Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Journal Name

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid solutions LaTaON₂–SrTiO₃

Hideki Kato,*^a Koichiro Ueda,^{†a} Makoto Kobayashi,^a Masato Kakihana^a

The solid solutions between LaTaON₂ and SrTiO₃ were successfully synthesized. In this solid solution, the valence band maxima (VBM) shifted to positive sides as the fraction of SrTiO₃ increased, resulting in the appearance of activity for O₂ evolution even without any cocatalysts. Despite of widening of the band gap (E_g) by only 0.15 eV, La_{0.5}Sr_{0.5}Ta_{0.5}Ti_{0.5}O₂N gained 0.5 V larger driving force for water oxidation, which corresponds to potential difference between VBM and potential for water oxidation, than LaTaON₂. It suggested that the contribution of Ti 3d to the conduction band suppressed the widening of E_g . This is an interesting feature in the present LaTaON₂–SrTiO₃ solid solution. The bare La_{0.5}Sr_{0.5}Ta_{0.5}Ti_{0.5}O₂N exhibited the activity for O₂ evolution 9 times higher than LaTaON₂ modified with a CoO_x cocatalyst. It has been found that the driving force for water oxidation of La_{0.5}Sr_{0.5}Ta_{0.5}Ti_{0.5}O₂N was 0.8 V, and was larger than those in other perovskite-type oxynitrides.

1. Introduction

Photocatalytic water splitting is a potential candidate for solar hydrogen production.¹⁻⁴ To date, some photocatalysts including Z-scheme systems have achieved overall water splitting under visible light.⁵⁻¹⁶ Their efficiencies are not high enough to push photocatalytic water splitting in practical use at this time. Construction of highly active photocatalysts is necessary to realize solar fuel production by photocatalysis. Therefore, developments of new methodology to improve photocatalytic performance and new photocatalyst materials are still important subjects. Oxidation of water to O₂ is a fundamental reaction in overall water splitting besides reduction of protons to H₂. We have demonstrated the achievement of water oxidation without assistance of cocatalysts through control of valence band potentials in LaTaON₂-NaTaO₃ oxynitride solid solutions¹ despite of no activity in the native LaTaON₂.¹⁸ Where VBM becomes more positive than that in the native LaTaON₂ according to the decreases in contents of nitrogen. Takata et al. have recently achieved overall water splitting by the LaTaON₂-LaMg_{2/3}Ta_{1/3}O₃ solid solution photocatalysts which function under visible light up to 600 nm of wavelength.¹⁶ In the $LaTaON_2 - LaMg_{2/3}Ta_{1/3}O_3 \ \ photocatalysts, \ \ coating \ \ of \ \ SiO_2$ cocatalyst-loaded and/or TiO_2 layer on $(Rh,Cr)_2O_3$ photocatalyst plays an important role in inhibition of reduction of O₂ to achieve steady water splitting. However, water splitting does not take place over LaTaON₂ even with the coating modification because the native LaTaON₂ lacks the ability for water oxidation. Giving the ability for water oxidation through the formation of solid solutions is also indispensable to achieve water splitting using the LaTaON₂-LaMg_{2/3}Ta_{1/3}O₃ photocatalysts. Thus, the control of band potentials is very important methodology to fabricate photocatalysts.

As mentioned above, we have previously succeeded in giving the LaTaON₂-NaTaO₃ solid solution the ability for water oxidation. However, the band gaps (E_g) of the solid solutions become wide as the nitrogen contents decrease. This means narrowing the range of wavelengths available, and is a drawback in the LaTaON₂-NaTaO₃ solid solution. Such widening of E_g would be suppressed when both conduction and valence bands potentials shifts toward positive sides. In this sense, SrTiO₃ with a perovskite structure can be regard as a candidate for the end member in the band potential controlled solid solution based on LaTaON₂ because contribution of Ti 3d to the conduction band may shift the conduction band minimum (CBM) positively.

In this work, we synthesized a new series of $LaTaON_2$ based solid solution, $LaTaON_2$ -SrTiO₃, with the aim of development of new visible-light-driven photocatalysts possessing abilities for reduction and oxidation of water. The effects of incorporation of Ti on the band potentials and photocatalytic properties are also discussed.

2. Experimental section

2.1 Synthesis of LaTaON2-SrTiO3 solid solution

Powders of LaTaON₂–SrTiO₃ solid solutions were obtained by nitridation of oxide precursors prepared by a polymerizable complex method employing citric acid (Wako Pure Chemical, 98%) and propylene glycol (Kanto Chemical, 99.0%) as described elsewhere.¹⁷ Strontium carbonate (Kanto Chemical, 99.9%), titanium tetrabutoxide (Kanto Chemical, 97.0%), lanthanum nitrate hexahydrate (Wako Pure Chemical, 99.9%)

RSC**Publishing** isible light by d solutions to Kakihana^a y synthesized. In this solid and tantalum chloride (Furuuchi, 99.9%) were used as raw materials. Nitridation of 1.0 g of oxide precursors was performed under an NH₃ stream (100 mL min⁻¹) at 1273 K for 15 h using a tubular furnace made of alumina. The samples with different compositions according to the formula $La_{1-x}Sr_xTa_{1-x}Ti_xO_{1+2x}N_{2-2x}$ were synthesized. These samples are described simply as Sr100x in this paper.

2.2 Characterization of samples

The samples obtained were characterized by X-ray diffraction (XRD; Bruker AXS, D2 Phaser), ultraviolet-visible spectroscopy in a diffuse reflectance method (UV-vis; Shimadzu, UV-3100), nitrogen content analysis (Horiba, EMGA-620W) and nitrogen adsorption analysis (Micromeritics, ASAP 2010) with the similar manner reported in the literature.¹⁷ Photoelectrochemical analysis of the samples was performed using photocatalyst-deposited fluorine-doped tin oxide (FTO) substrates. Photocatalyst particles were deposited on FTO by an electrophoretic method (10 V for 60 s) in 40 mL of acetone containing 30 mg of the sample and 10 mg of I2.1 Current-potential curves were taken by linear sweep voltammetry with a sweep rate -10 mV s^{-1} in an aqueous 0.1 M K₂SO₄ solution at pH 4.2–11.1 under intermitted visible light. NaOH and H₂SO₄ were used to adjust pH values of the electrolyte solution. Platinum and Ag/AgCl electrodes were used as counter and reference electrodes, respectively.

2.3 Evaluation of photocatalytic properties

Photocatalytic activities of the oxynitride solid solutions for H₂ or O₂ evolution in the presence of a sacrificial reagent were evaluated using a gas-closed circulation system. The samples modified with 0.3 wt% of Pt cocatalyst were used for H₂ evolution. The Pt cocatalyst was deposited by an impregnation method with sequent reduction treatment under a H₂ flow (30 mL min⁻¹) at 473 K for 1 h. For O₂ evolution, the bare samples were used in typical experiments although modification by a CoO_x cocatalyst (1 wt% as metal) was also examined for LaTaON₂ and Sr50.²⁰ The CoO_x cocatalyst was deposited by an impregnation method using an aqueous Co(NO₃)₂ solution followed by calcination under an NH₃ flow at 773 K for 1 h.² 0.1 g of photocatalyst was dispersed in a reactant solution (150 mL), 10 vol% methanol for H₂ evolution while 20 mM AgNO₃ containing 0.1 g of La2O3 for O2 evolution. After deaeration of the system, 10 kPa of Ar was introduced into the system. The suspended solution was irradiated with visible light ($\lambda > 420$ nm) using a 300-W Xe arc lamp (Excelitas, Cermax PE300BF) with an optical cut-off filter. Monochromatic light at 460 nm extracted by an interference band-pass filter was used for determination of an apparent quantum yield. Gaseous products were analysed using an online gas chromatograph (Shimadzu, GC-8A; MS-5A column; TCD detector; Ar carrier).

3. Results and discussion

3.1 Synthesis and characterization of solid solutions

Oxide precursors were obtained as white amorphous powder. Nitridation of the precursor at 1273 K for 15 h gave a perovskite-type compound without impurities for all compositions as shown in Fig. 1A. This is different from the synthesis of the previous LaTaON₂-NaTaO₃ solid solution, which requires adjustment of nitriding time to obtain a single phase of the sample according to the compositions because of

Fig. 1 (A) XRD patterns and (B) cell volumes of LaTaON₂–SrTiO₃.

Table 1 Properties of LaTaON2-SrTiO3 solid solutions

Sample	Content of N (wt%)		$S_{\rm BET} ({ m m}^2 { m g}^{-1})$	$E_{\rm g} ({\rm eV})$
	measured	ideal		
Sr0	7.93	7.70	16.5	2.04
Sr25	6.88	6.59	9.9	2.12
Sr35	6.25	6.05	9.1	2.13
Sr40	6.10	5.76	8.4	2.16
Sr50	5.22	5.12	7.9	2.19
Sr60	4.34	4.38	8.4	2.21
Sr75	2.97	3.06	7.6	2.28

Fig. 2 shows normalized UV-vis spectra of the LaTaON₂– SrTiO₃ solid solutions. The samples except for LaTaON₂ (Sr0) exhibited background absorption in addition to the band gap absorption. The origin of the background absorption would be the reduced metal ions, Ti³⁺ and/or Ta⁴⁺ in the present case, which are formed during the nitriding process.¹⁰ The absorption attributed to the band gap excitation shifted to high-energy (shorter wavelength) sides with increasing the fraction of SrTiO₃. The band gaps (E_g) estimated from the onsets on the Journal Name

background absorption are listed in Table 1. In the LaTaON₂–NaTaO₃, E_g was 2.23, 2.38 and 2.76 for Na25, Na50 and Na75, respectively.¹⁷ The E_g of LaTaON₂–SrTiO₃ was narrower than that in LaTaON₂–NaTaO₃ when compared at the same fraction of oxide. Thus, it was confirmed that widening of E_g accompanying the substitution was remarkably suppressed in the present LaTaON₂–SrTiO₃ system. The plausible explanation of the differences in E_g between these two systems is the positive shift of CBM due to the contribution of Ti 3d.

Fig. 2 UV-vis spectra of LaTaON₂-SrTiO₃.

Fig. 3 Current-potential curves of LaTaON₂–SrTiO₃ taken under intermitted visible light irradiation. Electrolyte solution: 0.1 M K₂SO₄ at pH6.4.

Photoelectrochemical analysis was conducted for Sr25, Sr50 and Sr75 to obtain information about band potentials. Current–potential curves taken under intermitted visible light irradiation in a 0.1 M aqueous K_2SO_4 solution at pH 6.4 are presented in Fig. 3. All samples exhibited anodic photoresponse, indicating that these three samples had negative-type semiconducting nature. In this work, the potential where the photoresponse disappears was regarded as the flat band potential ($E_{\rm fb}$). The $E_{\rm fb}$ shifted to positive side as the fraction of $SrTiO_3$ increased. The band potentials estimated from E_{fb} and $E_{\rm g}$ are depicted in Fig. 4A. Where the potentials of CBM are assumed to be 0.2 V above $E_{\rm fb}$, and the potentials of LaTaON₂ are illustrated referring the previous report.17 The CBM of LaTaON₂-SrTiO₃ shifted to lower (more positive) positions with increasing the fraction of SrTiO₃ although that shifted negatively in the LaTaON2-NaTaO3 system. Contribution of Ti 3d to the formation of CB would be a predominant factor for the positive shifts of CBM observed in the LaTaON2-SrTiO3 as expected. The VBM of the LaTaON2-SrTiO3 solid solution shifted to lower positions monotonically; 1.10, 1.45 and 1.54 V vs E(Ag/AgCl) for Sr25, Sr50 and Sr75, respectively. In the case of LaTaON₂-NaTaO₃, the positions of VBM are 1.13, 1.08 and 1.12 V for Na25, Na50 and Na75, respectively.¹⁷ It should be noticed that the present solid solutions allow tuning of the VBM potential in wider range than the LaTaON2-NaTaO3 solid solutions. The relatively large shift in VBM with small widening of Eg is an interesting feature of the LaTaON2-NaTaO₃ system. For example, in Sr50, 0.5 V of positive shift in the VBM is achieved with widening of E_g by only 0.15 eV. The photoelectrochemical measurements at pH 4.2-11.1 revealed that band positions in Sr50 shifted parallel to $E(H^+/H_2)$ and E(O₂/H₂O) as reported for other oxynitrides (Figs. S1 and 4B).^{22–24}‡

Fig. 4 (A) Estimated band potentials for LaTaON₂–SrTiO₃ at pH 6.4 and (B) changes in band potentials of La_{0.5}Sr_{0.5}Ta_{0.5}O₂N with different pH values.

3.2 Photocatalytic properties

Photocatalytic activities of the solid solutions for H_2 or O_2 from water containing a sacrificial electron donor (methanol) or acceptor (Ag⁺ ion) under visible light ($\lambda > 420$ nm) are summarized in Fig. 5. All Pt(0.3 wt%)-loaded samples

produced H₂ whereas the activity for H₂ evolution gradually decreased along with the SrTiO₃ substitution. It is basically due to the positive shifts in CBM corresponding to the decrease in the driving force for reduction of water. All SrTiO₃-substituted samples produced O₂ even in the absence of cocatalysts while the native LaTaON₂ was inactive. The appearance of ability for O₂ evolution is caused by obtaining the driving force for water oxidation, corresponding to the potential difference (ΔE) between VBM and potential for water oxidation $(E(O_2/H_2O))$, enough to proceed the reaction. We have previously reported that ΔE larger than 0.4 V is required for perovskite-type oxynitrides to oxidize water without the assistance of cocatalysts.¹⁷ The appearance of ability for O₂ evolution in Sr25 also meets this account since ΔE assumed in Sr25 is 0.45 V as shown in Fig. 4. The O2 evolution was enhanced with increasing the fraction of SrTiO₃ while the activity decreased beyond Sr50. The appearance of background absorption in the UV-vis spectra implies the contribution of band bending, which facilitates migration of holes to surface, to enhancement of O₂ evolution.²⁵ However, such a band bending effect is limited in the present solid solution system because there are no remarkable differences in intensity of the background absorption between samples except for LaTaON2. Therefore, the enhancement of the activity for O2 evolution beyond Sr25 is resulted by the increase in the driving force. The O₂ evolution rate in Sr75 (42 μ mol h⁻¹) was 40% of that in Sr50 (104 μ mol h^{-1}). This is not explained from the band potentials because Sr75 has a larger ΔE than Sr50. The decrease in the number of available photons caused by widening of $E_{\rm g}$ may participate decreasing the activity. However, this effect seems to be not predominant because of the small difference in E_g between Sr50 and Sr75 as shown in Fig. 2. For H₂ evolution, Sr75 also exhibited the half activity of Sr50 although their driving force for H₂ production was almost the same. These results suggest that the remarkable decreases in the activity of Sr75 for both H₂ and O₂ evolution in comparison with Sr50 are attributed to other reasons. It is one possible explanation that Sr75 has defects, which facilitate recombination of photogenerated electrons and holes, more than Sr50. Another possibility is low mobility of holes in the VB of Sr75 due to the small contribution of nitrogen to the VB. The highest rate for O₂ evolution was obtained by Sr50, and was higher than the rates reported for $La_{0.75}Na_{0.25}TaO_{1.5}N_{1.5}$ (4.9 µmol h⁻¹) and $LaTiO_2N$ (25 μ mol h⁻¹) in the absence of cocatalysts.^{17,26} The driving force for water oxidation in Sr50 (0.80 V) is larger than those in La_{0.75}Na_{0.25}TaO_{1.5}N_{1.5} (0.48 V) and LaTiO₂N (ca. 0.6 V).^{17,23} It is reasonably accepted that the largest driving force of Sr50 brings the highest activity in the absence of cocatalysts. The apparent quantum yield of Sr50 was determined to be 2.2% using monochromatic light at 460 nm with 225 mW of incident power. Fig 6 shows reaction time courses of O₂ evolution using Sr50. Sr50 produced O_2 in a high rate at the early stage of the reaction, however the rate was remarkably suppressed, especially after 1 h. Shielding photons and blocking active sites by metallic Ag particles photodeposited on the surface were considered as reasons for the decrease in the rate of O₂

Fig. 5 Photocatalytic activities of LaTaON₂–SrTiO₃ for H₂ and O₂ evolution under visible light (λ > 420 nm). For H₂ evolution: Pt(0.3 wt%) cocatalyst, 10 vol% methanol. For O₂ evolution: no cocatalyst, 20 mM AgNO₃, 0.1 g of La₂O₃.

Fig. 6 Reaction time course for O_2 evolution under visible light using $La_{0.5}Sr_{0.5}Ta_{0.5}O_2N$; as-prepared, the second use after washing with HNO₃ and HNO₃-treated. Catalyst: 0.1 g, 20 mM AgNO₃, 0.1 g of La_2O_3 .

As described above, the fabrication of visible-light-driven photocatalysts capable of both H_2 and O_2 evolution in the presence of sacrificial reagents has been achieved by the

Journal Name

able to reduce Ag^+ .

formation of LaTaON₂–SrTiO₃ solid solution. In Sr35–75, the rates of H_2 evolution were much lower than those of O_2 evolution. This implies the presence of electron traps where the electrons lose their potential. Accordingly, some electrons

trapped are not capable of reducing of $\boldsymbol{H}^{\!\!\!+}$ whereas they are still

Fig. 7 O₂ evolution over bare and CoO_x-loaded Sr50 and CoO_x-loaded LaTaON₂. Catalyst: 0.1 g, 20 mM AgNO₃, 0.1 g of La₂O₃.

3.3 The effects of CoO_x cocatalysts

The effects of the CoO_x cocatalyst on the O_2 evolution were examined for LaTaON₂ and Sr50 (Fig. 7). LaTaON₂ modified with CoO_x (1 wt% as metal) produced O_2 although the bare sample was inactive as mentioned above. Thus, it is confirmed that O₂ evolution by LaTaON₂ can be achieved not only by tuning of VBM but also by modification with cocatalysts. However, it should be noticed that the activity of CoO_x-loaded LaTaON₂ (11.7 μ mol h⁻¹) was much less than that of bare Sr50 (104 μ mol h⁻¹). The CoO_x cocatalyst also enhanced the O₂ evolution over Sr50 besides the suppression of N₂ formation, however the enhancement was not significant. An important role of the CoO_x cocatalyst is the function as active sites driving water oxidation with small overpotentials.^{20,28} The CoO_x cocatalyst is effective for photocatalysts and photoanodes especially ones possessing small driving forces such as LaTiO₂N, BaTaO₂N and LaTaON₂.^{24,26} In the case of Sr50, the low rate of the hole supply to the reaction sites due to the recombination in the bulk would limit the boost in the O2 evolution by the CoO_x cocatalyst, implying the further improvement of performance by preparation of the high quality samples.

4. Conclusion

The LaTaON₂–SrTiO₃ solid solutions have superior features, easiness in the synthesis, suppression of widening of E_g and large driving force for water oxidation, in comparison with the LaTaON₂–NaTaO₃ solid solutions reported previously. In addition, it has been found that tuning of band potentials through the formation of the LaTaON₂–SrTiO₃ solid solutions is more effective methodology to obtain the activity for the O₂ evolution using the LaTaON₂-based photocatalysts than the modification with the CoO_x cocatalyst. Thus, this work has revealed that the LaTaON₂–SrTiO₃ solid solutions are potential candidates for photocatalysts and photoanodes with the aim of overall water splitting under visible light.

Acknowledgements

This work was supported by a Grain-in-Aid (No. 24107004) for Innovative Areas "Photosynthesis" (Area No. 2406) from MEXT, Japan.

Notes and references

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

[†] Electronic Supplementary Information (ESI) available: Currentpotentials curves for Sr50 at pH4.2–11.1. See DOI: 10.1039/b000000x/.

‡ Present address: Department of Chemical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

- 1. F. E. Oserloh, Chem. Mater., 2008, 20, 35.
- 2. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- 3. X. Chen, S. Shen, L. Guo and S. Mao, Chem. Rev., 2010, 110, 6503.
- B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller and T. F. Jaramillo, *Energy Environ. Sci.*, 2013, 6, 1983.
- K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, J. Photochem. Photobiol. A, 2002, 148, 71.
- R. Abe, T. Takata, H. Sugihara and K. Domen, *Chem. Commun.*, 2005, 3829.
- 7 K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, *Nature*, 2006, 440, 295.
- 8 Y. Lee, K. Teramura, M. Hara and K. Domen, *Chem. Mater.*, 2007, 19, 2120.
- 9 H. Liu, J. Yuan, W. Shangguan and Y. Teraoka, J. Phys. Chem. C, 2008, 112, 8521.
- M. Higashi, R. Abe, T. Takata and K. Domen, *Chem. Mater.*, 2009, 21, 1543.
- 11 Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536.
- 12 Y. Sasaki, H. Kato and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441.
- 13 H. Kato, Y. Sasaki, N. Shirakura and A. Kudo, J. Mater. Chem. A, 2013, 1, 12327.
- 14 R. Asai, H. Nemoto, Q. Jla, K. Saito, A. Iwase and A. Kudo, *Chem. Commun.*, 2014, **50**, 2543.
- 15 K. Iwashina, A. Iwase, Y. H. Ng, R. Amal and A. Kudo, J. Am. Chem. Soc., 2015, 137, 604.
- 16 C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara and K. Domen, *Angew. Chem. Int. Ed.*, 2015, 54, 295.
- 17 K. Ueda, H. Kato, M. Kobayashi, M. Hara and M. Kakihana, J. Mater. Chem. A, 2013, 1, 3667.
- 18 M. Liu, W. You, Z. Lei, T. Takata, K. Domen and C. Li, *Chin. J. Catal.*, 2006, 27, 556.
- 19 Y. Matsumoto, A Funatsu, D. Matsuo, U. Unal, J. Phys. Chem. B, 2001, 105, 10893.
- 20 F. Jiao and H. Frei, Angew. Chem. Int. Ed., 2009, 48, 1841.
- 21 S. S. K. Ma, T. Hisatomi, K. Maeda, Y. Moriya and K. Domen, J. Am. Chem. Soc., 2012, 134, 19993.

- 22 W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, *J. Phys. Chem. B*, 2003, **107**, 1798.
- 23 C. L. Paven-Thivet, A. Ishikawa, A. Ziani, L. L. Gendre, M. Yoshida, J. Kubota, F. Tessier and K. Domen, *J. Phys. Chem. C*, 2009, 113, 6156.
- 24 K. Maeda and K. Domen, J. Catal., 2014, 310, 67.
- 25 K. Maeda, D. Lu and K. Domen, Angew. Chem. Int. Ed., 2013, 52, 6488.
- 26 F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. teshima, S. Oishi and K. Domen, J. Am. Chem. Soc., 2012, 134, 8348.
- 27 G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, *Chem. Commun.*, 2002, 1698.
- 28 J. Yang, D. Wang, H. Han and C. Li, Accounts Chem. Res., 2013, 46, 1900.

Table of contents entry

Visible-light-driven photocatalysts capable of both H_2 and O_2 evolution in the presence of sacrificial reagents have been developed through the formation of solid solutions between LaTaON₂ and SrTiO₃.