Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

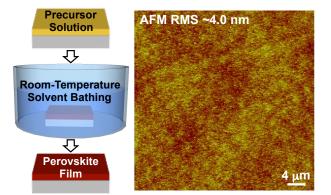
Room-Temperature Crystallization of Hybrid-Perovskite Thin Films *via* Solvent-Solvent Extraction for High-Performance Solar Cells †

Yuanyuan Zhou,^a Mengjin Yang,^b Wenwen Wu,^a Alexander L. Vasiliev,^{a,§} Kai Zhu^{b,*} and Nitin P. Padture^{a,*}

^a School of Engineering, Brown University, Providence, RI 02912, USA. Email: nitin_padture@brown.edu

^b Chemical and Materials Science Center, National Renewal Energy Laboratory, Golden, CO 80401, USA. Email: kai.zhu@nrel.gov

Journal of Materials Chemistry A (Full Paper)


[§]On leave from National Research Centre "Kruchatov Institute," Moscow 123182, Russia. † Electronic Supplementary Information (ESI) available. See doi: 10.1039/c4ta....

Abstract

The room-temperature solvent-solvent extraction (SSE) concept is used for the deposition of hybrid-perovskite thin films over large areas. In this simple process, perovskite precursor solution is spin-coated onto a substrate, and instead of the conventional thermal annealing treatment, the coated substrate is immediately immersed in a bath of another solvent at room temperature. This results in efficient extraction of the precursor-solvent and induces rapid crystallization of uniform, ultra-smooth perovskite thin films. The mechanisms involved in the SSE process are elucidated, and its versatility in depositing high quality thin films of controlled thicknesses (20 to 700 nm) and various compositions (CH₃NH₃PbI_(3-x)Br_x; x = 0, 1, 2, or 3) is demonstrated. Planar perovskite solar cells (PSCs) based on SSE-deposited CH₃NH₃PbI₃ perovskite thin films deliver power conversion efficiency (PCE) up to 15.2%, and most notably an average PCE of 10.1% for PSCs with sub-100 nm semi-transparent perovskite thin films. The SSE method has generic appeal, and its key attributes — room-temperature process, rapid crystallization, large-area uniform deposition, film-thickness control, ultra-smoothness, and compositional versatility — make the SSE method potentially suitable for roll-to-roll scalable processing of hybrid-perovskite thin films for future multifunctional PSCs.

Graphical Abstract

A simple one-step solvent-bathing process based on solvent-solvent extraction, is demonstrated for the controlled roomtemperature crystallization of uniform, smooth hybrid-perovskite thin films for highefficiency solar cells.

Journal of Materials Chemistry A Accepted Manuscript

Introduction

The field of thin-film photovoltaics is witnessing a revolution of sorts with the advent of perovskite solar cells (PSCs) that use hybrid perovskites as the light absorber,¹⁻⁵ and now the power conversion efficiency (PCE) of PSCs has exceeded 20%.⁶ While hybrid perovskites are a family of organometallic halides with the general formula RMeX₃ (R = organic group, Me = Pb or Sn, and X = I, Br, Cl or a combination),⁷ methylammonium (MA) lead triiodide (CH₃NH₃PbI₃ or MAPbI₃) is the most studied in the context of PSCs.¹⁻⁵

Typically, solution processing of perovskite films in PSCs is carried out using the onestep method⁸⁻¹¹ or the two- step method,¹⁰⁻¹³ and variations thereof. In the simplest one-step method, the precursors (e.g. MAI and PbX₂) are dissolved together in a polar solvent, such as dimethylformamide (DMF), dimethysulfoxide (DMSO), y-butyrolactone (GBL), or N-methyl-2pyrrolidone (NMP), and spin-coated. This is invariably followed by heating the film at 70-150 °C to evaporate the high-boiling-point solvent. It has been suggested that the reaction $PbI_2+MAI \rightarrow MAPbI_3$, and the concomitant crystallization of MAPbI_3 perovskite, occur during this heating step.⁸ However, the direct formation of the perovskite from solutions at the elevated temperature is difficult to control. To address this issue, the two-step method was developed, which entails dipping of a solution-deposited PbI₂ thin film in a MAI solution, or spin-coating MAI solution on top of the PbI₂ film, followed by heat-treatment at 70-150 °C. Several other processing strategies have been employed to improve further the quality of the perovskite films, including solvent engineering,¹⁴ fast deposition-crystallization (FDC),¹⁵ gas-blowing,¹⁶, successive spin-coating/annealing,^{17,18} and solvent washing.¹⁹ However, all these solution methods involve some heat-treatment in order to evaporate the solvent and/or crystallize the perovskite films. Vapour-based methods, either all-vapour²⁰⁻²² or combined with solutionmethods,^{23, 24} are also used for depositing perovskite thin films, but the need for specialized equipment and batch-processing present fundamental limitations to processing scalability. Furthermore, deposition of full-coverage perovskite films with controlled thicknesses, especially semitransparent films of sub-100 nm thickness, is difficult in both solution- and vapour-based methods.²²

In this context, we demonstrate here the use of the solvent-solvent extraction (SSE) concept for the room-temperature solution processing of high quality hybrid-perovskite thin films that are uniform over a large area. The SSE approach allows exquisite control over film thickness, and since the perovskite crystallization occurs at room-temperature and it is very rapid, the SSE process is potentially scalable. The SSE process is depicted schematically in Fig. 1, where in the case of deposition of the popular hybrid perovskite MAPbI₃, a stoichiometric MAPbI₃ solution in NMP — a high-boiling-point (204 °C) polar solvent — is spin-coated. (Other methods, such as dip-coating, spraying, or inkjet-printing, may also be used to deposit the MAPbI₃ precursor solution.) This is similar to the conventional one-step method mentioned earlier, but in SSE, instead of heating, the clear spin-coated MAPbI₃ precursor thin film is immersed immediately into a room-temperature bath of diethyl ether ($C_2H_5OC_2H_5$ or DEE) — a low-boiling-point (35 °C) solvent. The MAPbI₃ thin film deposits within two minutes, and it is then taken out of the bath and dried at room temperature, with no further heat-treatment.

Note that the FDC approach for the deposition of planar MAPbI₃ perovskite thin films reported by Xiao *et al.*¹⁵ uses a similar concept. However, they drip the second solvent at certain times during the high-speed spin-coating of MAPbI₃ precursor solution in DMF, instead of solvent bathing used in our SSE approach. This makes the FDC method less controllable in achieving large-area uniformity in the perovskite thin films. Also, the partial extraction of the

solution-solvent during spin-coating steps in FDC, and the use of higher boiling-point second solvents (*e.g.* chlorobenzene, boiling point 131 °C), necessitate heat-treatment at 100 °C to evaporate any residual solvent and to promote further crystallization.¹⁵ Jeon *et al.*¹⁴ have also used dripping of a second solvent (toluene; boiling point 111 °C) to "freeze" the solution-solvent and perovskite precursor into an intermediate state. That process also requires heat-treatment (at 100 °C) in order to produce MAPbI_(3-x)Br_x (x=0.3-0.45) perovskite films (~200 nm) in mesoporous TiO₂. Most recently, Jung *et al.*¹⁹ have used toluene, chlorobenzene, or dicholorobenzene (boiling point 174 °C) as the second solvent (dripped), with reduced heat-treatment temperatures of 60-90 °C for depositing ~300-nm thick films of MAPbI₃ perovskite. In this context, the use of a simpler solvent-bathing step, and the NMP-DEE solvents combination, in our SSE method enables the room-temperature deposition of perovskite thin films with excellent control over their thickness and smoothness.

Experimental

Room-temperature SSE deposition of perovskite thin films

All reagent grade chemicals were obtained commercially from Sigma-Aldrich (St. Louis, MO) unless noted otherwise. MAI was prepared using a process described elsewhere.²⁵ In a typical procedure, 24 ml of 33 wt% CH₃NH₂ solution in anhydrous ethanol was reacted with 10 ml of 57 wt% HI in water, in 100 ml of ethanol (excess CH₃NH₂) in a dry Ar atmosphere at room temperature. The solvent and the excess CH_3NH_2 were removed using a rotary evaporator, and the resulting MAI powder was harvested. The same procedure was followed for the preparation of MABr, except HI was replaced by HBr. For typical preparation of MAPbI₃ perovskite thin films using the SSE method, first, a solution of PbI₂ (Alfa-Aesar, Ward Hill, MA) and MAI from above (molar ratio 1:1) in NMP was spin-coated onto previously patterned fluorine-doped tin oxide (FTO) coated glass substrates (TEC 15, Hartford Glass Co., Hartford City, IN), and the solution-coated substrate was vertically dipped in a ~ 50 ml anhydrous DEE (Fisher Scientific, Fair Lawn, NJ) bath immediately (~ 2 l bath in the case of larger substrates). The substrate was kept immersed until a brown film formed in ~2 min. The substrate was then taken out of the bath and dried rapidly at room temperature using blowing N₂ gas. The entire perovskite film fabrication process was performed in the ambient with $\sim 30\%$ humidity. The thickness of the resultant perovskite film was easily controlled by varying the perovskite solution concentration and the spinning rate. Films of thickness ~20 nm, ~80 nm, and ~250 nm were processed using 15 wt%, 30 wt%, and 42 wt% solutions at 6000 rpm (10 s), 6000 rpm (10 s), and 4500 rpm (15 s), respectively. For the preparation of MAPbI₂Br, MAPbIBr₂, and MAPbBr₃, the starting precursors used were MABr:PbI₂::1:1, MAI:PbBr₂::1:1, and MABr:PbBr₂::1:1, respectively.

Fabrication of the PSCs

For the fabrication of the PSCs, FTO-coated glass was patterned by HCl (25%) etching with Zn powder, and cleaned by soaking in a basic bath (5 wt % NaOH in ethanol) overnight. After washing with deionized water and ethanol, a compact TiO₂ blocking layer was deposited on top of patterned FTO by spray pyrolysis at 450 °C. The perovskite layer was then deposited as described above. This was followed by spin-coating a solution of hole-transporting material (HTM), which consisted of 80 mg 2,2',7,7'-tetrakis(N,N'-di-*p*-methoxyphenylamine)-9,9'spirobifluorene (spiro-MeOTAD; Merck, Germany), 30 μl bis(trifluoromethane) sulfonimide lithium salt stock solution (500 mg Li-TFSI in 1 ml acetonitrile), 30 μl 4-tert-butylpyridine (TBP), and 1 ml chlorobenzene solvent. The HTM spin-coating process was performed in a dryair atmosphere with humidity below 10%. Finally a 150 nm Ag layer was deposited using thermal evaporator and a shadow mask. The PSCs were stored in a dry-air atmosphere with humidity <10%, and typically the performance of the PSCs was measured one day after their fabrication.

Film and PSC structure characterization

X-ray diffraction (XRD) was performed using a X-ray diffractometer (D-8 Discover, Bruker, Germany) with Cu K α_1 radiation (λ =1.5406 Å) at a step size of 0.02°. XRD patterns for the confirmation of the perovskite phase were collected using a Ge (002) monochrometer, at step time of 2 s. XRD patterns for tracking the SSE process used a step time of 0.1 s, without the use of the monochrometer. The surface and cross-sections (fractured) morphology of thin films were characterized using a scanning electron microscope (SEM; LEO 1530VP, Carl Zeiss, Germany). Transmission electron microscopy (TEM) was used to characterize cross-sections of the asdeposited thin films and whole PSCs. Samples from specific locations on the cross-sections were prepared by focused ion beam (FIB; Helios 600, FEI, Hillsboro, OR) and in situ lift-out. In the case of plan-view high-resolution TEM, the SSE processed perovskite was deposited directly on Cu grids covered with holey carbon (EMS, Hatfield, PA). The SSE conditions used were identical to those used to deposit the ~80-nm MAPbI₃ perovskite thin films. All TEM samples were examined using TEM (2100F, JEOL, Japan) operated at 200 kV accelerating voltage. The optical spectroscopy (transmission, refection, absorption) of the thin films on TiO₂-blockinglayer-coated FTO was conducted on a UV-vis-NIR spectrophotometer equipped with diffuse reflectance accessories (Cary 6000i, Agilent Technologies, Englewood, CO) with 10 nm step size. The thin films on glass substrates were characterized using Fourier-transform infrared (FTIR) spectroscopy (4100, Jasco Instruments, Easton, MD) after 2 s and 2 min of SSE processing. Atomic force microscopy (AFM) images were obtained in tapping mode (Veeco 5000 and Nanoscope V, Plainview, NY) using a probe with tip radius of ~ 10 nm and a resonance frequency of ~300 kHz (AC160TS, Olympus, Japan). The AFM system is setup in an Ar glove box with H₂O and O₂ concentrations of less than 0.1 ppm.

Performance characterization of PSCs

The incident photon-to-current efficiency (IPCE) or external quantum efficiency (EQE) spectra were recorded at a chopping frequency of 5 Hz in AC mode on a solar cell quantum efficiency measurement system (QEX10, PV Measurements, Boulder, CO). The current density (J) - voltage (V) characteristics of the PSCs were obtained using a SourceMeter (2400, Keithley, Cleveland, OH) under simulated one-sun AM 1.5G illumination (100 mW cm⁻²) (Oriel Sol3A Class AAA Solar Simulator, Newport Corporation, Irvine, CA). Typical sweeping of forward bias voltage started from 0 V to $V_{\rm OC}$ +50 mV and back to 0 V, at the rate of 20 mV s⁻¹, where $V_{\rm OC}$ is the open circuit voltage. A typical active area of 0.16 cm² was defined using a non-reflective mask for the J-V measurements. Using a procedure suggested by Snaith et al.,²⁶ the maximumpower output stability of the PSCs was measured by monitoring J output at the maximum-power V bias for up to 150 s using a VersaSTAT MC potentiostat (Princeton Applied Research, Acton, MA). A shutter was used to control the one-sun illumination on the PSC. The PSCs testing was conducted in the ambient with humidity of 20-40%. Impedance spectroscopy (IS) on the PSCs was performed using a PARSTAT 2273 workstation (Princeton Applied Research, Acton, MA) with the frequency range of 0.1 Hz to 100 kHz and the modulation amplitude of 10 mV. The IS spectra were analyzed using ZView 2.9c software (Scribner Associates, Southern Pines, NC).

Results and Discussion

SSE process description and perovskite film deposition mechanisms

As mentioned earlier, Fig. 1 depicts the SSE process schematically. Within seconds of dipping the MAPbI₃ precursor thin film into the DEE bath coloured specks appear on the film, and it starts to turn dark uniformly, indicating the rapid formation of MAPbI₃ perovskite. Within two minutes NMP solvent extraction, and the simultaneous crystallization of the MAPbI₃ perovskite, is complete. The thin film is then taken out from the bath and dried rapidly in ambient air. Photographs (Figs. S1-S3[†]) tracking the rapid film evolution are included in Electronic Supplementary Information (ESI)[†].

Figure 2A shows indexed XRD pattern of a perovskite thin film deposited using the SSE method, confirming pure β -MAPbI₃ phase (space group *I4/mcm*²⁷). Figures 2B and 2C are SEM images of top surface of a typical SSE MAPbI₃ perovskite thin film (~250 nm thickness) at low and high magnifications, respectively. The uniform, dense coverage is readily apparent from these SEM micrographs, with grain size of ~ 100 nm. The cross-sectional SEM image of a ~ 250 nm SSE MAPbI₃ perovskite thin film shows uniform coverage and a ultra-smooth film surface. The cross-section of a thinner (~80 nm) SSE MAPbI₃ perovskite thin film viewed in the TEM is presented in Fig. 3B, showing conformal coating of the perovskite along the rough FTO surface. Figures 3C and 3D are high-resolution TEM images of MAPbI₃ perovskite deposited on TEM grids using the SSE method. The ~0.44 nm and ~0.32 nm interplanar spacings in Fig. 3D correspond to (020) and (004) planes, respectively (lattice parameters a=b=8.849 Å, c=12.642Å²⁷), further confirming the β -MAPbI₃ phase. Proliferation of crystal defects are also observed in the TEM specimens made without the use of the FIB (Fig. 3C), which is typical of soft organicinorganic hybrid materials. (Additional cross-sectional SEM and TEM images of MAPbI₂ perovskite thin films of thicknesses ranging from ~ 20 nm to ~ 410 nm are presented in Figs. S4⁺ and S5⁺, together with cross-sectional TEM images and elemental maps of a whole PSC in Fig. S6[†] and S7[†].)

The AFM images in Fig. 4A ($40 \times 40 \ \mu m^2$) and Fig. 4B ($2 \times 2 \ \mu m^2$) of the top surface of a SSE MAPbI₃ perovskite thin film (thickness ~250 nm) reveal root mean square (RMS) roughness of ~4.0 nm and ~5.2 nm, respectively, showing unprecedented smoothness over a large area. The highly reflective nature of the film is shown in the photograph in Fig. 4C, and the photograph in Fig. 4D demonstrates the semi-transparent nature of the SSE MAPbI₃ perovskite thin film over a 5×6 cm² area viewed in bright sunshine due to reduced light scattering on the smooth film surface. (Optical photos, transmission, reflection, and absorption spectra of SSE MAPbI₃ perovskite films of various thicknesses are presented in Fig. S8[†].)

All the above results demonstrate the high quality of the MAPbI₃ perovskite thin films deposited using the room-temperature SSE method in terms of phase purity, large-area coverage, thickness range/uniformity, ultra-smoothness, and semi-transparency. It appears that mechanisms similar to those found in solvent-extraction²⁸ are operative in the SSE process.

To gain insight into the SSE process, XRD patterns following the progression of the SSE deposition process are shown in Figs. 5A to 5C. Figure 5A shows featureless XRD pattern from the as-spin-coated MAPbI₃ precursor solution thin film, while Fig. 5B shows the formation of MAPbI₃ perovskite after 2 s of NMP-solvent extraction. Upon further NMP extraction (2 min), the XRD pattern becomes sharper, where the strongest reflection in Fig. 5C is narrower (FWHM $2\theta \sim 0.31^{\circ}$) compared to that in Fig. 5B (FWHM $2\theta \sim 0.61^{\circ}$), showing the formation of phase-pure β -MAPbI₃ perovskite (film thickness ~250 nm). Fourier-transform infrared (FTIR) spectra from the films corresponding to Fig. 5B (2 s) and Fig. 5C (2 min) are presented in Fig. 5D. The

presence of C=O stretching band at ~1700 cm^{-1 29} in the 2 s spectrum (red) is indicative of the presence of some NMP remaining in the thin film, but it disappears in the fully solvent-extracted thin film at 2 min (black). Based on these observations it appears that, as soon as the MAPbI₃ precursor film comes in contact with DEE, the NMP solvent is extracted selectively because NMP is highly miscible in DEE. However, this occurs in localized patches in the very early stages (see Fig. S2[†]), most likely due to local variations in the composition of the film and/or in the nature of its contact with the DEE solvent. This triggers the crystallization of MAPbI₃ perovskite in areas devoid of NMP, which spreads rapidly to cover the entire area as NMP is fully extracted by DEE (Figs. S1⁺ and S2⁺). Since MAPbI₃ perovskite is insoluble in non-polar DEE and the process is so rapid, the crystallized film is not damaged during this roomtemperature process. Finally, the low boiling point of DEE (35 °C), compared to the precursor solvent NMP (204 °C), allows ambient drying to remove any remaining DEE solvent. Figure S3⁺ shows that when drops ($\sim 2 \text{ mm}$ in diameter) of MAPbI₃ precursor solution (in NMP), instead of the spin-coated thin film, are added to DEE solvent, the precipitation of MAPbI₃ perovskite appears to be extremely sluggish visibly. These observations suggest that the nanoscale of the thin film is critical to the success of the SSE process. The proposed SSE mechanisms discussed above is illustrated schematically in Figure 5E.

While the NMP/DEE precursor/extracting solvents combination used here is a typical example for the demonstration of the SSE method, a wide range of other solvents, or mixed solvents, could be used to suit the specific perovskite being deposited. The following general rules are suggested. (i) The precursor solvent (polar) must have high solubility for perovskite precursor, allowing deposition of films with wide range of uniform thicknesses, and a high boiling point, preventing evaporation-induced unbalanced perovskite growth and/or the formation of complexes. (ii) The extracting solvent (non-polar) must have no solubility for the perovskite precursors, must not react with the solid perovskites, and have a low boiling point (preferably <100 $^{\circ}$ C), allowing rapid drying in the ambient. (iii) The precursor solvent must be highly miscible in extracting solvent, and it must disperse rapidly in the large volume of the extracting solvent (bath), enabling rapid SSE deposition.

Solar cells based on SSE perovskite thin films

Figure 6A presents typical *J*-*V* curves (reverse scan) under simulated one-sun AM 1.5G (100 mW cm⁻²) illumination of PSCs fabricated using SSE MAPbI₃ perovskite thin films of thickness ~20 nm, ~80 nm, and ~250 nm. The solar-cell performance parameters extracted from these data are presented in Table 1. When the perovskite film thickness is ~20 nm, the PSC exhibits a PCE of 4.1% with a short-circuit photocurrent density (J_{SC}) of 7.3 mA cm⁻², open-circuit voltage (V_{OC}) of 0.88 V, and fill factor (*FF*) of 0.638. The PCE increases to 10.1% and 13.4% when the perovskite film thickness is increased to ~80 and ~250 nm, respectively. The highest PCE recorded is 15.2% for a PSC with ~250 nm perovskite film thickness. The improved efficiency with increasing perovskite film thickness is mainly the result of the larger J_{SC} values associated with the increased optical absorption (see Fig. S8†). The J_{SC} values for these PSCs are consistent with their respective external quantum efficiency (EQE) spectra, which are shown in Fig. 6B. Since *J*-*V* hysteresis between forward (normal) and reverse scans is typically observed for SSE planar PSCs (see Fig. S9†), the stability of current output at maximum-power-point under continuous one-sun illumination was measured. Figure 7 shows that, for a typical PSC made using ~250 nm SSE MAPbI₃ perovskite thin film, the maximum power output stabilizes at

Page 7 of 18

~13.2% over a couple of minutes, which compares favourably with the values obtained from the J-V measurements under reverse scan (Fig. 6A).

The mean, maximum, and minimum PCE values for 10-20 PSCs tested for each perovskite thickness are presented in Fig. S10[†]. The tight distribution of PCE values indicates that the SSE method for MAPbI₃ perovskite thin film deposition is reproducible. While the highest PCE of 15.2% is for PSCs based on ~250 nm SSE MAPbI₃ perovskite thin film, PCE of over 10% for PSCs made from a ~80-nm film is unprecedented, and it is attributed to the high quality of the perovskite thin films made possible by the SSE method. It is noteworthy that even when the film thickness is reduced down to ~20 nm, an average PCE of 4.1% is achieved, further attesting to the high quality of SSE MAPbI₃ perovskite thin films. These results indicate that ultra-thin SSE perovskite films hold promise for use in future PSCs demanding low lead content.

Impedance spectroscopy is used to investigate the effect of perovskite film thickness on the recombination resistance (R_{Recomb}) for perovskite solar cells based on MAPbI₃ thin films deposited using the SSE method. Figure S11A[†] shows typical impedance spectra (IS) in the complex plane for a PSCs based on ~250 nm SSE MAPbI₃ perovskite thin film under three different bias voltages. The IS for all three bias voltages are dominated by a large semicircle at low frequencies. This large semicircle is often attributed to the charge recombination process within the PSC. The model used for the analysis of the IS data has been discussed previously in detail.^{25,30,31} Figure S11B[†] compares the recombination resistance R_{Recomb} as a function of voltage for PSCs with three different SSE MAPbI₃ film thicknesses. The R_{Recomb} for all three PSCs depends strongly on the bias voltage, following a similar voltage dependence as reported previously.⁹ When compared at a fixed voltage, the R_{Recomb} values for the 20-nm film PSC are significantly smaller, by about a factor of 5-10, compared to those for PSCs with 80-250 nm SSE MAPbI₃ film thicknesses. A smaller R_{Recomb} corresponds to a faster recombination rate, which could account for the observed lower V_{OC} for the 20-nm film PSC compared to that for the 80and 250-nm film PSCs.

In order to further demonstrate the robustness of the room-temperature SSE method, the as-deposited SSE MAPbI₃ thin films (~250 nm thickness) were annealed at 100 °C for 15 min in air. Initial results from the characterization of the annealed films, as seen in Fig. S12A† (XRD) and Fig. S12B† (SEM), do not show any obvious effects of annealing on the phase purity and the microstructure of the SSE MAPbI₃ thin films. This indicates complete crystallization of the MAPbI₃ perovskite in the SSE process. Consequently, annealing does not have a measureable effect on the PCEs of the PSCs made from those thin films (Fig. S13†). In contrast, other methods such as "solvent-engineering,"¹⁴ FDC,¹⁵ and solvent-washing¹⁹ require post-deposition annealing to achieve high PCEs (>10%).

The SSE method is highly versatile, and we have used it for the room-temperature deposition of semi-transparent thin films of $MAPbI_{(3-x)}Br_x$ (x = 0, 1, 2, or 3) perovskites with different vivid colours (Fig. 8) and tuned bandgaps^{32, 33} via composition control. Figure 8 also demonstrates the tailoring of semi-transparency of the $MAPbI_{(3-x)}Br_x$ perovskite thin films via thickness control. Furthermore, the room-temperature SSE method will allow the deposition of hybrid-perovskite thin films on a wide range substrate materials, for potential applications in flexible PSCs, building-integrated PSCs, and tandem photovoltaics. Finally, the key attributes of the SSE method — room-temperature process, rapid crystallization, large-area uniform deposition, film-thickness control, ultra-smoothness, and compositional versatility — make it potentially suitable for roll-to-roll scalable processing of hybrid-perovskite thin films for future multifunctional PSCs.

Journal of Materials Chemistry A Accepted Manuscript

Conclusions

We have demonstrated the feasibility of the room-temperature SSE processing concept for the deposition of hybrid-perovskite thin films for PSCs. Insights into the SSE deposition mechanisms are provided, and we have shown that the SSE method uses the principle of solventextraction-induced crystallization during solvent bathing, enabling the rapid formation of ultrasmooth perovskite thin films with large-area uniformity. The planar PSCs fabricated using SSE MAPbI₃ perovskite films deliver PCE of up to 15.2%. Furthermore, the high quality of the perovskite films afforded by the SSE method allows the use of thinner, semi-transparent films (~80 nm) in PSCs delivering an unprecedented PCE of 10.1%. We have also demonstrated the versatility of the SSE method in depositing thin films of controlled thicknesses (20 to 700 nm) and various compositions (MAPbI_(3-x)Br_x; x = 0, 1, 2, or 3). The SSE method has generic appeal, and it is potentially suitable for roll-to-roll scalable processing of hybrid-perovskite thin films for future multifunctional PSCs.

Acknowledgements

This work was supported by a grant from the National Science Foundation (Grant No. DMR-1305913) and the Brown University Graduate School, and the work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. M.Y. and K.Z. acknowledge the support by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990). We thank Dr. H.F. Garces and Mr. M. Strauss of Brown University, and Dr. C.-S. Jiang of NREL, for experimental assistance. Disclosure: Y.Z. and N.P.P. have filed a patent based on this work with the US Patent and Trademark Office.

References

- 1. H. J. Snaith, J. Phys. Chem. Lett., 2013, 4, 3623-3630.
- 2. M. Grätzel, *Nature Mater.*, 2014, **13**, 838-842.
- 3. M. A. Green, A. Ho-Baillie and H. J. Snaith, *Nature Photon.*, 2014, **8**, 506-513.
- 4. M. He, D. Zheng, M. Wang, C. Lin and Z. Lin, J. Mater. Chem. A, 2014, 2, 5994-6003.
- 5. H. S. Jung and N.-G. Park, *Small*, 2015, **11**, 10-25.
- 6. NREL, www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2014.
- 7. D. B. Mitzi, in *Progress in Inorganic Chemistry*, Ed. K. D. Karlin, John Wiley & Sons, New York, NY, 1999, pp. 1-122.
- 8. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, **131**, 6050-6051.
- 9. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphrey-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, *Sci. Rep.*, 2012, **2**, 591.
- 10. J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510.
- 11. Y. Zhao and K. Zhu, J. Phys. Chem. Lett., 2014, 5, 4175-4186.
- 12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphrey-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, *Nature*, 2013, 499, 316-319.
- 13. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Y. Yuan, C. Wang, Y. Gao and J. Huang, *Ener. Environ. Sci.*, 2014, **7**, 2619-2623.
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, *Nature Mater.*, 2014, 9, 897-903.

- 15. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng and L. Spiccia, *Ange. Chem. Intl. Ed.*, 2014, **53**, 9898-9903.
- F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. Gray-Weale, J. Etheridge, C. McNeill, R. A. Garuso, U. Bach, L. Spiccia and Y.-B. Cheng, *Nano Ener.*, 2014, 10, 10-18.
- 17. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey and N. P. Padture, *J. Phys. Chem. Lett.*, 2014, **5**, 3335-3339.
- 18. Y. Zhou, M. Yang, A. L. Vasiliev, H. F. Garces, Y. Zhao, D. Wang, S. Pang, K. Zhu and N. P. Padture, *J. Mater. Chem. A*, 2015, in press, doi: 10.1039/C4TA07036D.
- 19. J. W. Jung, S. T. Williams and A. K.-Y. Jen, *RSC Adv.*, 2014, in press, doi: 10.1039/C4RA13212B.
- 20. H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N. P. Padture and G. Cui, *RSC Adv.*, 2014, **4**, 28964-28967.
- 21. M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, 501, 395-398.
- 22. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Gratzel, M. K. Nazeeruddin and H. J. Bolnik, *Nature Photon.*, 2013, **8**, 128-132.
- 23. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, *J. Am. Chem. Soc.*, 2014, **136**, 622-625.
- 24. F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2014, in press, doi: 10.1021/ja509245x.
- 25. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643-647.
- 26. H. J. Snaith, A. Abate, J. M. Ball, G. F. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang, *J. Phys. Chem. Lett.*, 2014, **5**, 1511-1515.
- 27. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *Inorg. Chem.*, 2013, **52**, 9019-9038.
- 28. V. S. Kislik, *Solvent Extraction: Classical and Novel Approaches*, Elsevier, Oxford, UK, 2011.
- 29. NIST, http://webbook.nist.gov/cgi/cbook.cgi?ID=C872504&Mask=80#IR-Spec.
- 30. J. A. Christians, R. C. M. Fung and P. V. Kamat, J. Am. Chem. Soc., 2014, 136, 758-764.
- 31. E. J. Juarez-Perez, M. Wussler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann and I. Mora-Sero, *J. Phys. Chem. Lett.*, 2014, **5**, 680-685.
- 32. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, *Nano Lett.*, 2013, **13**, 1764-1769.
- 33. Y. Zhao and K. Zhu, J. Am. Chem. Soc., 2014, 136, 12241-12244.

Table 1. Solar cell performance parameters extracted from the *J*-*V* characteristics in Fig. 4A.

SSE Perovskite	J_{SC}	FF	V _{oc}	PCE
Film Thickness	(mAcm^{-2})		(V)	(%)
20 nm	7.3	0.638	0.88	4.1
80 nm	14.1	0.663	1.08	10.1
250 nm	19.0	0.659	1.07	13.4
250 nm*	20.7	0.680	1.08	15.2

* Solar cell with highest PCE.

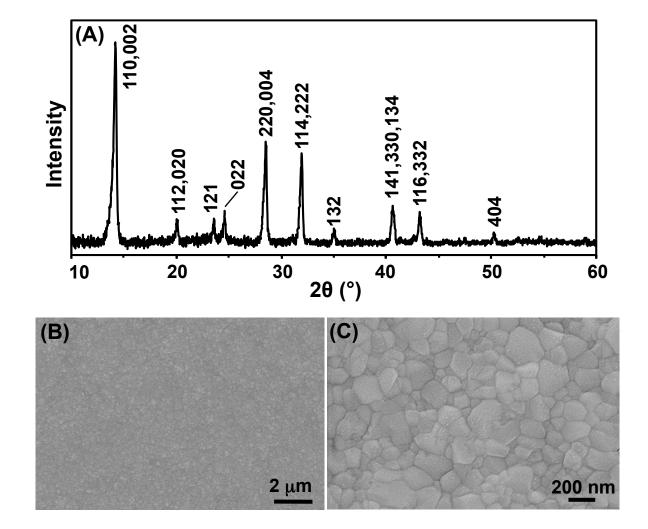
Figure Captions

1. Schematic illustration showing the SSE process for the all-room-temperature deposition of hybrid-perovskite thin films.

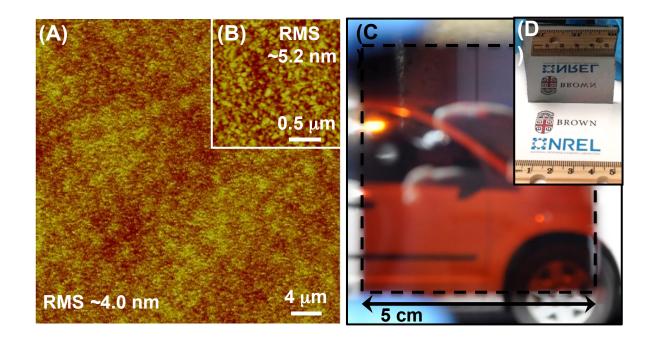
2. (A) Indexed XRD pattern, and (B) low- and (C) high-magnification SEM micrographs of the top surface of a MAPbI₃ perovskite film (~250 nm thickness) deposited on a glass substrate using the SSE method.

3. Cross-sectional images of MAPbI₃ perovskite films deposited on TiO_2 -blocking-layer coated FTO-glass substrates: (A) SEM (~250 nm film thickness) and (B) bright-field TEM (~80 nm film thickness). The light contrast at the interface between the FTO and the perovskite in (B) is the TiO₂ blocking layer. (C) Plan-view high-resolution TEM images of a MAPbI₃ perovskite film deposited on a TEM grid using the SSE method showing lattice fringes and defects, and (D) higher magnification image of area marked by red rectangle in (C) showing ~0.44 nm (020) and ~0.32 nm (004) spaced planes.


4. AFM images of a MAPbI₃ perovskite film (~250 nm thickness) deposited on a TiO₂-blockinglayer coated FTO-glass substrate: (A) large area ($40 \times 40 \ \mu\text{m}^2$) and (B) smaller area ($2 \times 2 \ \mu\text{m}^2$). (C) Photograph of a MAPbI₃ perovskite film (~250 nm thickness) deposited on a TiO₂-blockinglayer coated FTO-glass substrate (dashed 5×6 cm² rectangle) held in bright sunshine. (D) Photograph of the same film showing high reflectivity.


5. XRD patterns from: (A) MAPbI₃ precursor as-spin-coated film (in NMP) on a glass substrate, and (B) after 2 s and (C) after 2 min of NMP extraction by DEE solvent at room temperature. Note the sharpening of the XRD peaks in (C). (D) FTIR spectra corresponding to (B) 2 s (red) and (C) 2 min (black). The C=O stretching band at ~1700 cm⁻¹ observed in the 2-s film is marked in (D). (E) Schematic illustration of the proposed SSE deposition mechanisms.


6. (A) *J-V* characteristics of PSCs based on MAPbI₃ perovskite thin films with different thicknesses deposited by SSE at room temperature, under simulated one-sun AM 1.5G (100 mW cm⁻²) illumination. The dashed red *J-V* curve is for a PSC with the highest PCE of 15.2%. (B) External quantum efficiency (EQE) as a function of wavelength for the PSCs in (A).


7. Stability of *J* and PCE as a function of time for a PSC based on SEE MAPbI₃ perovskite thin film (~250 nm thickness) under simulated one-sun AM 1.5G (100 mW cm⁻²) illumination.

8. Photograph of $MAPbI_{(3-x)}Br_x$ perovskite films deposited on TiO_2 -blocking-layer coated FTOglass substrates using the SSE process at room temperature for different x (0, 1, 2, 3) and film thicknesses (~20 nm, ~80 nm, ~250 nm, ~400 nm), demonstrating that the semi-transparency and color can be tuned through these variables.

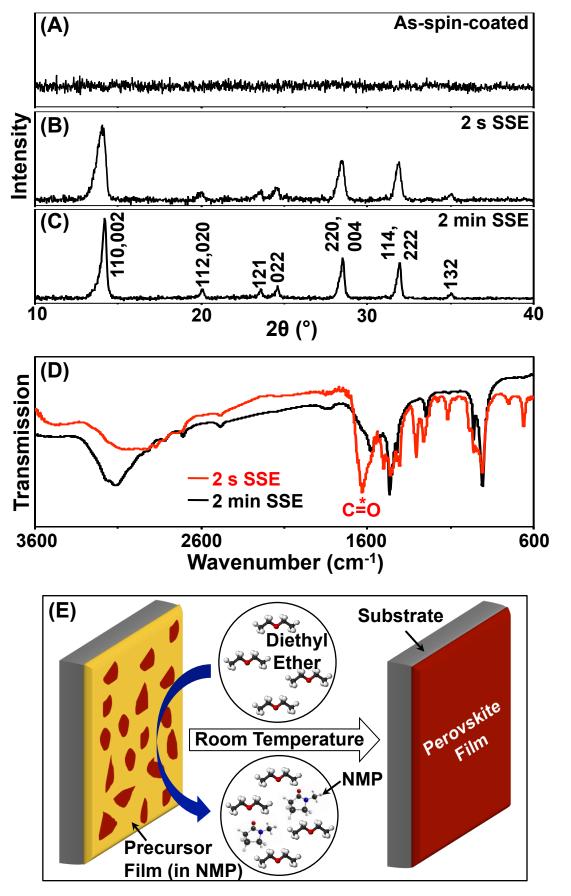
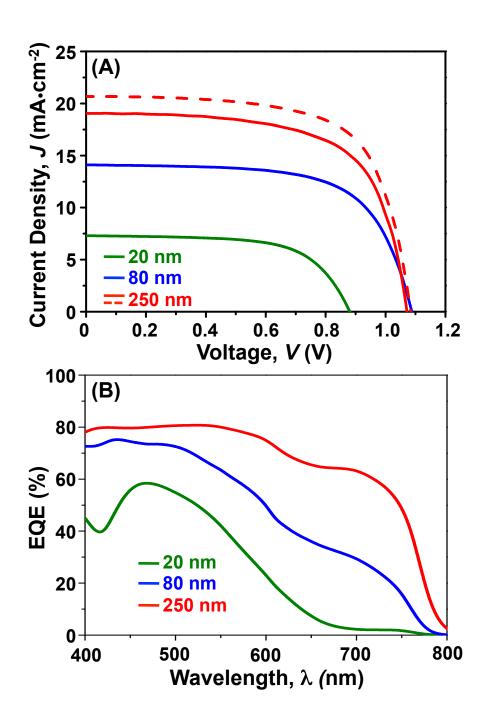



Fig. 5, Zhou et al.

Fig. 6, Zhou et al.

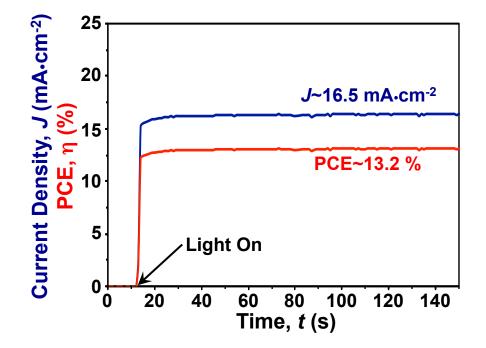


Fig. 7, Zhou et al.

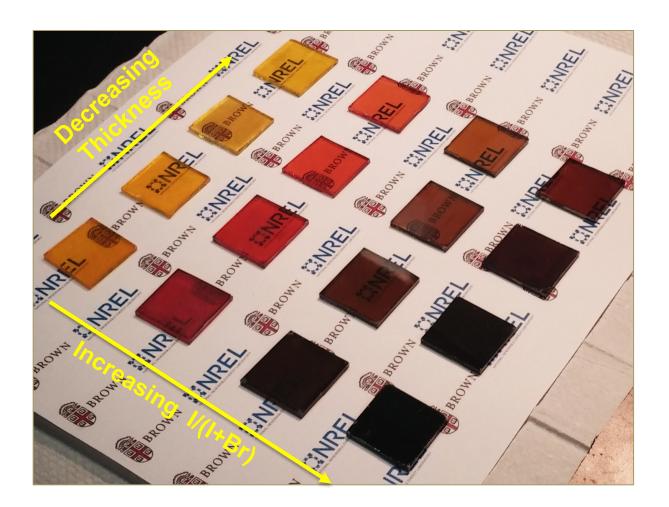


Fig. 8, Zhou et al.