wang, Electrochemistry Communications, 29 (2013) 8-11.
- 29 [30] S. Yang, H. Song, H. Yi, W. Liu, H. Zhang, X. Chen, Electrochimica Acta, 55 (2009) 30 521-527.
- [31] Z. Wang, G. Chen, D. Xia, Journal of Power Sources, 184 (2008) 432-436. 31
- 32 [32] Q. Guo, Z. Zheng, H. Gao, J. Ma, X. Qin, Journal of Power Sources, 240 (2013) 149-154.
- 33 [33] J. Cheng, H. Xin, H. Zheng, B. Wang, Journal of Power Sources, 232 (2013) 152-158.
- 34 [34] Y. Li, X. Lv, J. Lu, J. Li, The Journal of Physical Chemistry C, 114 (2010) 21770-21774.
- 35 [35] Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng, X. Feng, ACS Nano, 6
- 36 (2012) 8349-8356.
- 37 [36] P. Gurunathan, P.M. Ette, K. Ramesha, ACS Applied Materials & Interfaces, 6 (2014) 38 16556-16564.
- 39 [37] A. Jahel, C.M. Ghimbeu, L. Monconduit, C. Vix-Guterl, Advanced Energy Materials, 4
- 40 (2014) 10.1002/aenm.201400025.
- 41 [38] Y. Yu, C.H. Chen, Y. Shi, Advanced Materials, 19 (2007) 993-997.
- [39] Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, Advanced Energy Materials, 2 (2012) 42 43 95-102.
- 44 [40] R. Hu, M. Zhu, H. Wang, J. Liu, O. Liuzhang, J. Zou, Acta Materialia, 60 (2012) 4695-45 4703.
- [41] W. Xia, Y. Wang, Y. Luo, J. Li, Y. Fang, L. Gu, J. Peng, J. Sha, Journal of Power 46 47 Sources, 217 (2012) 351-357.
- 48 [42] B. Zhao, G. Yang, R. Ran, C. Kwak, D.W. Jung, H.J. Park, Z. Shao, Journal of Materials
- 49 Chemistry A, 2 (2014) 9126-9133.
- 50 [43] X. Liu, Y. Gu, J. Huang, Chemistry – A European Journal, 16 (2010) 7730-7740.
- [44] R. Baddour-Hadjean, J.-P. Pereira-Ramos, Chemical Reviews, 110 (2009) 1278-1319. 51

- 1 [45] E. Fazio, F. Neri, S. Savasta, S. Spadaro, S. Trusso, Physical Review B, 85 (2012)
- 2 195423.
- 3 [46] L.J. Hardwick, P.W. Ruch, M. Hahn, W. Scheifele, R. Kötz, P. Novák, Journal of
- 4 Physics and Chemistry of Solids, 69 (2008) 1232-1237.
- 5 [47] A. Kraytsberg, Y. Ein-Eli, Advanced Energy Materials, 2 (2012) 922-939.
- 6 [48] N. Liu, L. Hu, M.T. McDowell, A. Jackson, Y. Cui, ACS Nano, 5 (2011) 6487-6493.
- [49] D. Kim, D. Lee, J. Kim, J. Moon, ACS Applied Materials & Interfaces, 4 (2012) 54085415.
- 9 [50] J. Liang, Y. Zhao, L. Guo, L. Li, ACS Applied Materials & Interfaces, 4 (2012) 5742-
- 10 5748.
- [51] S. Jiang, B. Zhao, R. Ran, R. Cai, M.O. Tade, Z. Shao, RSC Advances, 4 (2014) 9367 9371.
- 13 [52] S. Liu, R. Wang, M. Liu, J. Luo, X. Jin, J. Sun, L. Gao, Journal of Materials Chemistry A,
- 14 2 (2014) 4598-4604.
- 15
- 16

A free-standing hybrid anode for Li-ion battery was fabricated by filling ultrafine SnO_2 nanocrystals (NC) into multidimensional fibrous carbon derived from carbonized filter paper (CFP). The $SnO_2NC@CFP$ hybrid anode demonstrated excellent rate capability and long cycling life, which are attributed, respectively, to the high dispersion state of SnO_2 NC and the deformable fibrous carbon scaffolds flexible to release the stress from the SnO_2 during cycling.