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A jammed packing of frictionless spheres at zero temperature is perfectly specified by the network of contact forces from which

mechanical properties can be derived. However, we can alternatively consider a packing as a geometric structure, characterized by

a Voronoi tessellation which encodes the local environment around each particle. We find that this local environment characterizes

systems both above and below jamming and changes markedly at the transition. A variety of order parameters derived from this

tessellation carry signatures of the jamming transition, complete with scaling exponents. Furthermore, we define a real space

geometric correlation function which also displays a signature of jamming. Taken together, these results demonstrate the validity

and usefulness of a purely geometric approach to jamming.

1 Introduction

Over the past two decades the jamming of athermal friction-

less spheres has been seen as the limiting case of several dif-

ferent kinds of systems1–6. Athermal soft sphere systems

can be brought to the limit of zero internal energy and iso-

staticity, achieving a critically jammed system which is typ-

ically characterized by mechanical properties2,5,7–10. How-

ever, when such systems are below the jamming density there

is no longer a mechanical network of force-bearing contacts

and so mechanical order parameters are all identically zero.

Conversely, hard sphere thermal liquids are studied below the

glass or jamming transition and are characterized by dynamic

quantities such as mobility and pressure4,6,11. As density is

increased they reach the limit of diverging reduced pressure

and become a critically jammed system. Above this density,

hard sphere systems can not exist. While both athermal soft

sphere systems and thermal hard sphere glass systems have

been successful models for predicting and measuring scaling

exponents of various parameters near the jamming phase tran-

sition2,4,6,10, neither of these model systems speak to the be-

havior of unjammed athermal systems. This leaves a gap in the

understanding of the athermal jamming transition. In this pa-

per we introduce new geometric order parameters which char-

acterize the athermal jamming transition both above and below

jamming, placing both sides of the transition on equal footing
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and providing a meaningful way to interrogate soft sphere sys-

tems below the jamming transition.

The structure of jammed systems has long been studied in

terms of geometry12–18 however a systematic study of geo-

metric changes as a function of distance to the transition has

not yet been performed. The Voronoi tessellation19, which is

well defined at all packing fractions, provides a natural lens

through which to study both unjammed and overjammed sys-

tems. In previous work we have demonstrated that the number

of facets (corresponding to the number of nearest neighbors)

provides a good order parameter for the jamming transition20.

This order parameter raised a new problem, however, because

it exhibited an upper critical dimension (above which, all or-

der parameters share the same scaling laws) of d = 3. This

stood in contrast to the well known fact that mechanical order

parameters exhibit an upper critical dimension of d = 22,21.

This, coupled with the recent success of replica theory in pre-

dicting high finite dimensional scaling6 has motivated us to

explore a range of geometric order parameters in dimensions

ranging from d = 2 to d = 5.

In this paper we show that most geometric properties of the

Voronoi tessellation are controlled by the jamming point φJ ,

suggesting that jamming can be described in purely geometric

terms. Further, we present a new geometrically defined cor-

relation function which changes qualitatively at the jamming

transition. Surprisingly, none of these measures show any in-

dication of the previously discovered pre-jamming transition,

associated with the maximum inscribed sphere of the Voronoi

cell, which we have found to happen at a density φ ∗ < φJ
20.
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Fig. 1 Plots of scaled order parameters vs. the scaled packing

fraction. Closed circles represent IQ data, x’s represent GM data

(from below), and triangles represent ES data (from above). Note

that on this linear scale the GM and ES data is nearly all clustered

right at φJ . The parameters shown are (a) mean surface area, S, (b)

standard deviation of volume divided by the mean of the volume, Ṽ ,

(c) mean surface to volume ratio S/V (d−1)/d (d) mean aspect ratio,

A, and (e) mean aspect ratio angle cosθ . We plot data for d = 2

(smaller particles light gray, larger particles dark gray, combined

black), d = 3 (green), d = 4 (red), and d = 5 (blue).

2 Generating a packing

We simulate packings of frictionless athermal particles with

a harmonic contact potential in periodic boundary conditions

as described in references20,22. In d = 3−5, we use monodis-

perse spheres, and in two dimensional systems, we use a 50:50

mixture of bidisperse disks with a ratio of radii that is 1:1.4,

known to show mechanical jamming. We present data ob-

tained with three packing protocols: Infinite Quench (IQ)2,

Geometric Mean (GM)20,22, and Energy Sweep (ES)6.

Our three protocols differ only in how jamming is ap-

proached. All begin with a set of particles in random posi-

tions at a specified density. The energy of this system is then

minimized to find the so-called inherent structure, found at the

local energy minimum. Each of these protocols works as an

iterative process by finding the inherent structure at a given

density and then using this packing as the seed to find a mini-

mized packing at a new density.

The IQ protocol begins with a random packing at zero den-

sity. Every particle is inflated to achieve a new packing at a

specified higher density and this packings energy is then mini-

mized. The results of this minimization are then used to create

a denser packing, and so on. This proceeds in linearly spaced

steps of packing fraction until the desired range of packing

densities is covered. The range is chosen to cover densities

from φ = 0 to φ = 2φJ . The limits of this range are somewhat

arbitrary but are chosen to be symmetric about φJ . While the

most relevant region is near the transition point, we include

data at both the high and low extremes for completeness. Data

for d = 3 − 5 uses 65536 (216) particles, while d = 2 uses

16384 (214) particles.

The GM protocol is designed to zero in on the transition

point, either approaching from above or below, without ever

overshooting. In this manuscript, we only report on GM sys-

tems approaching from below because the ES protocol (de-

scribed below) converges much faster when approaching from

above. The GM protocol requires an initial bounding of the

jamming point by choosing two densities, one above and one

below. A packing is initially created at the lower bound and

its energy minimized. A new packing is created between the

upper and lower bounds using the original packing as its seed.

If this packing is below jamming (taken to mean an energy

per particle of < 10−20), it becomes the new lower bound and

serves as the next seed. If, however, this packing is found to

be above jamming it is discarded and its density is used as

the upper bound in picking a new intermediate density. This

proceeds until we approach the jamming point to within our

energy per particle tolerance of 10−20. In this way we are able

to create a packing right at the edge of jamming that is the re-

sult of only inflationary steps, without ever crossing into the

jammed regime. Because the convergence is slow, we are only

able to report on 8192 (213) particles.
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Fig. 2 Log-log plots of each scaled order parameter vs. the scaled packing fraction approaching jamming from below (left) and above (right).

Closed circles represent IQ data, x’s represent GM data (from below), and triangles represent ES data (from above). The parameters shown are

(a,f) mean surface area, S, (b,g) standard deviation of volume divided by the mean of the volume, Ṽ , (c,h) mean surface to volume ratio

S/V (d−1)/d (d,i) mean aspect ratio, A, and (e,j) mean aspect ratio angle cosθ . We plot data for d = 2 (smaller particles light gray, larger

particles dark gray, combined black), d = 3 (green), d = 4 (red), and d = 5 (blue).
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The ES protocol is limited in that it can only serve to ap-

proach jamming from above, but as previously mentioned,

it converges faster than GM. The ES protocol exploits the

scaling of system energy with excess packing fraction E ∝

(φ −φJ)
2

to gently approach jamming from above, creating

nsteps logarithmically spaced packings per decade. Given an

initial system density φi, system energy Ei, and a guess for the

jamming density φ̃i we calculate the packing fraction for the

next system as

φi+1 = φ̃i +
(

φi − φ̃i

)

10−1/nsteps . (1)

Once this new system’s energy is minimized we compute a

better estimate for the true jamming density as

φ̃i+1 =
φi+1 −φi

√

Ei/Ei−1

1−
√

Ei/Ei−1

. (2)

This process continues until we achieve an energy per particle

of 10−20.

We choose the starting point of the approach to be approx-

imately 2φJ . It has been previously shown that the jamming

density when approaching from above is dependent on the ini-

tial packing density for systems that start close to φJ . When

the initial packing density is significantly high, however, the

value of φJ is independent of the initial packing density22. We

choose to start at such a high value of φ to ensure that our

results are independent of the starting density.

All ES data sets use 16384 (214) particles. Data for d = 2,

d = 3, and d = 4 are averaged over 10, 63, and 79 systems

respectively while data for d = 5 is taken from a single system.

3 Geometry of the Voronoi tessellation

θ

θ

.

Fig. 3 Illustration of the aspect ratio axes in two Voronoi cells. For

each cell, the short axis is shown in green (short dashes) and the long

axis is shown in orange (long dashes). The angle θ between the two

axes is defined to be the acute angle between the short and long axis.

The angle α between two long axes of different cells is also shown.

Given a packing created via any of our protocols and in

any dimension we calculate the Voronoi tessellation using

an in-house implementation of the algorithms described by

Boissonnat and Delage23 as used in our previous work20 and

extract the associated vertices using the Delaunay triangula-

tion24. For the monodisperse packings we create in d = 3−5,

this Voronoi tessellation is the standard Voronoi tessellation

wherein the size of a cell is independent of the size of the par-

ticle. However, due to the bidispersity used in d = 2 we use

the radical Voronoi (or Laguerre) tessellation19, which makes

the boundaries between cells the bisecting plane between the

particle edges. This preserves the convexity of each cell and

thus provides a natural extension of the classical Voronoi cell.

From each Voronoi cell, we extract all of our measurements.

The number of facets of the Voronoi tessellation gives us 1) the

number of nearest neighbors N; The vertices of the Voronoi

cell allow us to calculate 2) the surface area S and 3) the vol-

ume V ; The ratio between the largest and smallest possible

distances between parallel planes kissing the cell defines 4)

the aspect ratio A; Finally, the dot product between the head-

less vectors defining the aspect ratio provides 5) the cosine of

the cell’s internal angle θ .

3.1 Volume and Surface Area

Volumes and surface areas can be calculated easily by break-

ing the cell into simplices. To find volumes and surface ar-

eas we exploit the fact that the d-dimensional volume of a d-

simplex can be calculated from the generalized triple product

of its vertices. The Delaunay triangulation of the surface of

a Voronoi cell breaks down the surface of each facet k into a

number of (d−1) dimensional simplices labeled by the index

m. There are d-vertices association with each simplex, which

we denote as ~vm,i where i ranges from 1 to d, and we denote

the outward facing normal vector to a facet k as n̂k. From this,

the surface area of each facet is calculated as the sum of the

surface of all of its constituent simplices as

Sk = ∑
m

|n̂k ·
[

(~vm,1 −~vm,d)∧·· ·∧ (~vm,d−1 −~vm,d)
]

|
(d −1)!

, (3)

where ∧ denotes the d-dimensional wedge product. The

total surface area of a given Voronoi cell is then the sum of all

facets

S = ∑
k

Sk. (4)

By choosing an interior point of the cell~r, we can subdivide

the volume of the cell into a number of d-simplices whose

volumes sum to the volume of the cell as

V = ∑
m

|(~vm,d −~r) ·
[

(~vm,1 −~vm,d)∧·· ·∧ (~vm,d−1 −~vm,d)
]

|
d!

.

(5)
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Parameter χ N S Ṽ S/V (d−1)/d A cosθ

Appx. Power γ 0.7 1.0 0.75 1.0 0.75 0.33

χJ , d = 2, large 6 3.00(5) 0.03(1) 3.73(8) 1.22(1) 0.56(7)

χJ , d = 2, small 6 2.27(5) 0.04(7) 3.82(7) 1.30(6) 0.55(9)

χJ , d = 2, all 6 2.64(0) 0.29(5) 3.78(2) 1.26(4) 0.56(3)

χJ , d = 3 14.29 5.3(8) 0.03(8) 5.3(8) 1.32(2) 0.42(9)

χJ , d = 4 32.74 6.8(7) 0.03(6) 6.8(8) 1.3(7) 0.38(5)

χJ , d = 5 74.62 8.2(6) 0.03(4) 8.2(6) 1.4(1) 0.35(0)

Table 1 Scaling laws and critical values for all parameters χ , such that
χ−χJ

χJ
∝ ( φ−φJ

φJ
)γ . Critical values quoted have their error in the least

significant digit, which is reported in parentheses. Both GM and ES data agree on each critical value. All critical values are unitless except for

SJ which is reported as the unitless SJN
(d−1)/d

particles . For d = 2, we report separately on χJ values for the larger particles, the smaller particles, and

the system as a whole.

For a given packing, the mean cell volume is just the sim-

ulation volume divided by the number of particles. The dis-

tribution of cell volumes, however, does change, and so we

report on Ṽ , the ratio of the standard deviation of the volume

distribution to the mean. We also report on the mean of the

unitless surface to volume ratio S/V (d−1)/d .

3.2 Aspect Ratio and Internal Angle θ

The ratio of surface area to volume S/V
d−1

d defines a sim-

ple notion of an aspect ratio, but one that is insensitive to the

anisotropy of the cell. We define another aspect ratio, explic-

itly sensitive to anisotropy by looking at the ratio between the

longest one dimensional span in a cell to the shortest one di-

mensional span of a cell (Figure 3). To calculate this aspect

ratio we define the long axis ~ℓ as the maximum distance be-

tween any pair of vertices and the short axis~s as the minimum

of the set of maximum distances between each vertex and each

facet. Given a set of vertices ~vi and introducing a point ~pk on

each facet k, these definitions can be formalized as

~ℓ= {~ℓ | ‖~ℓ‖= Maxi j‖~vi −~v j‖}, (6)

and

~s = {~s | ‖~s‖= Mink(Maxi|n̂k · (~vi −~pk)|)}. (7)

The aspect ratio is then simply defined as

A =
‖~ℓ‖
‖~s‖ . (8)

We can further measure the skewness of a cell by defining

the angle between the long axis and the short axis as

cosθ =
|~ℓ ·~s|
‖~ℓ‖‖~s‖

, (9)

where the absolute value is taken because ~ℓ and~s are headless

vectors.

3.3 Correlation Function

We can examine the interaction of each cell with its neighbors

by defining a correlation function based on the angle between

the axes of pairs of cells. When cells are packed together to fill

space neighboring cells must share facets, potentially causing

the axes to align. To characterize this we measure the cosine

of the angle between two long axes ~ℓi and ~ℓ j associated with

particles i and j respectively (illustrated in Figure 3). Because

the axes are headless vectors we must use the formalism of

directors, giving rise to the definition for the cosine as

cosαi j =
|~ℓi ·~ℓ j|
‖~ℓi‖‖~ℓ j‖

. (10)

To compare systems in different dimensions, we must first

calculate the expectation values of completely uncorrelated di-

rectors. The expectation value of the cosine of the angle in

dimension d is given by

〈cosα〉d =

∫ π/2

0 cosα sind−2 αdα
∫ π/2

0 sind−2 dα
=

Γ
(

d
2

)

√
π Γ

(

d+1
2

) . (11)

The standard deviation of the angle between uncor-

related directors in dimension d is defined as σd =
√

〈cosα〉2
d −〈cos2 α〉d . Therefore we also calculate the ex-

pectation of the square of the cosine of the angle of uncorre-

lated directors as

〈cos2 α〉d =

∫ π/2

0 cos2 α sind−2 αdα
∫ π/2

0 sind−2 dα
=

Γ
(

d
2

)

2Γ
(

d + 1
2

) . (12)
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do not always exhibit the same behavior as monodisperse sys-

tems, however they always show power-law scaling when ap-

proaching jamming.

In order to explore the behavior very close to jamming we

use the GM protocol to approach from below and ES to ap-

proach from above. In this way we obtain packings that con-

verge logarithmically on φJ . Plotted on a log-log scale (Figure

2) we find that each parameter scales with its own power-law

on both sides of the transition with power law values and criti-

cal values listed in Table 1. We have previously demonstrated

that the mean number of neighbors 〈N〉 scaling is consistent

with a power of ∼0.720.

Below jamming, there must be a limit to the scaling regime.

The mean surface area 〈S〉, volume 〈V 〉, and number of facets

〈N〉 of Voronoi cells at φ = 0 and their respective dimensional

dependence can be semi-analytically determined12,25–27. The

same should be true for aspect ratio 〈A〉 and internal angle

〈cosθ〉 but to our knowledge those studies have not yet been

done. This is responsible for the changes in curvature seen at

low φ in Figure 1.

While most of the power laws work well over at least five

decades, there are a few exceptions. The data from below is

very sparse, and so we cannot claim that the power laws fit

exactly and can only suggest that the plots look like power-

laws within the plotting area. Precise claims about the scaling

exponents of these power laws would require a method which

approached jamming more predictably from below and which

converged much faster so that averaging could be used, as it is

done above jamming.

It is also important to note that the d = 2 data deviates sig-

nificantly in the standard deviation of the volume for particle

sizes considered separately (Figure 2g) and the internal an-

gle for all cases (Figure 2j). What is unclear is the extent to

which this non-universal behavior is due to the dimension or

the bidispersity. We can probe this question by examining the

d = 3 bidisperse system which is presented in the supplement.

Unlike the d = 2 bidisperse system, the d = 3 case shows non-

universal behavior even in the combined statistics. This sug-

gests that the fault lies in the polydispersity and perhaps not

the dimension as was claimed in our earlier work20. It is not

surprising that adding polydispersity will change the behavior

of these detailed geometric properties. The result is that it is

impossible to decouple the effects of polydispersity from those

of dimension in causing the non-universal d = 2 behavior.

4.2 Correlation Function

From the measurements of the aspect ratio we can see that at

jamming the Voronoi cells are much more isotropic than they

are far from jamming. At jamming, the aspect ratio is close

to 1 and the direction of the long and short axes are uncorre-

lated as measured by cosθ . In contrast, at very low density
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Fig. 5 The position of the minimum (closed circles) and secondary

maximum (open star) of the correlation shown in Figure as a

function of distance from the jamming transition. Colors shown

represent dimensions 2 (black), 3 (green), 4 (red), and 5 (blue).

the cells are elongated and have a large aspect ratio and axes

that are nearly perpendicular. Figure 4 shows the measured

correlation function between the long axes as a function of in-

terparticle distance for packing fractions ranging from φ = 0

to φ = 2φJ in dimensions d = 2 − 5. Far below jamming,

neighboring particles are highly correlated. This correlation

decreases with increasing distance, showing an anti-correlated

dip at intermediate distances and then finally decaying to com-

pletely decorrelated at large distances. At jamming, the cor-

relation function changes qualitatively, marked by the appear-

ance of a positive correlation peak at intermediate distances in

addition to the short distance dip. Both the dip and the peak

become more prominent and sharpen at higher packing frac-

tions. These extrema are found using a cubic Savitzky-Golay

filter with a span of 51 data points28 and the positions of the

dip and peak are indicated by circles and stars respectively in

Figure 4 and plotted as a function of packing fraction in Figure

5. The position of the maximum shows a clear signature of the

transition in d = 2−5. However, the position of the minimum

for d = 3− 5 does not show a clear signature of this transi-

tion. We find that the correlation functions plotted in Figure 5

only depend on interparticle distance, with no angular depen-

dence when oriented to the long axes of each given particle.

This correlation function is unusual in that the jamming tran-

sition is marked by the disappearance of the nearest neighbor

correlation, seen in the value of the correlation function at the

shortest possible interparticle distance.

5 Conclusion

We have observed a clear signature of the jamming transition

in each of the studied measures of the Voronoi cell as well

as in our newly defined axis-correlation function. These re-
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sults bolsters the claim that while jamming is a mechanical

transition, it can be viewed separately as a purely geometric

phenomenon via the Voronoi cells. These results justify the

use of the Voronoi cell as a tool to understand the jamming

transition. Ultimately, each of the measures are sensitive to

the fluctuations in the size and shape of individual Voronoi

cells. Each measure reflects a different change in the cell. The

fact that we see power-law scaling in all of these measure-

ments, even in 2d bidisperse systems (albeit with different ex-

ponents), suggests that nearly every aspect of the cell changes

and is controlled by the transition from unjammed to jammed.

Our results demonstrate that the mechanical jamming transi-

tion coincides perfectly with a transition in the geometry of

the packing at φJ .
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